
Network Testing & Emulation Solutions Founded in 2000

- Focus on Network testing and Emulation Solutions
- WiFi test solutions since 2006
- Team of Networking Technologies and Firmware Experts
- Helping over 200 customers, design, develop and deploy high quality networking products

Candela Products & Solutions Overview

TECHNOLOGIES

SOME CUSTOMERS

Recent Customers

the last 10

years

ALL STREET		
 Meta Charter 	✤ FCS	🛠 Sky UK
 SpaceX Telnet networks 	✤ LDC	 Tele2
 Comcast Imco-manassas 	✤ Cisco	🔅 Ekinops
🛠 Qualcomm 🛭 🛠 Qnet	✤ Ddsoftware	Samsung
 Commscope Haivision 	 Optus 	 FreeBox
 Cisco GogoAir 	 Palo Alto 	 ♦ Altice ♦ Airtel ♦ Sony
 QACafe Sony 	 Casepoint 	Samsung Seliance Samsung
 Commscope Net experience 	Raytheon	Vestifi * Netgear * TOT
 Eero ViaSat 	 tierney- 	smart-e- 🛠 Qualcomm 🐟 3BB
 CACI Assured Networks 		tech.de * Netgear * FPT
 Adtran Sterling 	 sos-software.com 	 NordicLAN Commscope Huawei
 Citrix Unwired 	 Matthew Shelden 	 rdt.co.il Capgemini Qualcomm
 NetApp Tessco 	 Rockstar games 	Intel
 Starry Action 	 Nortek-control 	 Intelsat Relay2 Commscope
 Sony-san-Diego smartrg.com 	 chevron.com 	 Dyson Comcast Belkin
 Raytheon-IIS Tactical Coms 	✤ Onemediallc	 Philips Technicolor Optus
 Sierra Wireless magic leap 	 sea-machines.com 	 NetModule NetApp
 Telus Brinker 		Deutsche HFCL Over 250
 Panasonic Oceaneering 		Telekom CDOT Over 350
		Dekra Arista Customers in

✤ TataElxsi

Thinkpalm

Test Engineer Key Careabouts

Comprehensive Test Coverage Cover all tests in the WiFi test plan

Accurate Measurements

Accurate measurements with very little margin of error from the test tools.

Highly Repeatable Test Highly repeatable test results that can eliminate all variables except the DUT

Environments

Intuitive and Easy to Use Tools

Easy to configure and run tests, easy to interpret results.

High Degree of Automation

Run 100s of test cases fully automated at one push of a button.

Key Insights and Expert Analysis

Get key Insights and expert analysis and diagnostics when issues are found with the DUT.

WHY CANDELA?

Exceptional Support

Small team of product experts. Support line goes directly to product developers.

Feature Velocity Product design and architecture allows for super fast feature development Developers work directly with the customers

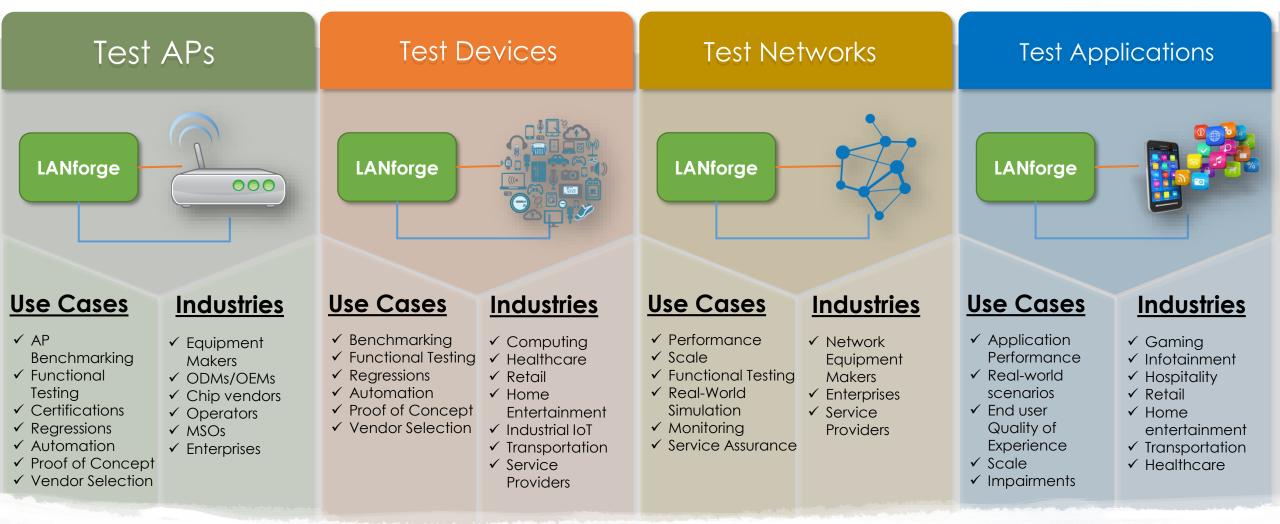
Custom Solutions

Team can build any kind of custom solution the customer needs. Most of we do is available for customers as open source to build on top of.

Technology Expertise

Team members have over 18 years experience in the WiFi Industry. You get not just good products, but solutions and domain/industry expertise.

Comprehensive Feature Set

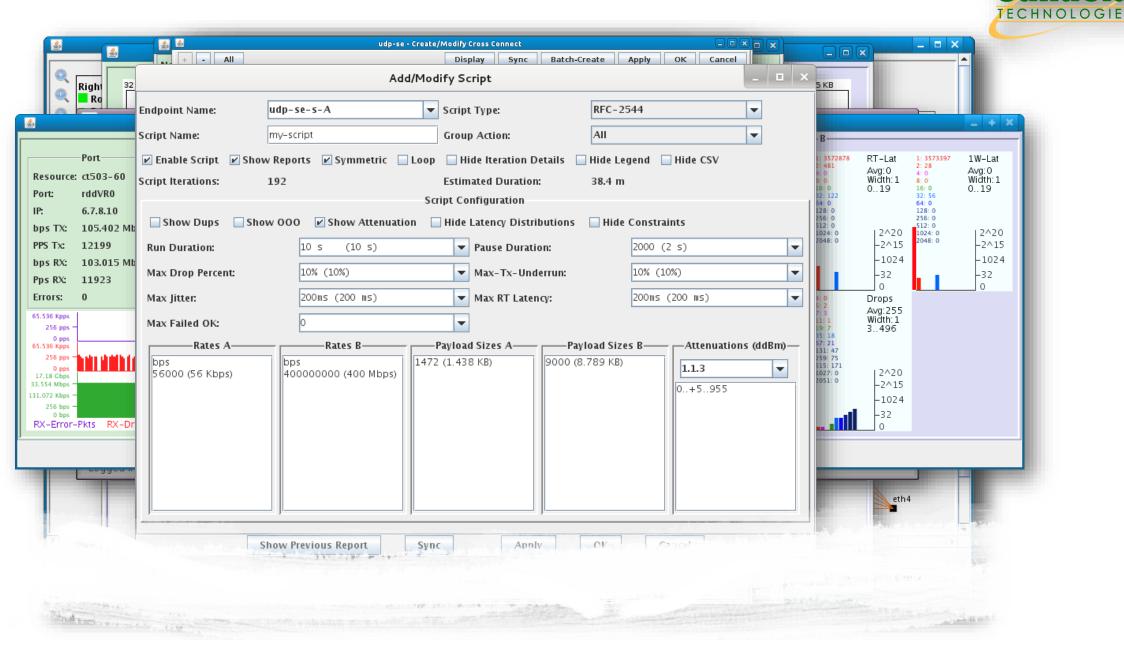

A comprehensive set of features for functional, performance, interoperability, Proof-of-Concept, validation, regression and many forms of testing.

Highly Affordable

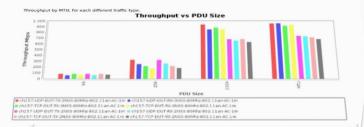
Offers the most affordable solutions in the market. Renting/Leasing/ Rent to own and other models available

WHAT CAN OUR PRODUCTS DO FOR YOU?

PRODUCT CATEGORIES

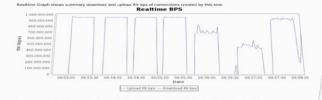

LANforge - FIRE	LANforge - ICE	LANforge - WiFIRE
Network Traffic Generation	WAN Emulation	WiFi Device & AP Emulation
 Supports real-world protocols: Ethernet, 802.1Q VLANs, MAC-VLANs, 802.11a/b/g/n/ac (wireless), Layer 3: TCP/IP,IPv6, UDP/IP, UDP Multi-cast, including TOS/QoS, Layer 4-7: FTP, HTTP, HTTPS, TELNET, PING, DNS, SMTP, G711, G729, SIP, SCP, iPerf3 Capable of 140+ emulated VoIP phones per machine, capability to dial real phones, direct-dial mode and gateway mode. Comprehensive reporting of Call, RTP and RTCP statistics. PESQ automated voice quality reporting. Test routing protocols like OSPF, bridges, NAT etc Emulates 1000+ unique networked devices per LANforge machine Comprehensive traffic reports include: Packet Tx/Rx rate, Packet drop, Tx/Rx bytes, Latency, jitter and many more statistics. 	 General purpose WAN and Network impairment emulator Simulate DS1, DS3, OC-3, OC-12, GigE, DSL, Cable-Modem, Satellite links and other rate- limited networks, from 10bps up to 10Gbps speeds (full duplex) Can modify various network attributes including: line-speed, latency, jitter, packet- loss, packet-reordering and packet- duplication. Supports Ethernet packet corruption with option to recalculate IP, UDP, and TCP checksums. Corruptions include bit flip, bit transpose, and byte over-write Supports 'WAN-Playback' allowing capture and replay 	 All LANforge FIRE and ICE features Emulate 100s of 802.11a/b/n/ac WLAN STAs and APs All 2.4 and 5GHz channels supported 20/40/80/160 MHz channel BWs Most WLAN Security protocols. Modular platform that can house several radios. Hardware comes in many different form factors Per station MAC and PHY controls. Programmable Attenuation, Radar , Interference Signal, Noise Generation. Pota plane performance testing Client scale/capacity testing Hotspot 2.0 / Captive Portal Voice/Video/Data traffic Mesh testing IoT Device Testing Mu- MIMO

Some Testbed Pictures...


Lots of GUI controls and GUI based tests

PDF TEST REPORTS

The Concists WHI data plates that is essigned to conclude an automotive trading of all combinations of statistic types, which can be concluded as automotive trading of all combinations of statistic types. Which can be concluded as a statistic trading of the statistic tra

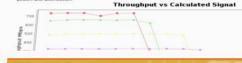


Pps throus

Objective

By their to be applied to the excluse performance to this Accide Poull when hardwaled difference throughout free each trial. Along with throughout other measurements made are client to DHCP times and more. The expected behavior is for the AP to be able to handle sive DHCP times and more. The expected behavior is for the AP to be able to handle serve a spontfraction over all throughout for them as an over all before an endering a spontfraction over all throughout distribute as an over all before an endering.

Station connect time is calculated from the initial Authenticate message through the completion of Open or RSN association/authentication.



Objective

In the real-world the Device Device Trait WDT in reciver is expected to benefit stations at many effortent incriminations and an among uniformer stations framework in the station of the station of the station of the station of the station training models and an excellent real-states. The cancel stations are stationare to the station of the station

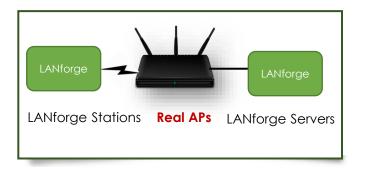
uphput vs calculated RF Signal for each different traffic type. The signal is calculated based on the configured path-loss, transmit

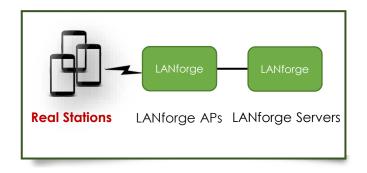
Objective

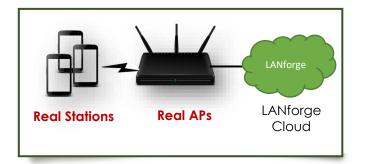
The TR-388 W/I Performance ted plan by the Broadshard brum provides a comprehensive sed plasts to suasity the performance of W/I access points (24) instanded the restantiation are brain drice memory and common the struggent. Converting Stability, Jermine Review, JP Consistency, Mu, JMRO Performance, Spatial Consistency and Long-term Stability are some of the test areas covered in this test plan. The test plan is designed for same providers deploying in home W/I As to quality the APs in the lab before deployment and for explorement makers to test during the development of the APs in Candets Technologies offers a fully automated TR-398 test system. The user can select from the list of 11 tests vanishies in the GUI and all selected tests. Tests Stability and the summary RASSTAL results followed more detailed results for each test.

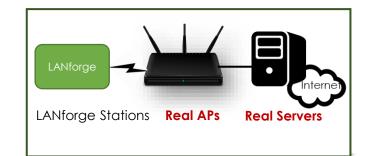
Add your notes below:

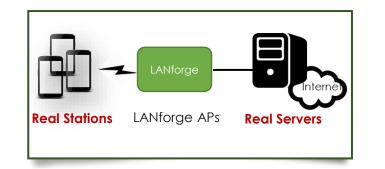
Setup is similar to what is described here: https://www.candelatech.iss/lf tr200 testing.php

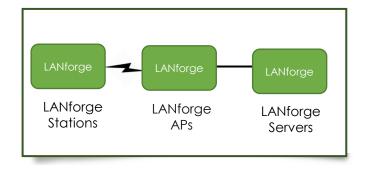

Summary Results

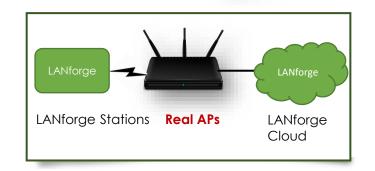

Test	Result	Candela	Elapsed	
6.1.1 Receiver Sensitivity Test	2.4Ghz PAS SGhz PASS	S 100	2.165 h	2.4Ghz passed 16 / 16 Pass-Avg: 11.1 5Ghz passed 16 / 16 Pass-Avg: 4.4
6.2.1 Maximum Connection Test (32-STA	SGDZ FAIL			Throughput: 2.4Ghz UL 104.24% DL 104.33% Throughput: 5Ghz UL 96.26% DL 104.19% Passed PER: 128 / 128
6.2.2 Maximum TCP Throughput Test	2.4Ghz FAIL 5Ghz PASS	62	16.047 m	Throughput 2.4Ghz UL 0% DL 0% Throughput 5Ghz UL 124.57% DL 124.78%
6.2.3 Airtime Fairness Test	2.4Ghz FAIL 5Ghz FAIL		9.299 m	2.4Ghz passed 3 / 7 Candela is not convinced these pass/fail metrics are very helpful.
6.3.1 Range Versus Rate Test	2.4Gbz FAIL SGbz PASS	93	27.978 m	SGhz UL 13 / 13 DL 13 / 13 2.4Ghz UL 17 / 18 DL 17 / 20 2.4Ghz Retried 0 traffic tests.
6.3.2 Spatial Consistency Test	2.4Ghz FAIL		28.733 m	SGAz passed 12 / 12 SGAz retried 1 traffic tests. 2.4GAz passed 11 / 12 2.4GAz retried 1 traffic tests. Rotational Degrees : 45
6.4.1 Multiple STAs Performance Test	2.4Ghz PASS	100	18.053 m	2.4Ghz Passed 6 / 6 SGhz Passed 6 / 6
6.4.2 Multiple Association / Disassociation Stability Test	2.4Ghz PASS 5Ghz PASS	100	100000000000000000000000000000000000000	2.4Ghz Passed 960 / 960 5Ghz Passed 960 / 960
.4.3 Downlink MU-MIMO Performance Test	5Ghz FAIL	115	14.489 m	Passed: 2 / 3 Single Throughput Sum: 1,368.39 Mbps SU-MIMO Throughput Sum: 422.23 Mbps MU-MIMO Throughput Sum: 601.06 Mbps
5.2 AP Coexistence Test	2.4Ghz FAIL SGhz FAIL	50	17.639 m	Passed 4 / 8 NOTE: User has calibrated different Interferer transmit rates. TR-398 specified vs actual inteferer rate settings: 5G-80Mhz: 195 vs 195 5G-40Mhz: 90 vs 90 2.4Ghz-20Mhz: 32 vs
	2.4Ghz FAIL 5Ghz PASS	97 3	20.669 m	2.4Ghz Throughput Avg 187.95 Mbps Passed: 48 / 50 2.4Ghz Packet Error Rate Passed: 0 / 1 SGhz Throughput Avg 887.18 Mbps Passed: 50 / 50 5Ghz Packet Error Rate Passed: 1 / 1

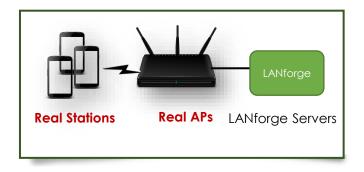

TECHNOLOGIES **WiFi Mobility Report** Candeia Sat Jun 01 08:13:35 PDT 2019 Objective The Candela Roam test uses the forced roam method to create and roam hundreds of WiFi stations between two or more APs same SSID on the same channel or different channels. The user can run theusands of roams user long durations and the test roaming delay for each roam, station connections times, network doon time, packed thos set... The user can not this test using second methods of the same channel and any of the second s 45 Parget Aarga **Roam Percentage per Duration** 12 2 2 2 2 N Boam Time **Station Roam Times** 175.000 125.000 the state of the second 100,000 **Rate vs Range Test** Candela 3 100,000 Sat Jun 01 10:01:31 PDT 2019 75.000 50.000 Test Setup Information 25,000 V5.62.3 AP640 Serial Number 234-23-sd-35 vice Under Test 081 10.02-24-57-26-4 88.60 84 **=**] Objective rms text measures the performance over distance of the Device Under Text. Distance is emulated using programmable attenuat and a throughpit test is not a each distance/RSSI step and plotted on a chart. The test allows the user to plot RSSI curves both upstream and downstream for different types of traffic and different station types. Throughput vs calculated RF Signal for each different traffic type. The signal is calculated based on the configured path-loss, transmit power, and attenuation. Throughput vs Calculated Signal 800 2 50 Signal ● cn157-UDP_DUT_TX_3N55-86Mtz-84.1m ● ch157-UDP_DUT_8X_3N55-86Mtz-84.1m ● ch157.TCP_DUT_TX_3N55-86Mtz-84.1m ch157.TCP OUT RX 3NSS 80MPz 541m = ch157.UDP OUT TX 3NSS 80MPz MTU 1m = ch157.UDP OUT RX 3NSS 80MPz MTU 1m = ch157.TCP OUT TX 3NSS 80MPz MTU 1m + ch157.TCP OUT RX 3NSS 80MPz MTU 1m Realtime Graph shows summary download and upload RX bps of connections created by this test.

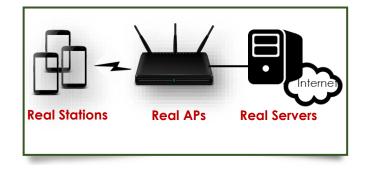

Candela

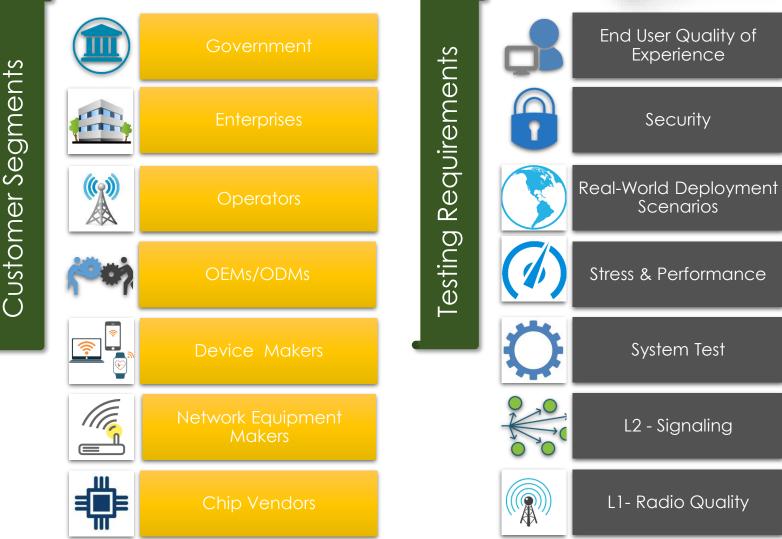

WiFi Test Topologies



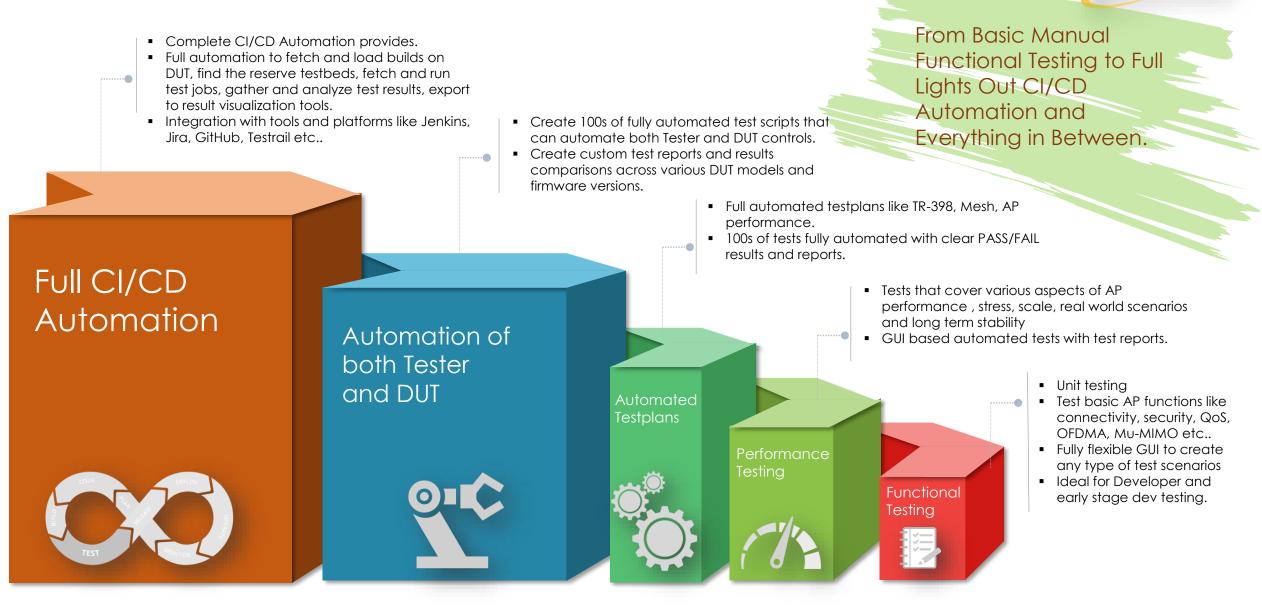


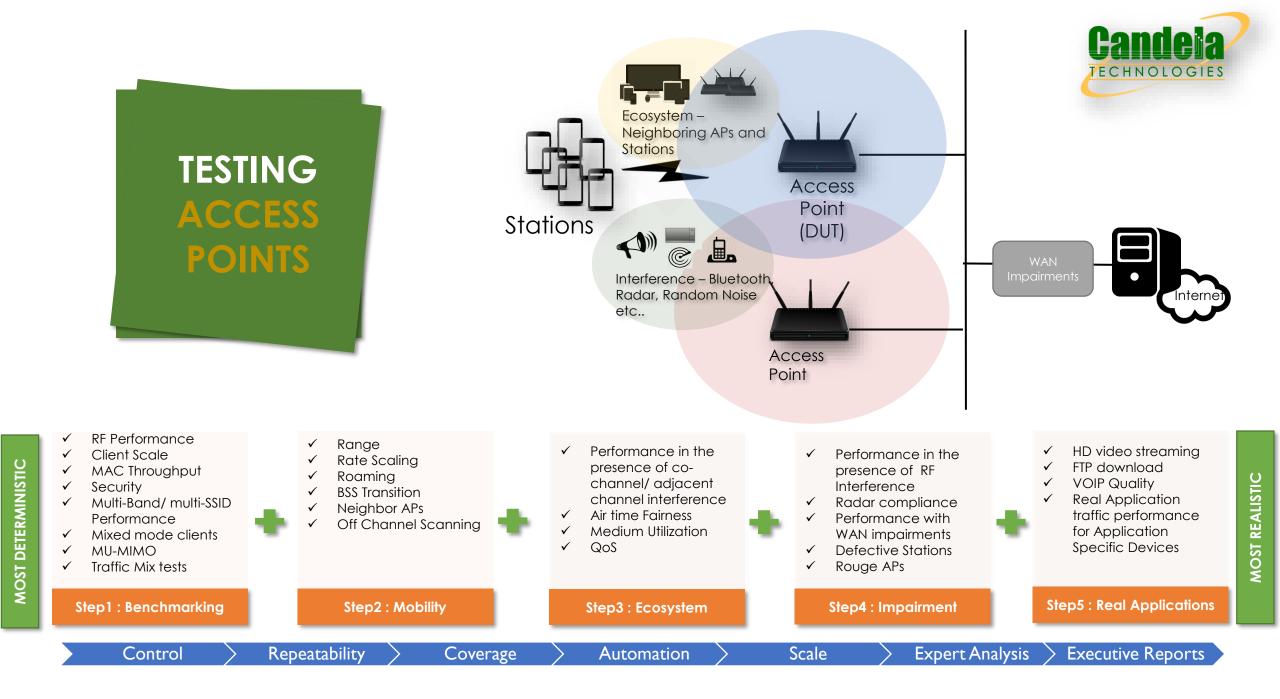


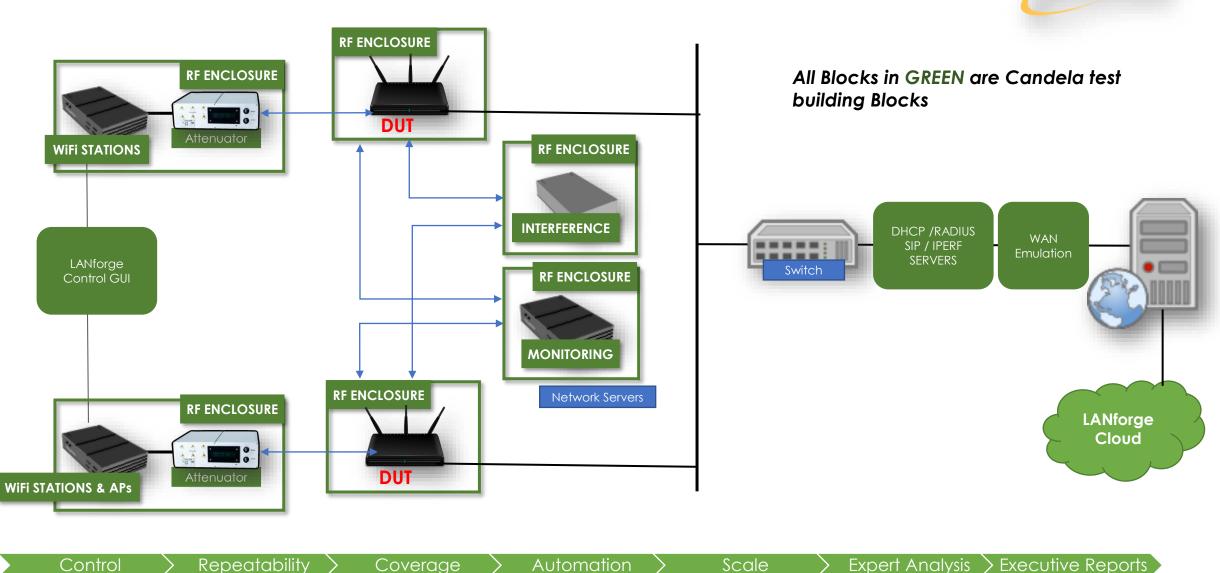




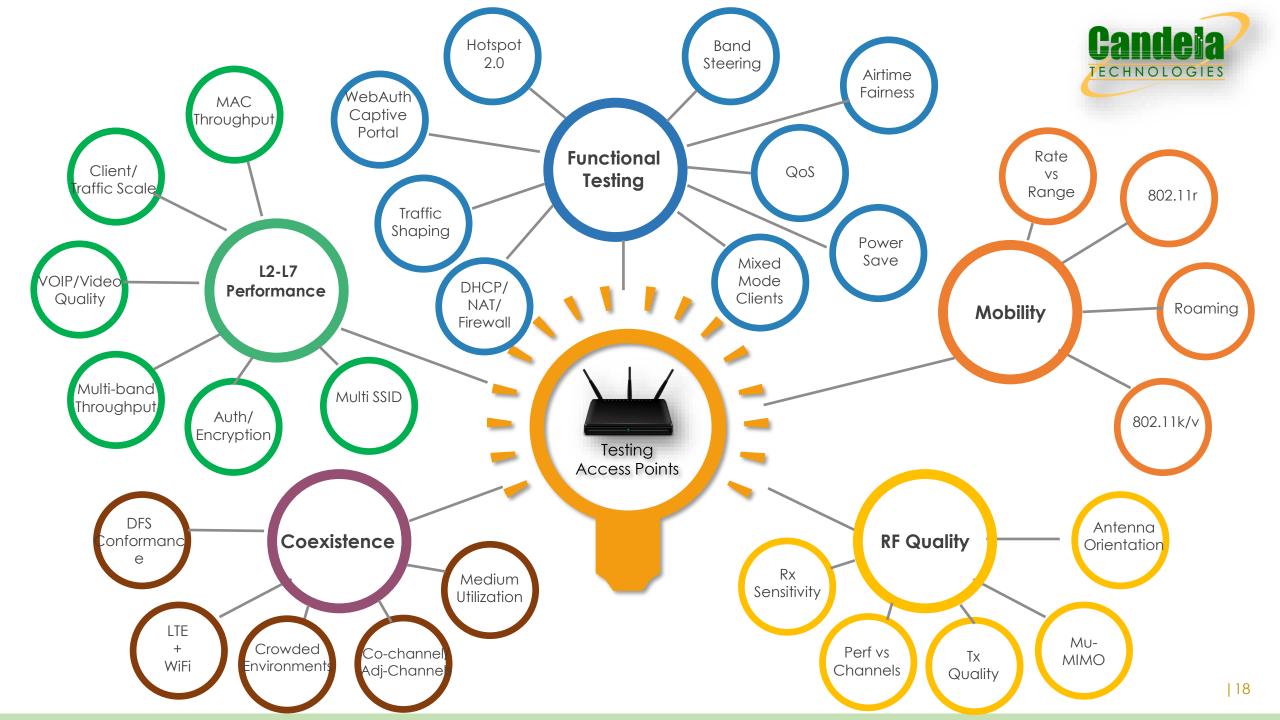
WiFi Test Ecosystem



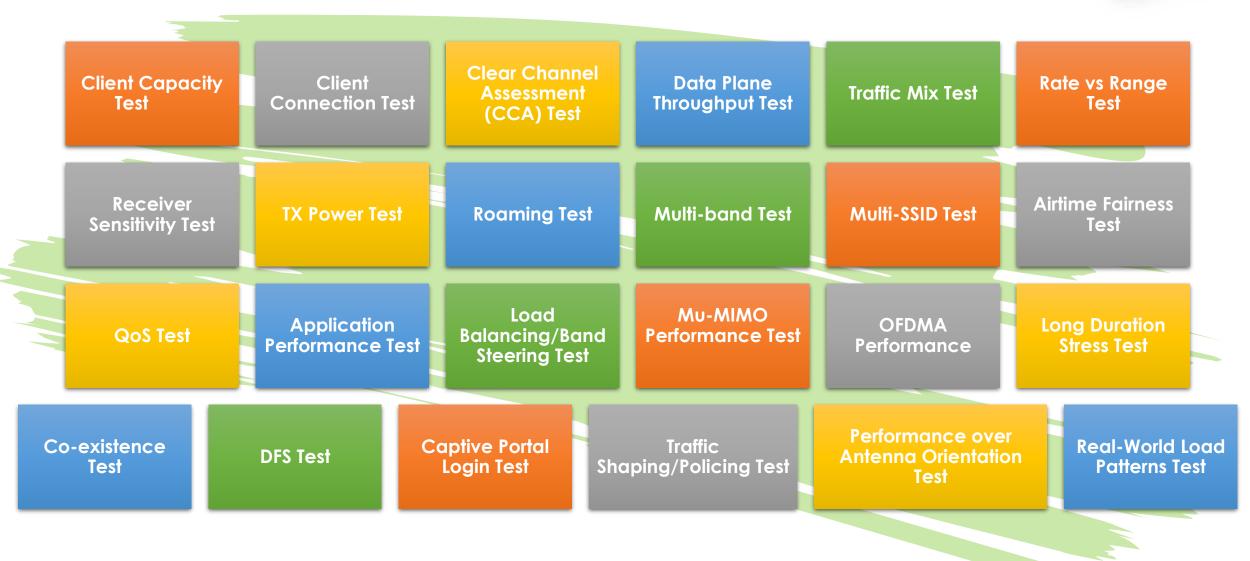

Candela Test Offerings



Testing Access Points

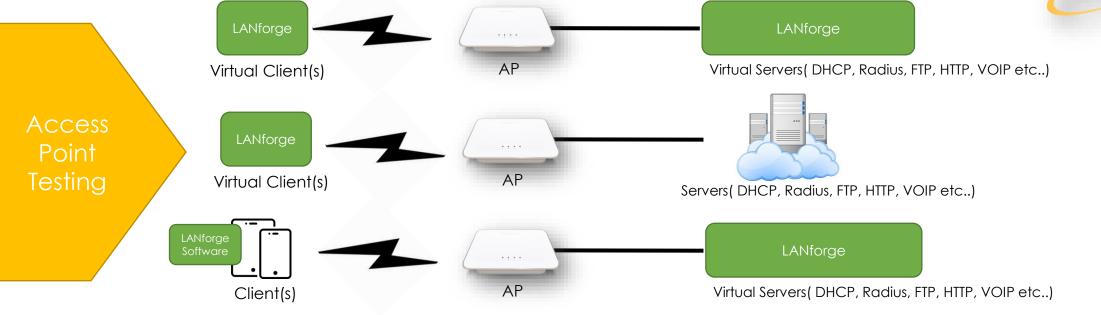


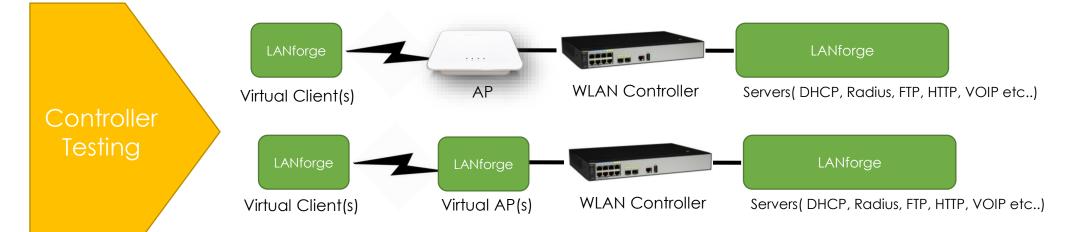
TOPOLOGY – TESTING ACCESS POINTs


Candela

TECHNOLOGIES

WiFi Access Point Tests


Access Point Testcases



Category	Sub-Category	Test Cases developed for									
	Firmware	Upgrades/Downgrades, AP boots/reboots, System resources									
	Configuration & Communication	AP provisioning, ZTP, setting up networks/channels/profiles/APs, cloud connectivity, DHCP/Radius and other services, Alarms									
Command and Control	Operation Modes	Bridge/vlan/router modes,									
	Physical & Virtual Interfaces	Basic functions of LAN/WAN/WLAN physical interfaces, indicators/LEDs, virtual interfaces (SSIDs/VLANs etc)									
	GUI/APIs	GUI settings (Read/Write) , API calls (Push/Pull)									
	BSS Capabilities	Basic/Extended Capabilities, Security, QoS, RRM, DFS, 802.11a/b/g/n/ac/ax/k/v/r/i/u/w settings, reg domains etc									
	Connectivity & Security	Basic connectivity with all WPA/2/3 Personal/Enterprise, All EAP method, Passpoint. Captive Portal, WPS etc									
Functional Testing	Radio Resource Management	Load Balancing, Band Steering, Auto Channel Selection, DFS									
Testing	Smart WiFi	Role/User/Device/Network based policies, Traffic Shaping, Int Detection/Mitigation, DPI, threat detection, Location Services									
	QoS & Mobility & Power Save	WMM, Fast Roaming, Open Roaming, Network assisted handoff, Legacy/WMM/MIMO Power Save									
	Throughput Benchmark	Throughout for STA Modes/MIMO types/STA counts/BW settings/Traffic Types/Direction/Packet Sizes etc									
	QoS & Mobility & Power SaveWMM, Fast Roaming, Open Roaming, NetworkThroughput BenchmarkThroughout for STA Modes/MIMO types/STAMultiband PerformanceSingle/Dual/Tri band performanceMobility PerformanceRate vs Range, Rate vs Antenna Orientation	Single/Dual/Tri band performance									
Performance Testing	Mobility Performance	Rate vs Range, Rate vs Antenna Orientation, Roaming Delay, Roaming performance with different security types									
resing	Radio Performance	Receiver Sensitivity, Transmitter Quality, Reg Domain TX power testing.									
	Application Performance	VOIP Performance, Youtube/OTT Video Streaming, HTTP/FTP Performance, Social Media Apps performance									
Stress and	Day in Life Test	Mix of Stations/APs/SSIDs/Security Types/User Policies/Traffic/Device Load Patterns over time in a 10 hour day									
Endurance	48-hour Stress Test	Full system load across all interfaces with maximum stations/traffic run for 48 hours									
Testing	Load Patterns #1,#2, #3	Various real world load patterns run over long durations.									
	Single AP SOHO	TR-398 or similar test plan for comprehensive single SOHO AP testing, Qualification/Badge Program									
	SOHO Mesh	Throughput Per Hop, Mesh Failover, Roaming, Load Balancing, Qualification/Badge Program									
Use Case Testing	Med-Enterprise Network	Medium Size Enterprise Network Use cases, Qualification/Badge Program									
	Multi Dweller Unit (MDU)	MDU Test plan with clear PASS/FAIL results , Qualification/Badge Program									
	Campus Network/LPV	Campus Network/Large Public Venue Test Plan/Operator Network, Qualification/Badge Program									

Test Topologies

WiFi Access Point Test System Capabilities

Station Controls

- ✓ IP/MAC Address
- ✓ DHCP/IPV4/IPV6
- ✓ SSID/BSSID
- ✓ HT/VHT/20/40/80/160 MHz modes
- ✓ 802.11a/b/g/n/ac Modes
- ✓ Custom Information Elements
- ✓ Delay Handshake Responses
- ✓ Corrupt/Ignore frames in protocol handshakes
- ✓ Rate Adaptation / Retry Limits / Tx Rates
- ✓ Power Save Settings
- ✓ Band Steering Settings
- ✓ Passive/Active Scanning
- ✓ IBSS Mode/ Mesh Mode / WDS Mode
- ✓ Slot Times/Guard Intervals
- ✓ AMPDU/AMSDU settings

Traffic Controls

- ✓ Frame size/rate, traffic direction, CBR/VBR traffic rates
- ✓ IPv4/IPv6/TCP/UDP/VOIP
- ✓ All kinds of WiFi traffic
- ✓ Full iPerf and Native traffic Gen support
- ✓ Ping/Traceroute/DNS/SMTP/Telnet/Cu rl/Captive Portal
- ✓ IP ToS (QoS) supported per RFCs: 1349, 2474 and 2481
- ✓ SIP and H.323
- ✓ Real and emulated voice calls
- ✓ http:// and ftp:// URLs
- ✓ HTTP Authentication types (Basic, Digest, GSS, NTLM).
- ✓ POP3, P2P, iSCSI

Auth/Encryption Methods

- ✓ WPA
- ✓ WPA2
- ✓ WPA3
- ✓ OSEN
- ✓ WEP
- ✓ EAP-TLS
- ✓ EAP-TTLS✓ EAP-MSCHAPV2
- ✓ EAP-MD5
- ✓ FAP-OTP
- ✓ EAP-GTC
- ✓ EAP-PEAP
- ✓ EAP-SIM
- ✓ EAP-AKA
- ✓ EAP-IKEV2
- ✓ EAP-FAST
- ✓ WFA-AUNAUTH-TLS
- ✓ WPA-PSK
- ✓ FT-PSK(11r)
- ✓ FT-EAP(11r)
- ✓ WPA-PSK-SHA256
- ✓ FT-SAE
- ✓ WPA-EAP-SUITE-B
- ✓ FILS-SHA256/384
- ✓ OWE

Protocols

- ✓ 802.11a/b/g/n/ac/ax/axe/be
- ✓ 802.11k
- ✓ 802.11∨
- ✓ 802.11∪
- ✓ Hotspot 2.0
- ✓ 802.11w
- ✓ WebAuth/Captive Portal

Tests

- ✓ Client Capacity Test
- ✓ Client Connection Test
- ✓ Clear Channel Assessment (CCA) Test
- ✓ Data Plane Throughput Test
- ✓ Traffic Mix Test
- ✓ Rate vs Range Test
- ✓ Receiver Sensitivity Test
- ✓ Roaming Test
- ✓ Multi-band Test
- ✓ Multi-SSID Test
- ✓ Airtime Fairness Test
- ✓ QoS Test
- ✓ Application Performance Test
- ✓ Load Balancing/Band Steering Test
- ✓ Mu-MIMO Performance Test
- ✓ Long Duration Stress Test
- ✓ Co-existence Test
- ✓ DFS Test
- ✓ Captive Portal Login Test
- ✓ Traffic Shaping/Policing Test
- ✓ Performance over Antenna Orientation Test

Services

- ✓ Custom Test Automation
- ✓ Custom Testplan Development
- ✓ Restful APIs
- ✓ Text based APIs
- ✓ Full AP Performance Test as Service

Impairments

Candela

TECHNOLOGIES

- ✓ 0 to 95dB Programmable Attenuation
- ✓ Most of the ETSI, FCC Radar Pulses
- ✓ Can modify various network attributes including: networkspeed, latency, jitter, packet-loss, packet-reordering, and packetduplication.
- ✓ Supports Packet corruptions, including bit-flips, bit-transposes and byte-overwrites
- ✓ WAN-capture Playback
- ✓ WiFi Impairments : Ignore % Rx Frames, Corrupt % Tx Frame, Duplicate % Tx Frames, Delay % Frame processing,
- ✓ RF Noise Generation
- ✓ Co-channel / Adjacent Channel Interference.

Accessories

✓ Custom Payloads

Programmable Attenuators

Programmable Turntables

RF Noise Generators

Channel Emulators

Splitter/Combiners

✓ RF enclosures

RF Cables

✓ Antennas

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

SYSTEM CAPABILITIES SUMMARY

Station/AP Controls

- ✓ IP/MAC Address
- ✓ DHCP/IPV4/IPV6
- ✓ SSID/BSSID
- ✓ Most Authentication & Encryption Methods
- ✓ HT/VHT/20/40/80/160 MHz modes
- ✓ 802.11a/b/g/n/ac Modes
- ✓ Advanced EAP Authentication
- ✓ 802.11u/ Hotspot 2.0
- ✓ Fast Reauth/ Fast Roaming
- ✓ 802.11k/v*
- ✓ 802.11w
- $\checkmark\,$ Custom Information Elements
- ✓ Delay Handshake Responses
- ✓ Corrupt/Ignore frames in protocol handshakes
- Rate Adaptation / Retry Limits / Tx Rates
- $\checkmark\,$ Power Save Settings
- ✓ Band Steering Settings
- ✓ Passive/Active Scanning
- ✓ IBSS Mode/ Mesh Mode / WDS Mode
- ✓ Slot Times/Guard Intervals
- ✓ AMPDU/AMSDU settings

Traffic Gen

- ✓ IPv4/IPv6/TCP/UDP/VOIP
- ✓ All kinds of WiFi traffic
- ✓ Full iPerf and Native traffic Gen support
- ✓ Ping/Traceroute/DNS/SMTP/T elnet/Curl/Captive Portal
- ✓ IP ToS (QoS) supported per RFCs: 1349, 2474 and 2481
- ✓ SIP and H.323
- ✓ Real and emulated voice calls
- ✓ allows http:// and ftp:// URLs to be accessed with multiple sessions
- ✓ HTTP Authentication types (Basic, Digest, GSS, NTLM).
- ✓ SSL/HTTPS certification
- ✓ Over 28,000 URLs per second per Resource
- ✓ Over 3000 HTTP simultaneous connections each with unique MAC and IP address
- ✓ Maximum aggregate download speed 9.74 Gbps on 10GE
- ✓ 2000 NFS Endpoint/clients per ressource
- ✓ POP3, P2P, iSCSI

Measurements

- ✓ IPv4/IPv6 Addresses
- ✓ Tx/Rx Mbps / Pps
- ✓ Rx/Tx Errors
- ✓ Tx/Rx PHY Rates
- ✓ Channel
- ✓ Access Point connected
- ✓ RSSI
- ✓ Noise Level
- ✓ Connection Time
- ✓ DHCP Handshake Time
- ✓ ANQP Time
- ✓ 4-way Handshake Time
- ✓ Last Connection Attempt Time
- ✓ WiFi Connection Time
- $\checkmark\,$ Disconnect Duration
- ✓ % Retry and Failed Retries
- ✓ Frame Sizes
- ✓ Failed Login Attempts
- ✓ PESQ / MoS /Voice Quality
- ✓ Jitter/Latency/Dropped Calls

Impairments

- ✓ 0 to 95dB Programmable Attenuation
- ✓ Most of the ETSI, FCC Radar Pulses
- ✓ Can modify various network attributes including: networkspeed, latency, jitter, packet-loss, packet-reordering, and packetduplication.
- ✓ Supports Packet corruptions, including bit-flips, bit-transposes and byte-overwrites
- ✓ WAN-capture Playback
- ✓ WiFi Impairments : Ignore % Rx Frames, Corrupt % Tx Frame, Duplicate % Tx Frames, Delay % Frame processing,
- ✓ RF Noise Generation
- ✓ Co-channel / Adjacent Channel Interference.
- ✓ Custom Payloads

802.11ac Access Point Test Plan - Overnight

Basic Client Connectivity

 Connect and Disconnect 20 clients each on 2.4Ghz and 5Ghz radios using Open, WPA-PSK, WPA-Enterprise methods, measure connecting times and connection drops.

Benchmark Throughput

 Run full line rate traffic with single client in 4x4 MIMO 80Mhz mode in 5GHz and 3x3 MIMO 40 Mhz in 2.4GHz. Measure and Benchmark maximum throughput.

Full System Performance

 Load all radios and ethnet interfaces simultaneously with full line rate traffic and measure the maxium achieved system throughput

Roaming Performance

 Create lots of clients and connect them to the AP and then cause lots of roams across various security types and measure romaing performance

Reciever Sensitivity

 Fix the MCS rates on the client and send traffic with same MCS rate but different transmit power values and measure receiver sensitivity at all power level. Run test at all MCS rates

Rate vs Range

 Measure performance over distance for various traffic types both Upstream and Downstream.

Client Capacity

 Run a throughput test with 1,2,5,10,20 and 40 clients. Repeat test on both 2.4GHz and 5GHz bands.

Mu-MIMO

 Create 3 STAs (1x 2x2 MIMO and 2x SISO) and measure the increase in troughput when Mu-MIMO feature is enabled.

Airtime Fairness

 Connect 1x 802.11ac client and 1x 802.11n client and 1x 802.11a client, run equal amount of traffic on all three clients and see if AP distributes airtime fairly.

QoS Performance

 Create different voice, video and data traffic streams with different DSCP settings and WMM settings and check to make sure the AP provides better throughput to high priority traffic.

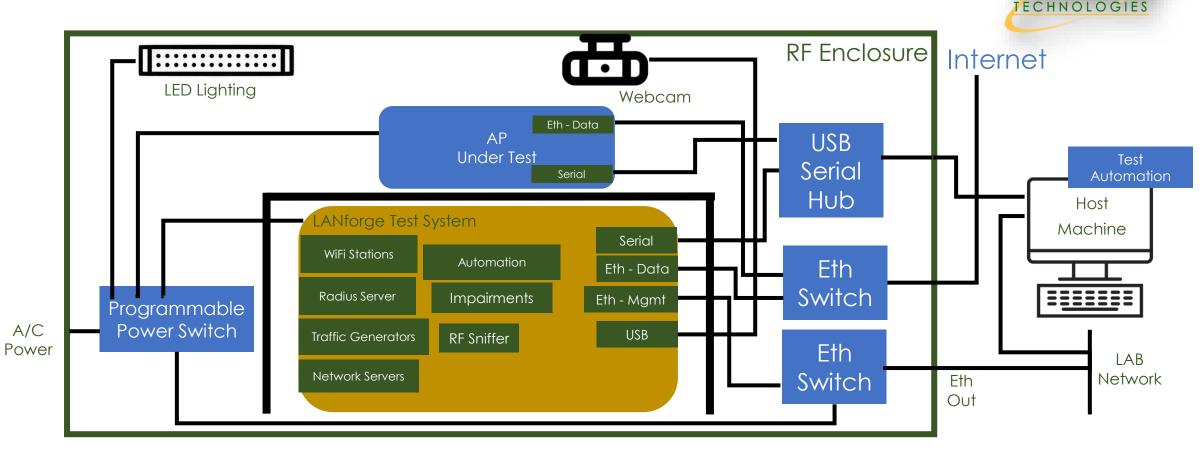
DFS Conformance

 Generate different types of Radar Pulses and make sure the AP can detect Radar and move to a differen channel and stay off channel.

Lond Duration Stability

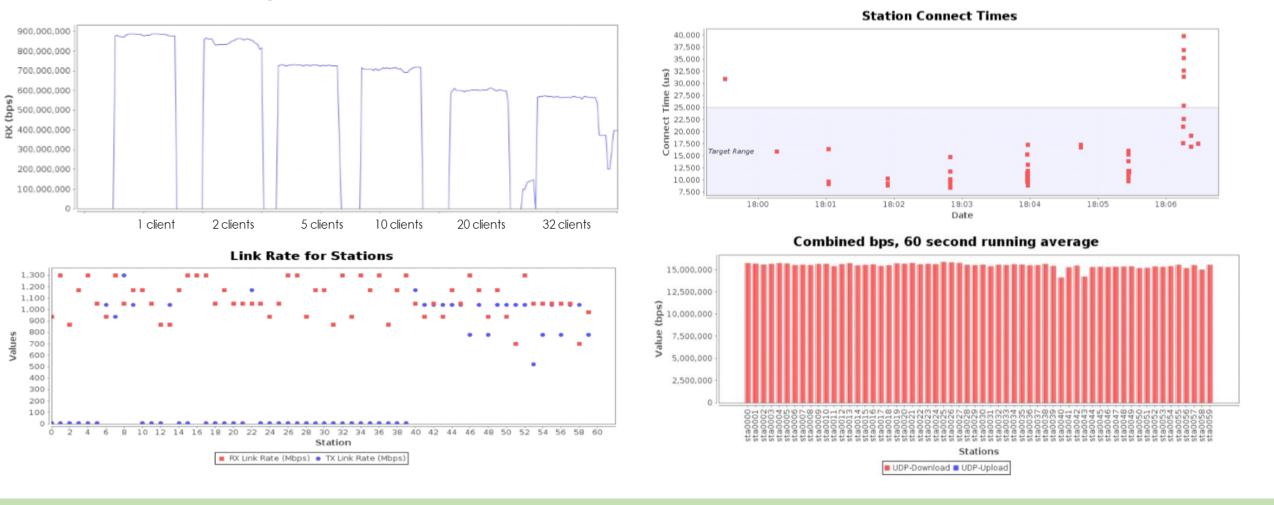
 Connect lots of clients and run traffic for a 24 hour period and look for any instability in the AP performance

Lights Out AP Testbed Setups



192	2.168.100.64/index.htm		··· 🗵 🕁	lii\
ora Ma	gazine 📄 Fedora Project 🗎 User Communities	🗎 Red Hat 🗎 Free Content		
Cont	roller: TIP Testbed 1			
Wed	Jun 17 22:05:50 2020			
Indivi	idual Control			
#	Name	State	Action	
1	USB Hub	ON	Switch OFF	Cycle
2	Interior Lights	ON	Switch OFF	Cycle
3	Outlet 3	OFF	Switch ON	
4	Outlet 4	OFF	Switch ON	
5	Chamber Fans	ON	Switch OFF	Cycle
6	LANforge System	ON	Switch OFF	Cycle
7	DUT	ON	Switch OFF	Cycle
8	Outlet 8	OFF	Switch ON	
Maste	er Control			
All O	utlets OFF			
All O	utlets ON			
Cycle	e all Outlets			
		Sequence delay: 1	.0 sec.	

Fully Automated Basic AP Testbed

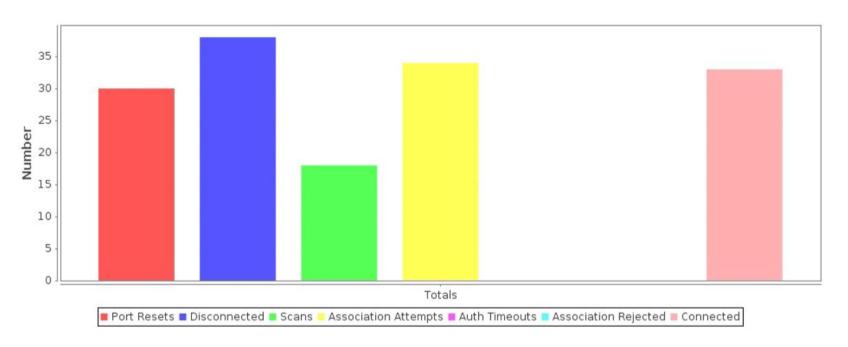


- > Run 100s of tests fully automated without having to touch the testbed once setup with the DUT.
- > Automate AP settings, upgrade and reboot APs through serial interface connected to LANforge system.
- > Programmable Power Switch to power cycle all devices remotely.
- > Can create any kind of custom test scripts.

WiFi Client Capacity Test

The Candela WiFi Capacity test is designed to measure performance of an Access Point when handling several WiFi Stations. The test allows the user to increase the number of stations in user defined steps for each test iteration and measure the per station and the overall throughput for each trial. Along with throughput other measurements made are client connection times, % packet loss, DHCP times and more. The expected behavior is for the AP should be able to handle several stations (within the limitations of the AP specs) and make sure all stations get a fair amount of airtime both in the upstream and downstream.

Dataplane Test

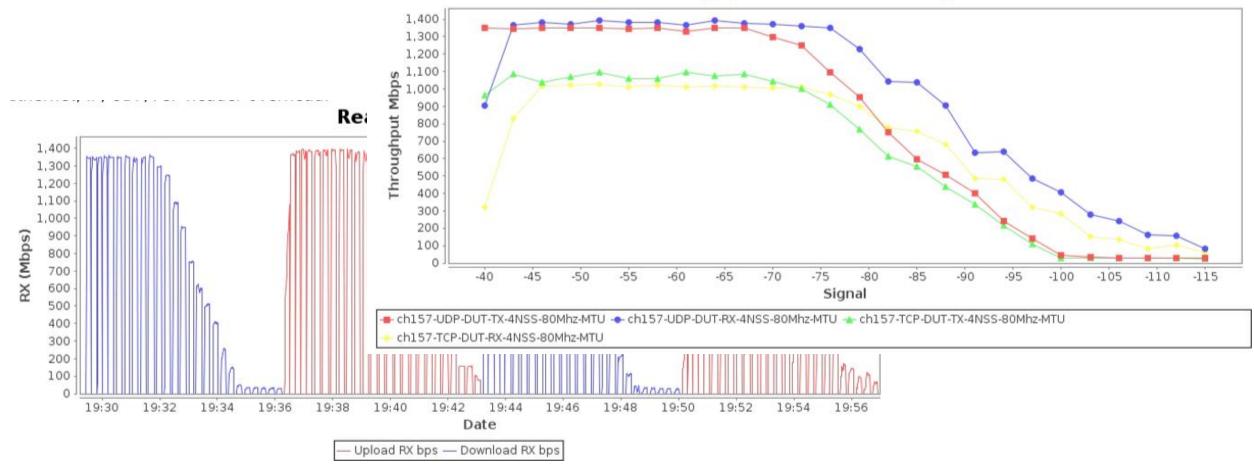

The Candela WiFi data plane test is designed to conduct an exhaustive walk through of all combinations of station types, MIMO types, Channel Bandwidths, Traffic types, Traffic direction, Frame sizes etc...and run a quick performance test at every combination of these test variables and plot all the result a chart to compare performance. The user is allowed to defined an intended load as a percentage of the max theoretical PHY rate for every test combination.

The expected behavior is that for every test combination the achieved throughput should be at least 70% of the theoretical max PHY rate under ideal test conditions. This test provides way to get through hundreds of combinations in a fully automated fashion and very easily find patterns and problem areas which can be further debugged using more careful testing.

Channe	Security	NSS	S Mode I	Bandwidth PDU Tra	affic-Type Directio	n Atter	Duration	Offered-1m	Rx-Bps	Rx-Bps-1	n Rx-Bps-3	3s Th	eoretical R	SSI Tx-	Failed Tx	-Failed%	Tx-Rate	Rx-Rate	Mode		
157	AUTO	3	802.11an-AC 8	80 64 UD	DDT-TX	NA	10	375636278	82096786	82774154	8211008	5 129	99900000 -3	5 0/7	0		585 Mbps	1.3 Gbps	802.11an-AC		
157	AUTO	3	802.11an-AC 8	80 64 UD	DDD DUT-RX	NA	10	58675445	58487656	58669531	5882215	4 129	99900000 -2	7 0/1	146442 0		1300 Mbps	1.3 Gbps	802.11an-AC		
157	AUTO	3	802.11an-AC 8	80 64 TC	P DUT-TX	NA	10	82612883	82081450	82754520	7878436	2 129	99900000 -3	5 0/2	2627 0		1300 Mbps	1.3 Gbps	802.11an-AC		
157	AUTO	3	802.11an-AC 8	80 64 TC	P DUT-RX	NA	10	68193119	67910744	68027524	6796002	9 129	99900000 -3	5 0/1	.057056 0		1170 Mbps	1.3 Gbps	802.11an-AC		
157	AUTO	3	802.11an-AC 8	80 256 UD	DUT-TX	NA	10	794434891	318785180	32093006	1.	,000	1						1994 - 1994 - Contra Co		
157	AUTO	3	802.11an-AC 8	80 256 UD	DDT-RX	NA	10	248140311	247482798	24891779										-	
157	AUTO	3	802.11an-AC 8	80 256 TC	P DUT-TX	NA	10	214017649	213858800	21387888		900	-								
157	AUTO	3	802.11an-AC 8	80 256 TC	P DUT-RX	NA	10	176724557	173728847	17501814	(0	800									
157	AUTO	3	802.11an-AC 8	80 1024 UD	DDT-TX	NA	10	941816029	939300716	93953957			1								
157	AUTO	3	802.11an-AC 8	80 1024 UD	DUT-RX	NA	10	852508903	852216421	85250637	dbp	700	1								
157	AUTO	3	802.11an-AC 8	80 1024 TC	P DUT-TX	NA	10	886778280	882152010	88431859	6	600									
157	AUTO	3	802.11an-AC 8	80 1024 TC	P DUT-RX	NA	10	857774487	853235642	85670856	n										
157	AUTO	3	802.11an-AC 8	80 MTU UD	DDT-TX	NA	10	968308432	956770180	95810850	du	500									
157	AUTO	3	802.11an-AC 8	80 MTU UD	DUT-RX	NA	10	1039199500	953035974	96055810	g	400									
157	AUTO	3	802.11an-AC 8	80 MTU TC	P DUT-TX	NA	10	923497341	915752666	91680383	ō										
157	AUTO	3	802.11an-AC 8	80 MTU TC	P DUT-RX	NA	10	940290526	935195045	93578771	Ĩ.	300	-								
157	AUTO	2	802.11an-AC 8	80 64 UD	DDDT-TX	NA	10	378401986	82020019	82367334	È	200									
157	AUTO	2	802.11an-AC 8	80 64 UD	DP DUT-RX	NA	10	61030017	60627326	61031149											
157	AUTO	2	802.11an-AC 8	80 64 TC	CP DUT-TX	NA	10	81180186	81178389	81185154		100	1 🖕		1.1	-					
157	AUTO	2	802.11an-AC 8	80 64 TC	P DUT-RX	NA	10	70477487	69807479	70360985		0									
157	AUTO	2	802.11an-AC 8	80 256 UD	DP DUT-TX	NA	10	784572901	318743810	31905216		0			st				10	, t	
157	AUTO	2	802.11an-AC 8	80 256 UD	DP DUT-RX	NA	10	256922016	257099887	25718518					64				256	02,	ATT.
157	AUTO	2	802.11an-AC 8	80 256 TC	CP DUT-TX	NA	10	215336087	214365549	21550774										1(2
157	AUTO	2	802.11an-AC 8	80 256 TC	P DUT-RX	NA	10	183800509	180087631	18128714									PDU	Size	
157	AUTO	2	802.11an-AC 8	80 1024 UD	DDT-TX	NA	10	855622771	674015653	67891515											
157	AUTO	2	802.11an-AC	80 1024 UD	DDT-RX	NA	10	652023962	653432901	65393406	ch15	57-UI	DP-DUT-T)	(-3NSS	5-80Mhz-	B02.11a	n-AC-1m	ch157	-UDP-DUT-RX-3NSS-80	Mhz-802.11an-AC-1m	
157	AUTO	2	802.11an-AC 8			NA	10		680128387	68020774	ch15	57-TC	CP-DUT-TX	-3NSS	-80Mhz-8	802.11a	n-AC-1m	ch157-	TCP-DUT-RX-3NSS-80N	4hz-802.11an-AC-1m	
157	AUTO	2	802.11an-AC 8	80 1024 TC	CP DUT-RX	NA	10		625403476												
157	AUTO	2	802.11an-AC 8	80 MTU UD	DDDT-TX	NA	10	858893629	733473409	73660390		P.0000703	Tel (Tel (Tel (194					100000	-UDP-DUT-RX-2NSS-80		
157	AUTO	2	802.11an-AC 8	80 MTU UD	DDD DUT-RX	NA	10	732609278	727490182	73119490	ch15	57-TC	CP-DUT-TX	-2NSS	-80Mhz-8	302.11a	n-AC-1m I	ch157-	TCP-DUT-RX-2NSS-80N	4hz-802.11an-AC-1m	
157	AUTO	2	802.11an-AC	80 MTU TC	CP DUT-TX	NA	10		707701884												
157	lauto	2	802.11an-AC	во мти тс	DUT-RX	NA	10	681104936	676757431	68069151	6794848	96 86	6600000 -3	6 0/6	515195 0		866.7 Mbps	866.7 Mbp	s 802.11an-AC		

WiFi Client Reset Test

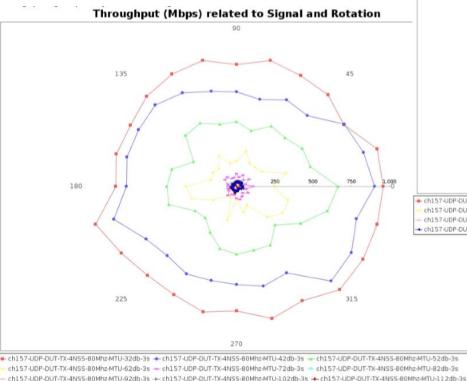
The port reset test allows user to create lots of WiFi stations and connect them the AP under test and then disconnect and reconnect a random number of stations at random intervals. The objective of this test is to mimic an enterprise/large public venue scenario where a number of stations arrive, connect and depart in quick succession. This test when run over a long duration can stress the various control and management aspects of the core Access Point functions and can often times find very interesting problems with the APs.


ECHNOLOGIE

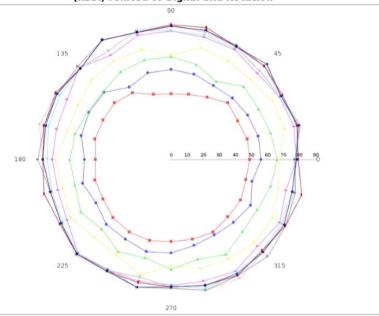
Testing WiFi networks in highly crowded environments with 1000s of WiFi clients Arriving and Departing.

Rate vs Range Test

This test measures the performance over distance of the access point. Distance is emulated using programmable attenuation and a throughput test is run at each distance/RSSI step and plotted on a chart. The test allows the user to plot RSSI curves both upstream and downstream for different types of traffic and different station types.



Throughput vs Calculated Signal


Throughput vs Antenna Orientation

This test measures the performance of the DUT at different antenna orientations. Different antenna orientations of the transmitter will respect to the receiver may results in huge variations of performance caused by antenna nulls and dead spots. Using a large chamber with a programmable turntable, the DUT is rotated to various angles and upstream/downstream throughput is measured at each orientation and the results are plotted on a polar plot.

-(RSSI) related to Signal and Rotation


Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-32db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-42db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-52db Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-62db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-12db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-62db Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-62db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-102db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-112db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-622db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-102db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-622db → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-620D → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-620D → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-620D → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-620D → Ch157-UDP-DUT-TX-4NSS-80Mhz-MTU-620D → Ch157-UDP-DUT-TX-4NSS-80Mhz

Receiver Sensitivity Test

In the real-world the Access Points receiver is expected to handle stations at many different receive signal strengths and many different stations transmit modulation and coding schemes (MCS rates). The Candela Receiver Sensitivity test provides an excellent way to test the AP receiver for all combinations of station transmit power and MCS rates and measure packet loss and throughput for all combinations.

The test plots the receiver sensitivity curves and can provide a clear indication of problem patterns for certain combinations of Tx power and MCS rates. The expected behavior is for the AP to achieved equal of better receiver sensitivity as defined by the spec for all RSSI and MCS settings.

Throughput vs Calculated Signal

Airtime Fairness Test

802.11a

Test Description

- ✓ Create 3 clients in the 5GHz band. Client1 : 11ac, Client2: 11n and Client3:11a.
- \checkmark AP transmitting TCP traffic at full intended load to all three clients.
- Total throughput and throughput per station were measured.

Result Observations

- ✓ The expected result is that if airtime fairness is working the AP needs to evenly distribute the airtime between the 3 clients resulting in the highest throughput for 11ac and least(by non zero) throughput for 11a client.
- ✓ The Vendor A performed as expected, resulting in a very impressive total throughput of 567Mbps
- Vendor B performed very poorly and the 11n client performed better than the 11ac client, clearly showing airtime fairness is not working on both these APs.

802.11n Stations

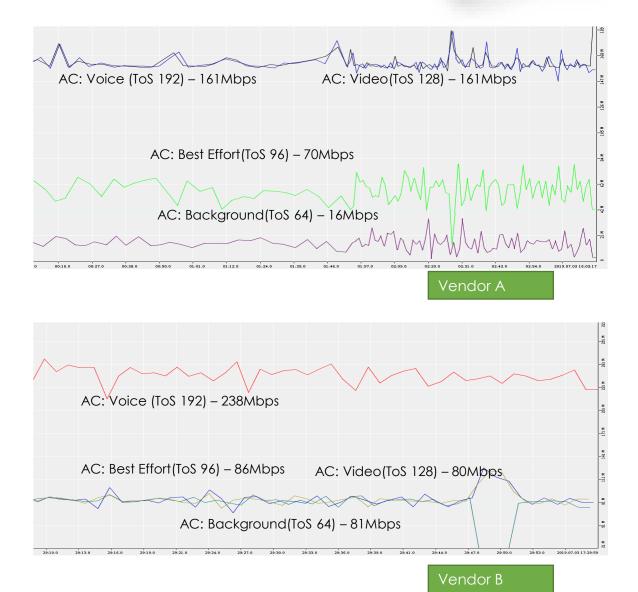
TCP-Download TCP-Upload

Vendor B

7,500,000 5,000,000 2,500,000

802.11ac

QoS Performance Test



Test Description

- ✓ Test run with 4 clients connected to the 5GHz radio of the AP under test.
- ✓ Downlink(AP to client) TCP traffic streams were set up to each client with different QoS access categories to each client (Client1: Voice, Client2: Video, Client3: Best Effort a Client4: Background
- ✓ All 4 traffic streams were run at full rate.

Result Observations

- ✓ The Vendor A AP provides similar throughput to Video and Voice traffic and the Best Effort traffic got lower throughput followed by Background with the lowest throughput, clearly showing that QoS works on this AP.
- ✓ The Vendor B AP provided better throughput to Voice traffic, but clearly provided the same amount of throughput for all the other access categories. It looks like this AP has only 2 priority queues instead of the usual 4.

Near/Far Clients Test

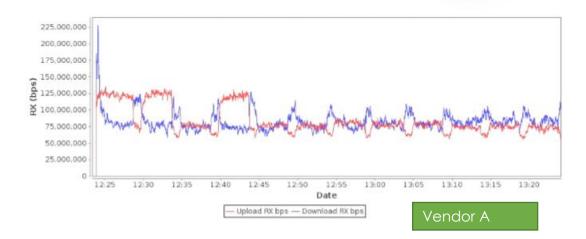

Test Description

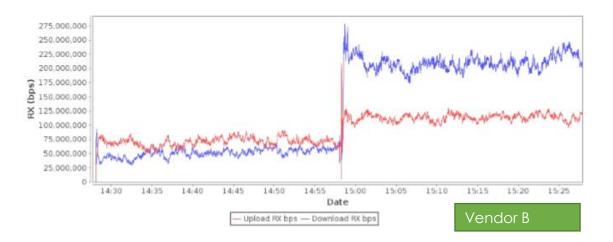
- Three clients were created, one each on three different LANforge radios.
- Each client is connected to the DUT chamber through a different programmable attenuator allowing for different distances emulated for each client.
- ✓ The path loss created for the three clients was 45dB, 65dB and 85dB representing a Near, Medium Distance and Far Clients respectively.
- Test run at full rate TCP downstream from AP to all three clients and throughput is measured for each client.

Result Observations

- ✓ In the case of the Netgear AP, the performance was as expected, with the near clients achieving the most throughput with lesser throughput from the Medium and the Far clients.
- ✓ In the case of True APs the throughput dropped steeply for the Medium and the Far clients resulting in a smaller total throughput than the Netgear AP.

Long Duration Stability




Test Description

- ✓ This test was run with 32 clients each on both the radios with all client sending and receiving TCP traffic at full rate.
- ✓ The idea was to fully stress the AP for long test duration (in this case 1 hour, but the test should ideally be run for 24 hours).

Result Observations

- ✓ The Vendor A AP showed almost consistent performance all through the 1 hour test duration.
- The Vendor B AP for a large part of the test had very low throughput as none of the traffic flows on the 5GHz band were running properly. At around the halfway point of the test, the 5GHz traffic started to run and so increased the overall throughput.

Mu-MIMO Performance Test

Test Description

- ✓ Test was run with 3 Mu-MIMO clients connected to the APs 5GHz radio. Client1 was set to 2x2 MIMO and Client2 and Client3 were set to 1x1 Mode.
- \checkmark TCP traffic is run at full rate from AP to all three stations.

Result Observations

- ✓ The expected result is the 4x4 MIMO AP should be able to beamform simultaneously to all three stations.
- Vendor A AP performed excellently with 325Mbps throughput to the 2x2 client and 200 Mbps each to the two 1x1 clients, achieving a total of 758Mbps throughput.
- Mu-MIMO was not working at all on Vendor B AP.
 Because of this the total throughput was less than 300
 Mbps for both the APs.

Day in the Life of a Coffee Shop Access Point

Visit date start	Visit date end	Download	Upload	Device	OS	Length of stay
7/10/2019 0	0:02 7/10/201	9 0:04 351627.0 B	113419.0 B	Phone	Android	1m 53s
7/10/2019 0	0:04 7/10/201	9 0:22 4.7105071E7 B	1859678.0 B	Phone	iOS	17m 44s
7/10/2019 0	0:05 7/10/201	9 4:05 1.3008324E7 B	1701971.0 B	Phone	Android	3h 59m 58s
7/10/2019 0):21 7/10/201	9 0:21 41 4.0 B	4179.0 B	Phone	Android	19s
7/10/2019 0):24 7/10/201	9 0:26 1527739.0 B	243094.0 B	Phone	Android	1 m 20s
7/10/2019 0):27 7/10/201	9 0:44 5.9727372E7 B	2756779.0 B	Desktop	Windows NT	16m 52s
7/10/2019 0):31 7/10/201	9 0:37 1190041.0 B	88373.0 B	Phone	iOS	6m 28s
7/10/2019 0	.34 7/10/201	9 1:088.5999986E7 B	3489004.0 B	Phone	iOS	33m 50s
7/10/2019 0	35 7/10/201	9 0:38 1276129.0 B	852757.0 B	Phone	iOS	3m 7s
7/10/2019 0	.36 7/10/201	9 0:45 8020413.0 B	1023410.0 B	Phone	Android	9m 42s
7/10/2019 0	.39 7/10/201	9 0:44 733313.0 B	566094.0 B	Phone	iOS	5m 3s
7/10/2019 0	.47 7/10/201	9 2:29 2.8476303E8 B	1.1469431E7 B	Phone	Android	1h 41m 50s
7/10/2019 0	53 7/10/201	9 0:58 2.11845603E8 B	1.0356751E7 B	Phone	iOS	5m 19s
7/10/2019 1	:00 7/10/201	9 1:36 4.455044E7 B	5108056.0 B	Phone	Android	35m 44s
7/10/2019 1	:05 7/10/201	9 1:51 2651742.0 B	728853.0 B	Phone	Android	46m 12s
7/10/2019 1	:07 7/10/201	9 1:08 3003 403.0 B	208901.0 B	Phone	Android	33s
7/10/2019 1	:11 7/10/201	9 1:27 2.343592E7 B	2657370.0 B	Phone	iOS	15m 57s
7/10/2019 1	:13 7/10/201	9 4:55 5.3491009E8 B	3.6869387E7 B	Phone	Android	3h 41m 56s
7/10/2019 1	:16 7/10/201	9 4:34 1.43801092E8 B	6932686.0 B	Phone	Android	3h 18m 3s
7/10/2019 1	:22 7/10/201	9 5:222.11108569E8 B	2.9101562E7 B	Phone	Android	3h 59m 59s
7/10/2019 1	:23 7/10/201	9 5:23 5423068.0 B	4811633.0 B	Tablet	Android	3h 59m 59s
7/10/2019 1	:24 7/10/201	9 1:341121260.0 B	278450.0 B	Phone	Android	10m 4s
7/10/2019 1	:29 7/10/201	9 1:38 3.3440411E7 B	1482691.0 B	Phone	iOS	9m 36s
7/10/2019 1	:32 7/10/201	9 1:34 1528406.0 B	192901.0 B	Phone	iOS	1m 10s
7/10/2019 1	:41 7/10/201	9 2:40 7.342847E7 B	3158211.0 B	Phone	iOS	58m 50s
7/10/2019 1	:52 7/10/201	9 2:09 8598326.0 B	938985.0 B	Phone	iOS	16m 56s
7/10/2019 1	:55 7/10/201	9 1:58 1.5047469E7 B	1440084.0 B	Desktop	Mac OS X	2m 20s
7/10/2019 1	:58 7/10/201	9 2:10 1.69738271E8 B	4848470.0 B	Desktop	Mac OS X	11m 56s
7/10/2019 1	:59 7/10/201	9 2:15 5.156241E7 B	2562057.0 B	Phone	Android	15m 34s
7/10/2019 2	2:04 7/10/201	9 2:053.3489639E7 B	1243454.0 B	Phone	iOS	1m 37s

Large Scale Client Testbed Requirements

- ✓ Emulate 2000 WiFi Stations
 - ✓ Mix of 11ax, 11ac and 11n stations
- $\checkmark\,$ Test 50 APs representing an entire campus.
 - ✓ APs across different channels, SSIDs, security types etc..
- \checkmark Test with 1000s of real work traffic streams.
- $\checkmark\,$ Recreate various real work load scenarios in the lab.
 - ✓ University Campus
 - ✓ Small and Medium Enterprise
 - ✓ Shopping Mall
 - ✓ Small/medium/Large Hotel
- ✓ Create various types of roaming patterns.
- ✓ Create groups of APs to test for load balancing
- Create application layer traffic to test DPI, device profiling, traffic shaping/policing functions on the AP.
- \checkmark Test insight Application.
- ✓ Automate 1000s of test cases and DUT configurations.

Example University Campus Test Profile

Day-in-the-Life of an University WiFi Network

≻ 08:00am – 12:00pm

- ✓ 2000 devices connect to 50 APs across 25 classrooms.
- \checkmark 1000 students start browsing the internet for class research
- ✓ 500 students watch online lectures
- \checkmark 500 university staff browse internet , place VOIP calls

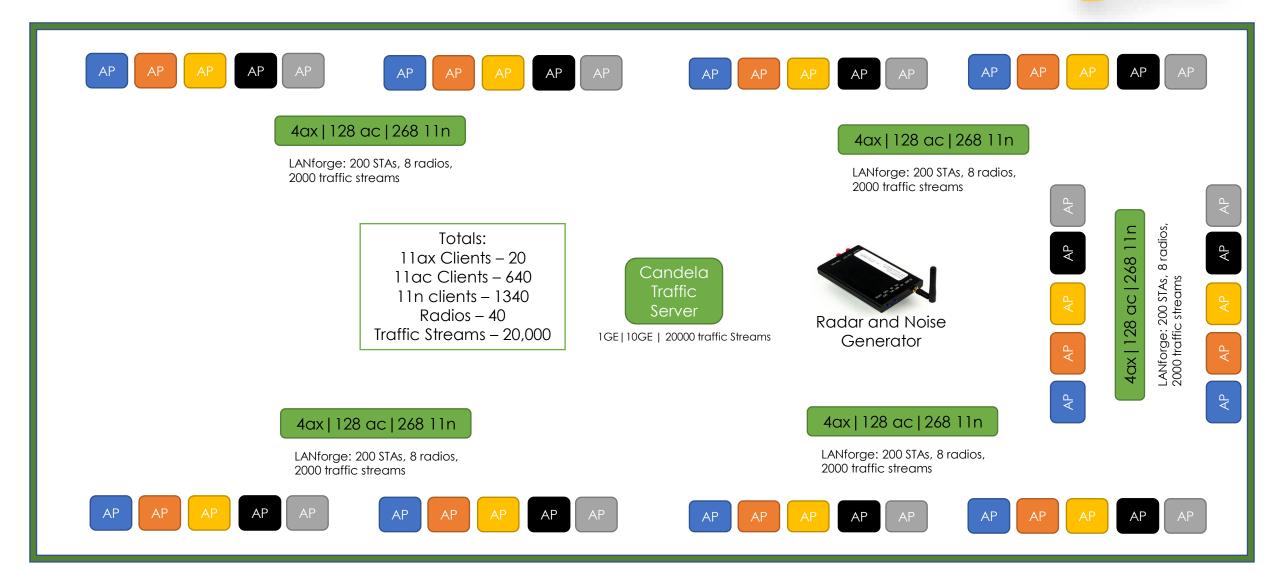
≻ 12:00pm – 03:00pm

- \checkmark 1000 students move from classrooms to cafeterias and dorms causing lots of roams.
- \checkmark Students use their personal devices like smartphones and tablets of various kinds.
- ✓ 200 devices of various kinds (POS terminals, scanners etc..) operate in the cafeterias.

≻ 03:00pm – 06:00pm

- ✓ 500 students congregate in the indoor basket ball courts, watch real-time game scores and replays.
- \checkmark 200 students meet in the library and do online research for class projects.
- $\checkmark\,$ Radar detected on some of the 5GHz channels.

≻ 06:00pm – 09:00pm


- ✓ 1000 members are in the school theater participating in the school play and actively sharing details on social media.
- \checkmark 500 students participating in live voting and surveys for student body elections.
- $\checkmark~$ 500 students and staff watching soccer game and tweeting.

Key Performance Indicators

- $\checkmark\,$ Client Connection Times
- \checkmark Connection Reliability / Uptime
- ✓ Performance over Distance
- ✓ Upload/Download Speeds
- ✓ Roaming Delays
- ✓ Network Latency
- $\checkmark\,$ File Download Times
- ✓ Voice Quality
- $\checkmark\,$ Video buffering and stalls
- $\checkmark\,$ Video streaming Quality
- \checkmark Consistent quality over time.

Large Scale Campus Testing in the Lab

Candela

TECHNOLOGIES

AP Auto Test Suite

Client Connectivity Test Connect lots of clients across multiple bands using various security types and measure connection times and provide PASS/FAIL results

Throughput Test

Run a binary search mechanism to measure throughput of the DUT at various packet sizes, compare it with pass criteria and provide PASS/FAIL results

Long Term Stability Test

Create a mix of clients and traffic and run tests for long duration and measure if there is any performance degradation over time.

Dual band Performance Test

Run Throughput on one radio at a time on the AP and then run throughput test simultaneously on both bands (radios) and check if there is degradation in performance when both bands are used

<u>Mixed Stability Test</u>

Allows the user to create a mix of voice, video and data traffic and run tests for long durations with a large number of clients to mimic real-world client and traffic load patterns.

Mixed Capacity Test

Candela

TECHNOLOGIES

Allows the user to create a mix of voice, video and data traffic and run tests for long durations with a large number of clients while randomly disconnecting and reconnecting clients.

AP Auto Test Suite

				oma	ted Test					
Settings	Advanced Configuration				acity Configuration	Poss/Foi	il c	onfiguration	Report Confi	0 0 0
settings	Advanced Conliguratio	л	Stability Conliguration	сара	acity conliguration	rass/ra	II C	oniguration	Report Conii	guration
			Open DUT		PSK DUT		_	Enterprise DI	JT	_
	Selected DUT 2G:		TR398-DUT NETGEAR68	•	NA		•	NA		
	Selected DUT 5G:		TR398-DUT NETGEAR68-50	6 -	NA		•	NA		-
	Upstream Port:		1.1.1 ethl	-						
	2.4Ghz Radios		5Ghz Radios							
	1.1.8 wiphy1	•	1.1.3 wiphy0	-						
	1.1.9 wiphy3	•	1.1.5 wiphy2	•						
	1.1.10 wiphy5	•	1.1.7 wiphy4	•						
		•		-						
		•		-						
		•		-						
		•		-						
		•		-						
	Tests to run:		Estimated Test Duration: 7	7 m						
	Basic Client Connectiv	ity	Throughput vs Pkt Size							
	Dual Band Performan	e	Capacity							
	🖌 Stability		Long-Term							

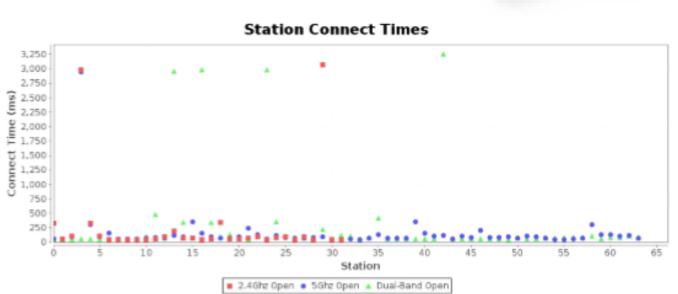
<u>S</u>tart

Another Iteration

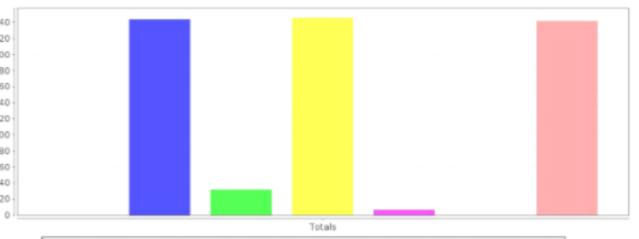
Test Setup Information					
Device Under Test NETGEAR68-5G NETGEAR68					
Operator	John Smith				
Estimated Run Time	1.95 h				
Actual Bun Time	3.089 h				

Summary Results

<u>C</u>ancel


Pause

Test	Result	Candela Score	Elapsed	Info
Basic Client Connectivity	2.4Ghz FAIL 5Ghz FAIL Dual-Band FAIL	80	4.708 m	Max Stations Connected: 64 Total Stations Connected: 160.0 / 160.0 Total Stations Connected In Time: 37.0 / 160.0 Combinations Tested: 3.0 / 9.0
Throughput vs Pkt Size	2.4Ghz PASS 5Ghz PASS Dual-Band PASS	113	1.834 h	Total Reported vs Requested: 2,368.97 / 1,864.00 Mbps
Dual Band Performance	2.4Ghz FAIL 5Ghz PASS Dual-Band PASS	91	2.809 m	Dual-Concurrent vs 90% of Sum: 926.83 Mbps / 1,202.47 Mbps Dual-Concurrent vs 90% of Sum: 954.68 Mbps / 901.37 Mbps
Capacity	2.4Ghz FAIL SGhz FAIL Dual-Band FAIL	57	24.029 m	 2.4Ghz 32 Stations, 24.23 Mbps Total throughput: 24.23 Mbps / 401.99 Mbps (P/F Auto-Calculated) 2.4Ghz 32 Stations, 338.34 Mbps Total throughput: 338.34 Mbps / 401.99 Mbps (P/F Auto-Calculated) 5Ghz 64 Stations, 25.42 Mbps Total throughput: 25.42 Mbps / 818.20 Mbps (P/F Auto-Calculated) 2.4Ghz 32 Stations, 25.57 Mbps 5Ghz 33 Stations, 24.76 Mbps Total throughput: 50.34 Mbps / 1.220.19 Mbps (P/F Auto-Calculated)
Stability	2.4Ghz FAIL 5Ghz FAIL Dual-Band FAIL	67	37.579 m	Station Resets: 66.0 Station Connections: 66.0 Auth Timeouts: 0.0 Association Rejected: 0.0 Bandwidth Check: 152.0/504.0 STA Connected Check: 160.0/160.0
Long-Term	2.4Ghz PASS SGhz PASS Dual-Band PASS	100	5.473 m	

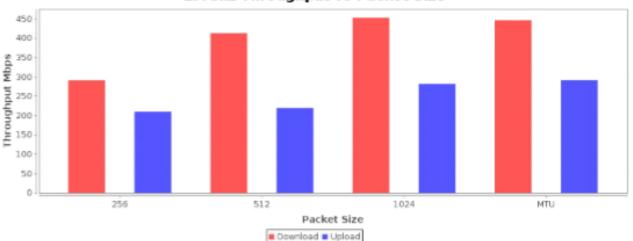

AP Auto : Client Connectivity Test

The client connectivity test is designed to check how well the AP can handle lots of clients trying to connect at the same time across both 2.4 and 5 GHz bands. The test systems creates and connects lot of clients and measures client connection times, number of scans, association attempts, Auth timeouts, Association rejections etc..

The test also lets the user define a PASS/FAIL criteria and the provides the user test results.

Туре	Result	Notes
DUT: TR398-DUT NETGEAR68 CH 1 1.1.10 sta00500	FAIL	PSK DHCP: 14683ms Connect: 324 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.11 sta00501	FAIL	PSK DHCP: 10155ms Connect: 58 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.12 sta00502	FAIL	PSK DHCP: 8162ms Connect: 102 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.13 sta00503	FAIL	PSK DHCP: 3161ms Connect: 2984 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.14 sta00504	FAIL	PSK DHCP: 13416ms Connect: 334 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.15 sta00505	FAIL	PSK DHCP: 10179ms Connect: 107 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.16 sta00506	PASS	PSK DHCP: 7479ms Connect: 41 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.17 sta00507	PASS	PSK DHCP: 7448ms Connect: 41 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.18 sta00508	PASS	PSK DHCP: 7022ms Connect: 38 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.19 sta00509	PASS	PSK DHCP: 7623ms Connect: 39 / 50 ms
DUT: TR398-DUT NETGEAR68 CH 1 1.1.20 sta00510	PASS	PSK DHCP: 7426ms Connect: 40 / 50 ms
DUIT: TR308-DUIT NETGEAR68 CH 1 1 1 21 cta01000	FAIL	PSK DHCP: 16181ms Connect: 61 / 50 ms

Port Resets
Disconnected
Scans
Association Attempts
Auth Timeouts
Association Rejected
Connected


AP Auto : Throughput Test

The throughput test conducts a binary search and measures the maximum amount of traffic that can be forwarded at zero or acceptable packet loss. This procedure is repeated for each packet size and each frequency band.

Throughput is plotted for each frame size and PASS/FAIL results are provided based on the user defined criteria.

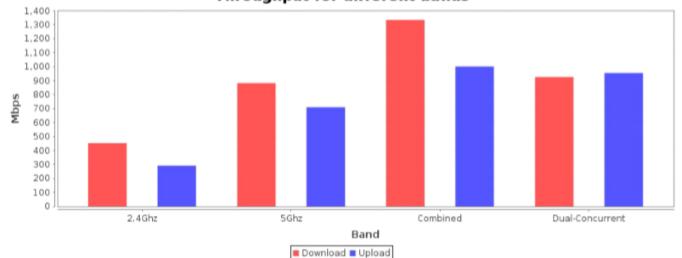
RX (Mbps)

2.4Ghz Throughput vs Packet Size

Realtime Throughput for: Throughput vs Pkt Size 1.000 900 800 700 500 500 400 300 200 100 0 04:10 05:00 05:10 05:20 05:40 04:20 04:30 04 40 04:50 05:30 05:50 Date - Upload RX bps --- Download RX bps

Throughput vs Pkt Size Results

Туре	Result	Notes
2.4Ghz Download 256	Info	291.59 Mbps PER: 0.63
2.4Ghz Download 512	Info	413.21 Mbps PER: 0.04
2.4Ghz Download 1024	Info	452.84 Mbps PER: 0.95
2.4Ghz Download MTU	PASS	446.66 / 282.00 Mbps PER: 0
2.4Ghz Upload 256	Info	210.02 Mbps PER: 0
2.4Ghz Upload 512	Info	219.85 Mbps PER: 0
2.4Ghz Upload 1024	Info	281.95 Mbps PER: 0
2.4Ghz Upload MTU	PASS	291.84 / 282.00 Mbps PER: 0
5Ghz Download 256	Info	332.36 Mbps PER: 0.76
5Ghz Download 512	Info	668.76 Mbps PER: 0.58
5Ghz Download 1024	Info	803.04 Mbps PER: 0.24
5Ghz Download MTU	PASS	909.11 / 650.00 Mbps PER: 0
5Ghz Upload 256	Info	260.56 Mbps PER: 0
5Ghz Upload 512	Info	551.01 Mbps PER: 0
5Ghz Upload 1024	Info	732.04 Mbps PER: 0
5Ghz Upload MTU	PASS	721.37 / 650.00 Mbps PER: 0


Throughput Test Result Analysis Example

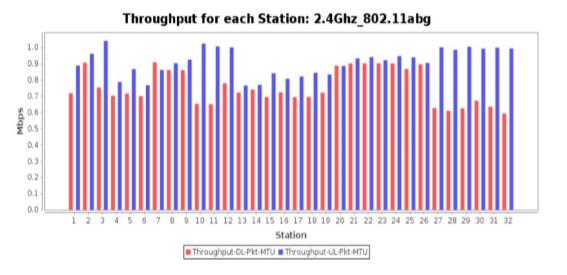
Channel BW →> Image: NS1 NS2 NS2 NS3		Traffic Type	Traffic Direction	STA Mode	Frame Size												
ICP Id2 bytes 32% Id2 bytes 32% Id2 bytes 32% Id2 bytes 1d2 bytes	Channel BW =>						20 N	٨Hz			40 N	٨Hz			80 N	۱Hz	
Image: head of the second se	MIMO Type =>					NSS1	NSS2	NSS3	NSS4	NSS1	NSS2	NSS3	NSS4	NSS1	NSS2	NSS3	NSS4
Image: height of the set of the					142 Bytes												
DUT-RX IO24 Bytes 63% IO2 <					256 Bytes												
Image: height in the second				802.11a	512 Bytes												
Image: height in the second					1024 Bytes												
DUT-RX 802.11 cm 256 Bytes 48% 66% 71% 72% 52% 71% 72% 40% 1 1 1 1024 Bytes 628 70% 76% 80% 68% 81% 77% 1					1518 Bytes												
TCP B02.11an 512 Bytes 62% 70% 76% 80% 668% 80% 81% 77% 1 1 1 1024 Bytes 668% 71% 75% 74% 73% 75% 74% 65% 1 1 1 1518 Bytes 75% 74% 84% 83% 77% 73% 65% 25% 32% 27% 256 Bytes 1 1 1 1 1 65% 35% 32% 32% 27% 1024 Bytes 1 1 1 1 1 65% 30% 55% 55% 1 <td< td=""><td></td><td></td><td></td><td></td><td>142 Bytes</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					142 Bytes						68%						
DUT-TX Image: Constraint of the second					256 Bytes					52%	71%						
Image: height state			DUT-RX	802.11an	512 Bytes												
TCP 142 Bytes 142 Bytes 1 1 188 358 328 27% 802.11an-AC 512 Bytes 1 1 1 35% 32%					1024 Bytes			75%		73%	75%	74%					
TCP 256 Bytes 0 0 0 357 397 347 307 TCP 512 Bytes 0 0 0 0 518 64% 63% 55% 1024 Bytes 0 0 0 62% 66% 71% 67% 1024 Bytes 33% 0 0 0 62% 66% 71% 67% 1024 Bytes 33% 0 0 0 62% 62% 73% 79% 1024 Bytes 33% 0<					1518 Bytes	75%	74%	84%	83%	77%	73%	88%	82%				
ICP 802.11an-AC 512 Bytes I				142 Bytes									18%	35%	32%	27%	
TCP IO24 Bytes IO24 Bytes IO IO <td></td> <td></td> <td rowspan="4"></td> <td rowspan="4">802.11an-AC 5</td> <td>256 Bytes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35%</td> <td>39%</td> <td>34%</td> <td></td>				802.11an-AC 5	256 Bytes									35%	39%	34%	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					512 Bytes									51%	64%	63%	
DUT-TX 142 Bytes 33% Image: Constraint of the system o					1024 Bytes									62%	66%	71%	67%
DUT-TX Id2 Bytes 33% Id2 Bytes 33% Id2 Bytes Id2 B		TCP			1518 Bytes									73%	62%	73%	79%
B02.11a 512 Bytes 45% Image: Signal Sign		ICF			142 Bytes	33%											
DUT-TX IO24 Bytes 55% IO24 Bytes 428 45% 33% 28% 37% 36% 27% 21% IO24 Bytes IO24 Bytes 428 45% 33% 28% 37% 36% 27% 21% IO24 Bytes IO24 Bytes 71% 72% 50% 41% 64% 64% 44% 62% IO24 Bytes IO24 Bytes 88% 85% 55% 57% 86% 84% 66% 57% IO24 Bytes IO24					256 Bytes	30%											
DUT-TX Ista Bytes 59% Image: state				802.11a	512 Bytes	45%											
DUT-TX 142 Bytes 40% 45% 33% 28% 37% 36% 27% 21% DUT-TX 802.11an 126 Bytes 48% 51% 38% 32% 43% 42% 28% 32% <td></td> <td></td> <td></td> <td></td> <td>1024 Bytes</td> <td></td>					1024 Bytes												
DUT-TX 256 Bytes 48% 51% 38% 32% 43% 42% 28% 32% DUT-TX 802.11an 512 Bytes 71% 72% 50% 41% 64% 68% 49% 55% <td></td> <td></td> <td></td> <td></td> <td>1518 Bytes</td> <td>59%</td> <td></td>					1518 Bytes	59%											
DUT-TX 802.11 cn 512 Bytes 71% 72% 50% 41% 64% 68% 49% 55% 1024 Bytes 88% 85% 56% 59% 79% 80% 64% 62% 1518 Bytes 89% 89% 55% 59% 86% 84% 68% 59%					142 Bytes												
1024 Bytes 88% 85% 56% 59% 79% 80% 64% 62% 1518 Bytes 89% 89% 55% 59% 86% 84% 68% 59%					256 Bytes												
Interview Interview <t< td=""><td></td><td></td><td>DUT-TX</td><td>802.11an</td><td>512 Bytes</td><td></td><td></td><td></td><td>41%</td><td>64%</td><td>68%</td><td>49%</td><td></td><td></td><td></td><td></td><td></td></t<>			DUT-TX	802.11an	512 Bytes				41%	64%	68%	49%					
142 Bytes Image: Constraint of the system Image: Consthe system <					1024 Bytes			56%	59%	79%	80%	64%					
256 Bytes 44% 36% 31% 27% 802.11an-AC 512 Bytes 65% 56% 48% 43% 1024 Bytes 78% 61% 40% 48%					1518 Bytes	89%	89%	55%	59%	86%	84%	68%	59%				
802.11an-AC 512 Bytes 65% 56% 48% 43% 1024 Bytes 78% 61% 40% 48%					142 Bytes									2%	32%		
1024 Bytes					256 Bytes									44%	36%		
1024 Bytes Image: Constraint of the system Image: Constrainton of the system Image: Constr				802.11an-AC	512 Bytes												
1518 Bytes 84% 62% 43% 57%					1024 Bytes												48%
					1518 Bytes									84%	62%	43%	57%

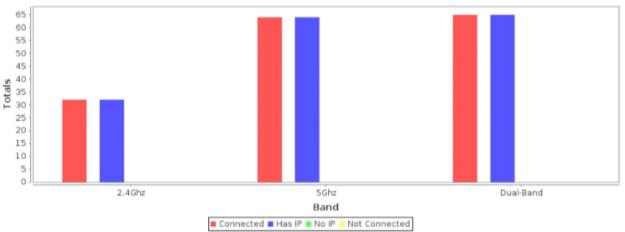
AP Auto : Dual Band Performance Test

The Dual band performance test is designed to check if the AP has any systems limitations with resources that are shared across multiple radios on the AP. The test runs traffic at full rate on the 2.4GHz first and then repeats the test in the 5 GHz band. Then the tests is run with full line rate traffic on both bands simultaneously. The combined throughput across both the bands when the tests are run separately are compared to the combined throughout when both the bands are loaded simultaneously. The PASS/FAIL criteria is determined based on how close the dual concurrent throughput is to the combined throughput.

Throughput for different bands

Dual Band Performance Results


Туре	Result	Notes
2.4Ghz Download	PASS	453.28 Mbps PER: 7.01
5Ghz Download	PASS	882.79 Mbps PER: 1.71
Dual-Concurrent Download		926.83 Mbps PER: 2.16 Dual-Concurrent vs 90% of Sum: 926.83 Mbps / 1,202.47 Mbps
2.4Ghz Upload	PASS	292.03 Mbps PER: 0
5Ghz Upload	PASS	709.50 Mbps PER: 0
Dual-Concurrent Upload		954.68 Mbps PER: 0 Dual-Concurrent vs 90% of Sum: 954.68 Mbps / 901.37 Mbps


AP Auto : Mixed Stability Test

This test allows the user to create a number if real world test scenarios with a mix of voice, video and data traffic streams with lots of WiFi clients connecting and disconnecting to the WiFi network. This test is designed to bring more realism to testing in the lab and reproducing very interesting memory leaks, deadlocks and other AP performance problems that are missed in lab testing and only appear in the real when dealing with diverse client/load patters, stress, scale and long service hours.

Stability Duration:	600 (10 min)	-	Reset Radios			
Concurrent Ports to Reset:	Single (1)	-				
Minimum Time between Resets:	20 seconds (20 s)	-	Maximum Time between Resets:	30 se	conds (30 s)	-
VOIP Call Count:	None (0) (0)	•]			
Video Emulation Rate:	SD 360p (700 Kbps)	-	Video Buffer Size:	500k	(488.28125 KB)	•
Stability UDP Min Download Rate:	500000 (500 Kbps)	•	Stability UDP Max Download Rate:	Tl	(1.544 Mbps)	-
Stability UDP Min Upload Rate:	500000 (500 Kbps)	-	Stability UDP Max Upload Rate:	Tl	(1.544 Mbps)	•
Stability TCP Min Download Rate:	500000 (500 Kbps)	-	Stability TCP Max Download Rate:	Tl	(1.544 Mbps)	-
Stability TCP Min Upload Rate:	500000 (500 Kbps)	-	Stability TCP Max Upload Rate:	Tl	(1.544 Mbps)	-
Stability stall threshold UDP Upload	: 100000 (100 Kbps)	•	Stability stall threshold UDP Download:	100000	(100 Kbps)	-
Stability stall threshold TCP Upload	100000 (100 Kbps)	•	Stability stall threshold TCP Download:	100000	(100 Kbps)	-
Stability stall threshold Video:	100000 (100 Kbps)	-	Stability stall threshold VOIP:	Zero (0 bps)	-

Connection totals for each band

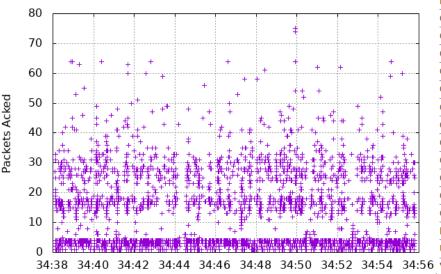
Emulating Misbehaving WiFi Clients

- Create misbehaving clients that can mimic real-world client behaviors.
- On a per client basis set the following on various management frames.
 - Ignore % RX Frames
 - Corrupt % TX Frames
 - > Duplicate % TX Frames
 - Delay Frame Responses
- Select one or more types of frames to apply these corruptions.

Current:	DOWN LINK-DOWN GR	RO NONE
Driver Info:	Port Type: WIFI-STA	Parent: wiphyl

Port Configurables											
Standard Configuration	Advanced Configu	ration Misc Co	onfigura	ation Corruptions Custom WiFi							
Configurable WiFi Corruptions											
Ignore RX Frames	Corrupt TX Frames	Duplicate TX Fra	ames D	elay Frame Processing							
75% (75%) 💌	zero (0%) 🗸	zero (0%)	- M	tin 0 (No Delay) (0 ms) 👻							
			м	fax O (No Delay) (O ms) 🔽							
Any/All EAPOL	EAPOL 2/4	EAPOL 2/4		EAPOL 1/4							
DEAUTH	EAPOL 4/4	EAPOL 4/4		EAPOL 3/4							
EAPOL 1/4	EAPOL 2/2	EAPOL 2/2		EAPOL 1/2							
EAPOL 3/4	D-Response	D-Response		D-Request							
EAPOL 1/2	Other-Response	Other-Respo	nse	Other-Request							
ASSOC											
D-Request											
Other-Request											
	\Im										

Wireshark Capture File Analysis


RX (All) Retransmit percentage: 5197/78377 == 6.63077178253825

- RX (Big) Retransmit count: 5197
- TX (All) Retransmit percentage: 3/7108 == 0.0422059651097355
- TX (Big) Retransmit count: 0
- RX (All) no-ack-found: 56234
- RX (Big) no-ack-found: 55705
- TX (All) no-ack-found: 6
- TX (Big) no-ack-found: 0

RX average gap between AMPDU frames (ms): 0.00344110614165813

RX average AMPDU chain time (ms): 0.0465246330408624 TX BA to RX AMPDU average gap (ms): 1.53520291279184 RX BA to TX AMPDU average gap (ms): 61.600923538208 Duplicate TX BA without AMPDU between them: 54 Duplicate RX BA without AMPDU between them: 32 WMM Info from DUT Beacon

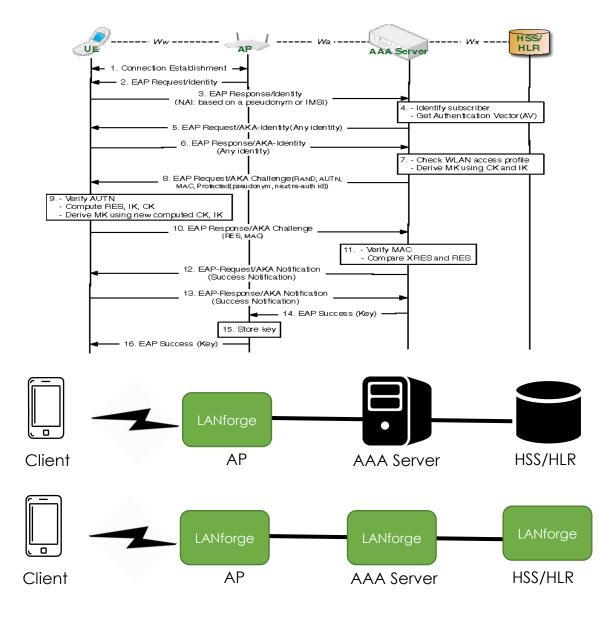
TX Block-Ack packets Acked per Pkt

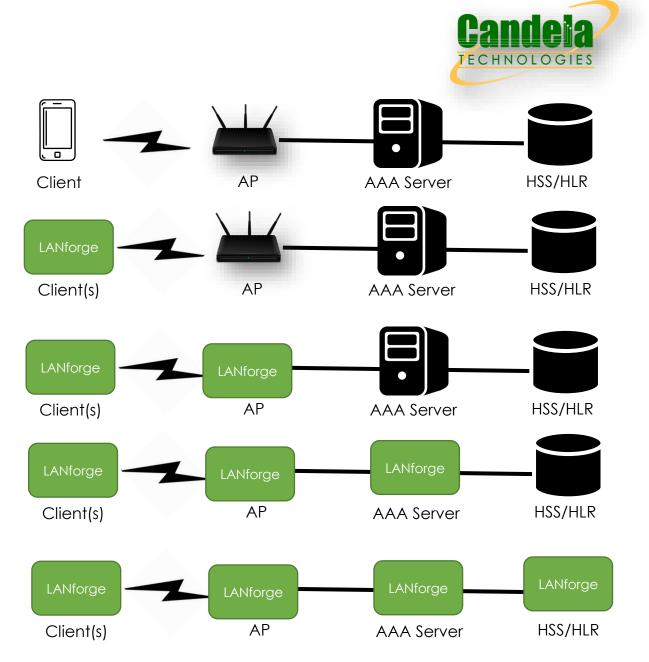
TX Packet Type histogram

Туре	Packets	Percentage
802.11 Block Ack (0x0019)	3657	51.449071
Acknowledgement (0x001d)	9	0.126618
Clear-to-send (0x001c)	3390	47.692741
QoS Data (0x0028) Best Effort (Best Effort)	51	0.717501
Request-to-send (0x001b)	1	0.014069

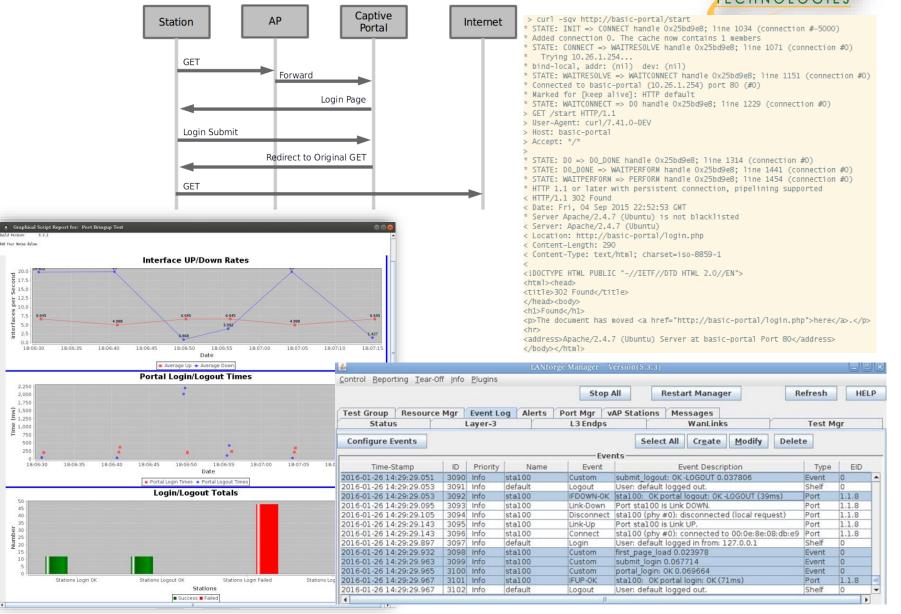
RX Packet Type histogram

Туре	Packets	Percentage
802.11 Block Ack (0x0019)	51	0.065070
Beacon frame (0x0008)	68	0.086760
Data (0x0020)	2	0.002552
Probe Response (0x0005)	11	0.014035
QoS Data (0x0028) Background (Background)	7	0.008931
QoS Data (0x0028) Best Effort (Best Effort)	77121	98.397489
QoS Data (0x0028) Controlled Load (Video)	23	0.029345
QoS Data (0x0028) Excellent Effort (Best Effort)	1	0.001276
QoS Data (0x0028) Network Control (Voice)	5	0.006379
QoS Data (0x0028) Spare (Background)	9	0.011483
QoS Data (0x0028) Video (Video)	4	0.005104
QoS Data (0x0028) Voice (Voice)	8	0.010207
QoS Data + CF-Acknowledgment (0x0029) Best Effort (Best Effort)	2	0.002552
QoS Data + CF-Poll (0x002a) Best Effort (Best Effort)	3	0.003828
QoS Data + CF-Poll (0x002a) Controlled Load (Video)	1	0.001276
QoS Null function (No data) (0x002c) Best Effort (Best Effort)	3	0.003828
Request-to-send (0x001b)	530	0.676219
Unknown (0x002d) Best Effort (Best Effort)	1	0.001276
VHT/HE NDP Announcement (0x0015)	527	0.672391




RX AMPDU ch		histogram	Rate Mbps	Packets	Percentage	
KA AWIPDO CI	rinstogram	6.0	3539	49.788970		
Average: 8.757			12.0	9	0.126618	
Chain Count	Packets	Percentage	14.4	1	0.014069	
2	43	1.977921	24.0	3509	49.366911	
3	834	38.362466	28.8	1	0.014069	
4	726	33.394664	30.0	1	0.014069	
5	20	0.919963	45.0	1	0.014069	
6	32	1.471941	54.0	1	0.014069	
7	22	1.011960	58.5	1	0.014069	
8	5	0.229991	58.6	6	0.084412	
9	3	0.137994	60.0	1	0.014069	
10	1	0.045998	65.0	1	0.014069	
11	2	0.091996	87.9	12	0.168824	
12	4	0.183993	97.5	2	0.028137	
13	1	0.045998	117.0	2	0.028137	
14	5	0.229991	117.2	5	0.070343	
15	9	0.413983	130.0	2	0.028137	
16	5	0.229991	175.5	3	0.042206	
17	4	0.183993	195.0	1	0.014069	
18	2	0.091996	260.0	4	0.056275	
19	6	0.275989	263.4	2	0.028137	
20	8	0.367985	292.5	1	0.014069	
21	5	0.229991	390.0	1	0.014069	
22	18	0.827967	468.0	2	0.028137	

TX Encoding rate histogram.


EAP-SIM and EAP-AKA Testing

Captive Portal/Web Auth Testing

- Support various types of custom captive portal implementations.
- Can create custom scripts based on customer requirements.
- \succ Can test with:
 - Redirects
 - Form posts
 - AJAX
 - Hidden fields
 - Cookies
 - Security headers
- Can scale to 1000s of captive portal logins.
- Can stress the DUT with lots of login attempts/sec from unique endpoints with different MAC addresses.
- Measure:
 - Time to receive the redirects
 - Time to Login page
 - Login Latency
 - Login Completion Rates

SpeedTest.NET Testing

- > Create lots of virtual wired and wireless clients to the network under test and a speed test to real Speedtest.net servers.
- Measure download and upload speeds.

<u>Control</u> <u>R</u> eport	ting Tear <u>O</u> ff <u>I</u> nfo <u>P</u>	lugins																
												Char	nber <u>V</u> iew	<u>S</u> t	op All	Restart Manage	r <u>R</u> efres	h HEI
Attenuators	RF-Generator File-	IO Generic	Test Mgr	Test Group	Resource Mgr	VAP Stati	ons DUT	Profiles T	raffic-Profiles	Event L	og Alerts	Messages 🚺	Warnings +	Wifi-Messag	es			
Status	Por	t Mgr	Lay	yer-3	L3 Er	ndps		Layer 4-7		Arr	mageddon		WanLinks		VoIP/RTP		VoIP/RTP Endps	
											Coloct All	Ctart .	Stan Class					
Rpt Timer: fast (1 s) ▼ Go Test Manager all ▼ Select All Start + Stop - Clear																		
											Cr <u>e</u> a	ate Mo <u>d</u> ify	Delete					
									dpoints for Sele	ected Test	t Manager —							
Name	EID Status I	Rot#		Las	t Results			Tx Bytes			x Pkts PDU	s TX Rx P	kts PDU/s R		bps TX	bps RX	Command	Rpt Time
	1.1.20 Stopped 1		ch Futures Int		"Burnaby, BC", 20)19-11-14T(0:19:47.99		0 B	0	0	0	0	0	12.984 Mbps	9.086 Mbps	vrf exec.bash sta000	1,00
	1.1.19 Stopped 1				-11-14T00:19:47				0 B	0	0	0	0	0	4.919 Mbps	33.075 Mbps		1,00
	1.1.17 Stopped 1	11142,0	Green House [Data, "Bellingh	am, WA",2019-1	1-14T00:19	:42.817307	0 B	0 B	0	0	0	0	0	2.065 Mbps		vrf_exec.bash sta000	1,00
	1.1.16 Stopped 1				am, WA",2019-1				0 B	0	0	0	0	0	2.378 Mbps	23.302 Mbps		1,0
	1.1.15 Stopped 1				am, WA",2019-1				0 B	0	0	0	0	0	2.273 Mbps	21.693 Mbps		1,0
	1.1.13 Stopped 1				iam, WA",2019-1				0 B	0	0	0	0	0	2.148 Mbps	17.555 Mbps		1,0
	1.1.14 Stopped 1				iam, WA",2019-1				0 B	0	0	0	0	0	2.505 Mbps	21.955 Mbps		1,0
	1.1.11.5 Stopped 1				am, WA",2019-1				0 B	0	0	0	0	0	2.557 Mbps	20.061 Mbps		1,0
	1.1.10.3 Stopped 1				am, WA",2019-1				0 B	0	0	0	0	0	2.883 Mbps		vrf_exec.bash sta000	1,0
peedtest2	1.1.12 Stopped 1	11142,0	Green House L	Data, "Bellingh	iam, WA",2019-1	1-14100:19	:42.592160	0 B	0 B	0	0	0	0	0	2.201 Mbps	22.245 Mbps	vrf_exec.bash sta000	1,00
											87607	26448.png	(PNG Image,	350 × 200				
											87607	26448.png (P	NG Im 🗙 🕂					
											(\leftarrow)	C 🗍 🛈 🔒	https://www. sp	eedte ••	• >> =			
											6	PEEDTEST		11/1/	/2019			
												peedtest by C	lokla	12:20 Al	The second se			
												recutest by c		12.20 A				
											() () () () () () () () () () () () () (ING 🕑 D	OWNLOAD	• UPLOAD				
											-	1 0	00					
												1 _{ms} 9	.09 _{Mbps}	12.98	Mbps			
											F	ATING F	aster than 59% (of US				
											E State	SP C	omcast Busines	***				
4													urnaby, BC , ~ 5					
													annaby, be ; - 5					
.ogged in to:	localhost:4002 as: A	dmin									addition in the	a a sea sea sea se		en en en sen sen sen sen sen sen sen sen				

6E Test cases Covered

6E Throughput Benchmark

This test gives the 6E performance with different packet sizes, channel BWs, traffic types, MIMO types.

Client Capacity

WiFi Capacity test is designed to measure performance of an Access Point when handling several 6E WiFi Stations.

Near/Far Clients, Band Steering

Measure the performance and stability of the 6E clients based on low and high RSSI levels

Tri-band Performance

Running traffic on 2.4, 5 & 6Ghz clients simultaneously.

6E RvR and RvO

This test measures the 6E performance over distance and different antenna orientation of the access point.

OFDMA Performance

This test gives the downlink and uplink OFDMA performance for the multiple 6E clients. Sizes of RUs allocated to different users

Latency

This test intends to verify latency under low, high and maximum AP traffic load with multiple stations

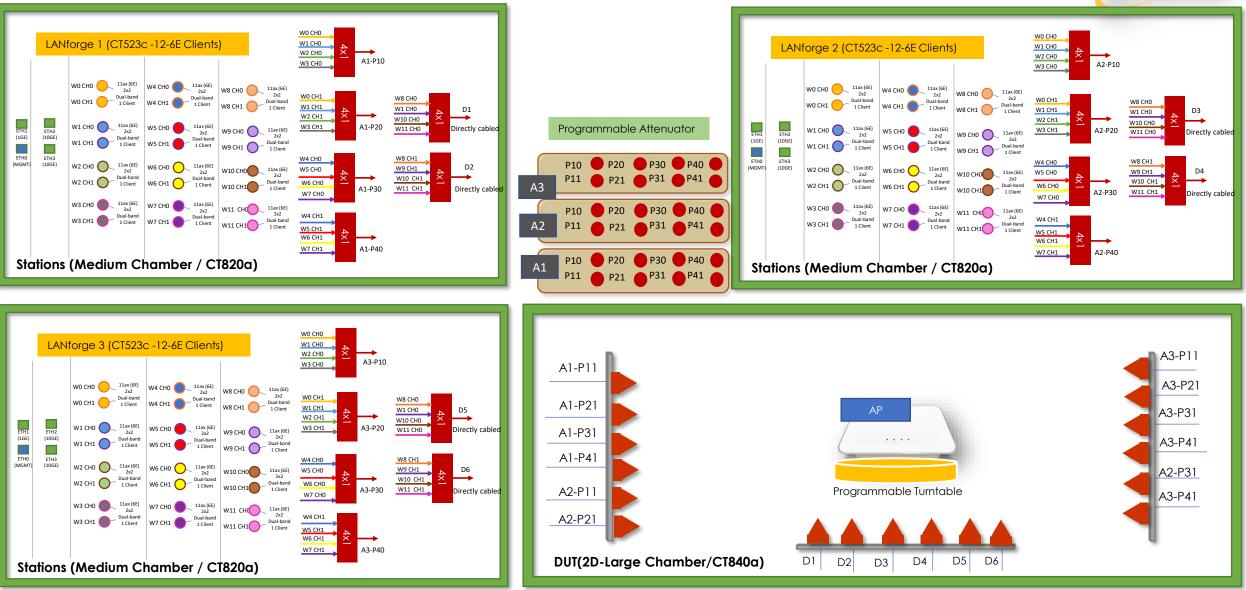
Airtime Fairness, QoS

Airtime Fairness Test intends to verify the capability of Wi-Fi device to ensure the fairness of airtime usage.

MU-MIMO

This test measures the 6E Downlink and uplink multiuser, multi input, multi output

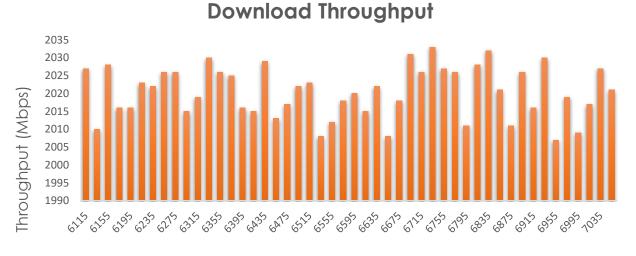
6E Testbed Images



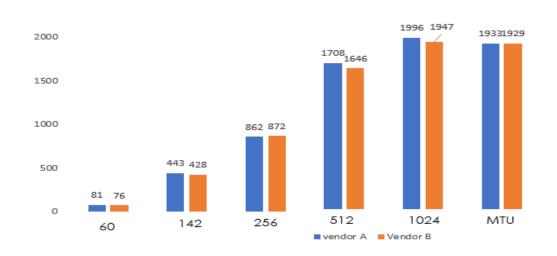
Outside

Inside

WiFi 6E Testbed Wiring Diagram



6E Throughput Benchmark

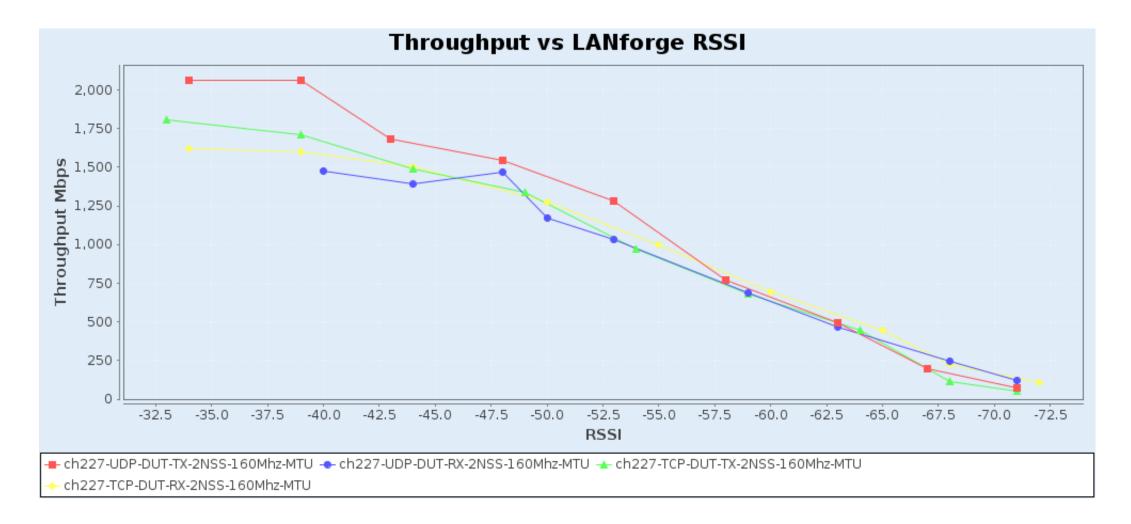

The Candela WiFi data plane test is designed to conduct an automatic testing of all combinations of station types, MIMO types, Channel Bandwidths, Traffic types, Traffic direction, Frame sizes etc... It will run a quick throughput test at every combination of these test variables and plot all the results in a set of charts to compare performance. The user is allowed to define an intended load as a percentage of the max theoretical PHY rate for every test combination. The expected behavior is that for every test combination the achieved throughput should be at least 70% of the theoretical max PHY rate under ideal test conditions. This test provides a way to go through hundreds of combinations in a fully automated fashion and very easily find patterns and problem areas which can be further debugged using more specific testing. The below chart shows the throughput with all the 6E channels

2500

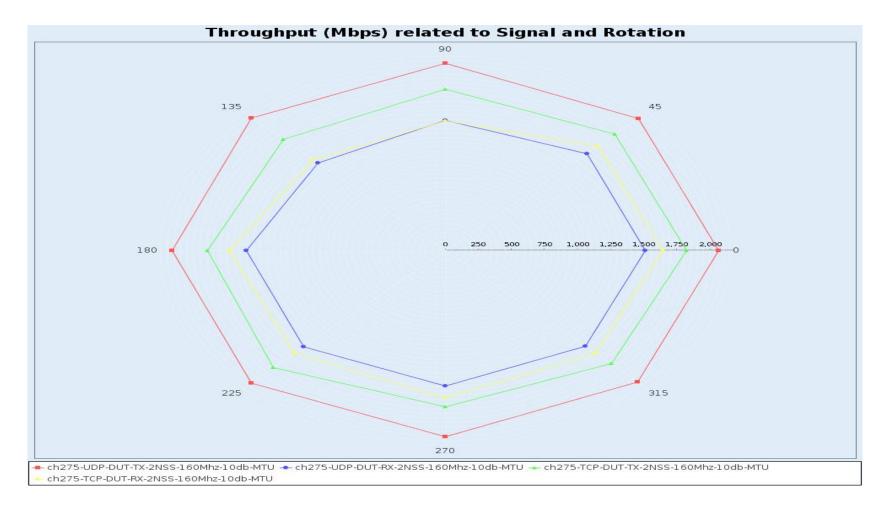
Frequency (Mhz)

WiFi Capacity Test

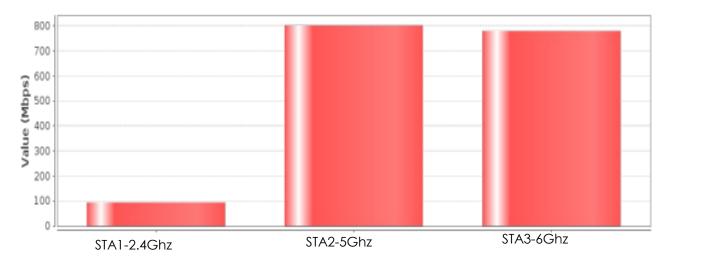
The Candela WiFi Capacity test is designed to measure performance of an Access Point when handling several 6E WiFi Stations. The test allows the user to increase the number of stations in user defined steps for each test iteration and measure the per station and the overall throughput for each trial. Along with throughput other measurements made are client connection times, % packet loss, DHCP times and more. The expected behavior is for the AP should be able to handle several stations (within the limitations of the AP specs) and make sure all stations get a fair amount of airtime both in the upstream and downstream.

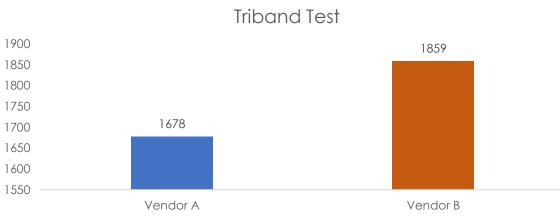

Realtime Mbps

6E Rate vs Range Test


This test measures the performance over distance of the Device Under Test. Distance is emulated using programmable attenuation and a throughput test is run at each distance/RSSI step and plotted on a chart. The test allows the user to plot RSSI curves both upstream and downstream for different types of traffic and different station types. The below chart runs with the channel 227.

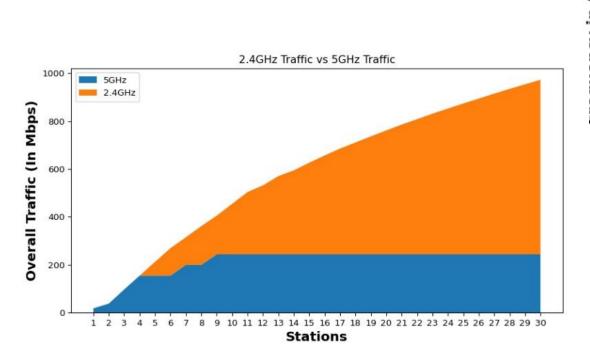
6E Rate vs Orientation Test

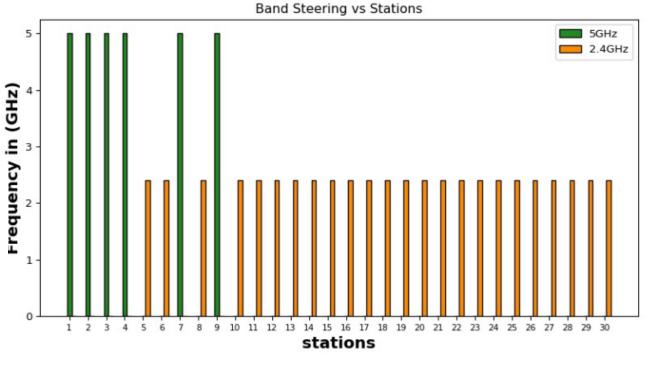

This test measures the performance of the DUT at different antenna orientations. Different antenna orientations of the transmitter will respect to the receiver may results in huge variations of performance caused by antenna nulls and dead spots. Using a large chamber with a programmable turntable, the DUT is rotated to various angles and upstream/downstream throughput is measured at each orientation and the results are plotted on a polar plot



Tri-Band Test

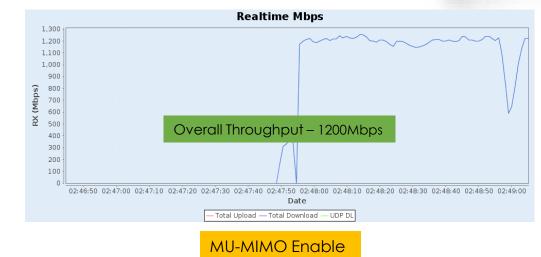
This test creates each client on 2.4, 5 and 6Ghz bands and run the traffic simultaneously. The Multi Band Performance test intends to verify that the Wi-Fi AP throughput with multiple bands active with a single station on each band. The configured speed will be 20% higher than the passing value for MTU sized frames in the throughput test. If the throughput test was skipped, then fixed values will be used.

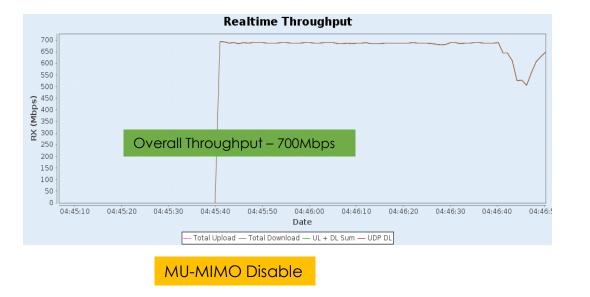


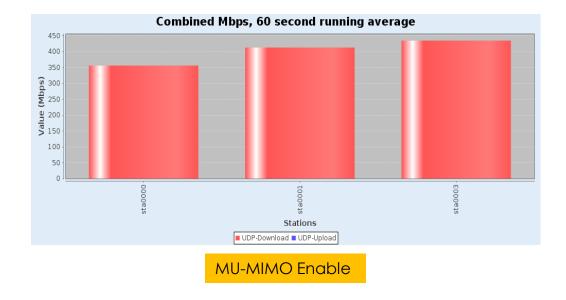


Band Steering Test

Through this test, clients get steered from one band to another based on RSSI levels or load based. The below chart shows the auto selected band of a station which is created on each iteration, Based on the overall load on the access point the next station will be created on a band which is having less load.




6E MU-MIMO Performance test



Test Description

- Test was run with 3 MU-MIMO clients connected to the APs 6GHz radio. Client1 was set to 2x2 MIMO and Client2 and Client3 were set to 1x1 Mode.
- > UDP traffic is run at full rate from AP to all three stations.

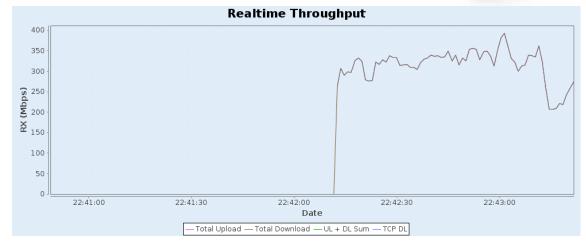
6E OFDMA Performance test

🛋 🔳 🖉 🐵 💴 🛅 🗙 💁 🍳 🐡 🗠 🕾 🐨 🕸 🕎 📰 🍳 🍳 🍳 🖽

Te	st Description
\triangleright	Test was run with 4 clients

- Test was run with 4 clients connected to the APs 6GHz radio.
- Four 11ax stations each with a UDP download at 300B payload size which will show that the AP is using OFDMA.
- Packet capture on one of the STA shows AP using HE MU PPDU frame format for sending the QoS data and 242-tone RU is allocated.

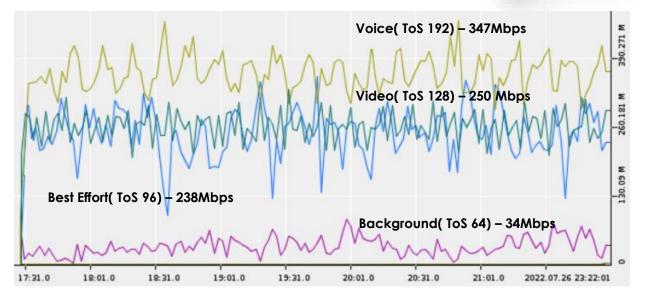
Apply a display filter <ctrl-></ctrl->					
Destination	Protocol	Length PPDU Format	data Bandwidth/RU allocation	Info	A-MPDU status
IntelCor_00…	802		242-tone RU	QoS Data, SN=:	timestamp information
IntelCor_00…			242-tone RU	QoS Data, SN=:	HE information
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	HE Data 1: 0xc7f6, PPDU Format: HE_MU, BSS Color known, UL/DL
IntelCor_00…	802		242-tone RU	QoS Data, SN=:	
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	1 = BSS Color known: Known
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	0 0 = Beam Change known: Unknown
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	1 = UL/DL known: Known
IntelCor_00…	802		242-tone RU	QoS Data, SN=:	
IntelCor_00…	802		242-tone RU	QoS Data, SN=:	
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	1 1 = Coding known: Known
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	1 = LDPC extra symbol segment known: Known
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	1 = Spatial Reuse 1 known: Known
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	0 = Spatial Reuse 2 known: Unknown
IntelCor_00…	802		242-tone RU	QoS Data, SN=:	0 = Spatial Reuse 3 known: Unknown
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	0 = Spatial Reuse 4 known: Unknown
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	.1 = data BW/RU allocation known: Known
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	1 \dots \dots = Doppler known: Known
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	> HE Data 2: 0x437f, pri/sec 80 MHz known, GI known, LTF symbols
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	> HE Data 3: 0x2b21, Coding: LDPC
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	HE Data 4: 0x0000
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	HE Data 5: 0x6187, data Bandwidth/RU allocation: 242-tone RU,
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	0111 = data Bandwidth/RU allocation: 242-tone
IntelCor_00…	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	$\dots \dots $
IntelCor_00	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	10 = LTF symbol size: $2x (0x2)$
IntelCor_00	802	1546 HE_MU	242-tone RU	QoS Data, SN=:	
IntelCor_00	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	0 = reserved: 0x0
IntelCor_00	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	10 = Pre-FEC Padding Factor: 0x2
IntelCor_00	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	.1 = TxBF: 0x1
IntelCor_00	802	1546 HE_MU	242-tone RU	QoS Data, SN=3	0 = PE Disambiguity: 0x0
IntelCor 00	802	1546 HE MU	242-tone RU	OoS Data, SN=:	


7C:50:79:3F:81:B2	1198.2	44.8	142.8%	24.9%	0.0%	80	11	2	98.4%	0.0%
(overall)		179.9	561.8%							
Station Address	PHY Mbps		Air Use	Data Use	Retries	bw	mcs	Nss		mu-mimo
7C:50:79:3F:8D:BF	1197.7	45.1	146.7%	25.1%	0.0%	80	11	2	99.5%	0.0%
40:1C:83:3C:75:C1	501.4	45.6	115.3%	25.3%	9.0%	80	9.3	1	90.3%	0.0%
14:18:C3:48:AE:77	1197.7	44.5	144.9%	24.8%	0.0%	80	11	2	98.8%	0.0%
7C:50:79:3F:81:B2	1197.4	44.7	141.9%	24.9%	0.0%	80	11	2	98.0%	0.0%
(overall)		179.9	548.8%							
Station Address	PHY Mbps	Data Mbps	Air Use	Data Use	Retries	bw	mcs	NSS	ofdma	mu-mimo
7C:50:79:3F:8D:BF	1196.0	45.2	152.5%	25.1%	0.0%	80	11	2	99.0%	0.0%
40:1C:83:3C:75:C1	479.1	45.4	122.1%	25.2%	7.6%	80	9.0	1	94.4%	0.0%
14:18:C3:48:AE:77	1196.1	44.6	152.3%	24.8%	0.0%	80	11	2	99.9%	0.0%
7C:50:79:3F:81:B2	1195.9	44.8	146.7%	24.9%	0.0%	80	11	2	99.1%	0.0%
(overall)		180.0	573.5%							
Station Address	PHY Mbps	Data Mbps	Air Use	Data Use	Retries	bw	mcs	Nss	ofdma	mu-mimo
7C:50:79:3F:8D:BF	1196.0	45.0	153.5%	25.1%	0.0%	80	11	2	99.2%	0.0%
40:1C:83:3C:75:C1	479.5	45.1	121.2%	25.1%	8.2%	80	9.0	1	94.9%	0.0%
14:18:C3:48:AE:77	1195.9	44.6	152.6%	24.9%	0.0%	80	11	2	99.1%	0.0%
7C:50:79:3F:81:B2	1195.9	44.7	147.0%	24.9%	0.0%	80	11	2	99.4%	0.0%
(overall)		179.4	574.3%							
Station Address	PHY Mbps	Data Mbps	Air Use	Data Use	Retries	bw	mcs	Nss	ofdma	mu-mimo
7C:50:79:3F:8D:BF	1195.1	44.8	155.5%	25.0%	0.0%	80	11	2	99.7%	0.0%
40:1C:83:3C:75:C1	479.4	44.8	120.3%	25.0%	9.7%	80	9.0	1	94.3%	0.0%
14:18:C3:48:AE:77	1195.1	44.7	155.1%	24.9%	0.0%	80	11	2	99.1%	0.0%
7C:50:79:3F:81:B2	1195.2	44.8	150.4%	25.0%	0.0%	80	11	2	99.6%	0.0%
(overall)		179.0	581.4%							
Station Address	PHY Mbps	Data Mbps	Air Use	Data Use	Retries	bw	mcs	Nss	ofdma	mu-mimo
7C:50:79:3F:8D:BF	1199.0	44.7	142.7%	25.0%	0.0%	80	11	2	99.3%	0.0%
40:1C:83:3C:75:C1	562.6	44.8	108.7%	25.1%	7.1%	80	10.4	1	87.1%	0.0%
14:18:C3:48:AE:77	1198.9	44.6	141.4%	24.9%	0.0%	80	11	2	99.0%	0.0%
7C:50:79:3F:81:B2	1198.9	44.8	135.1%	25.0%	0.0%	80	11	2	98.7%	0.0%
(overall)		178.9	527.9%							

6E Near/Far Clients test

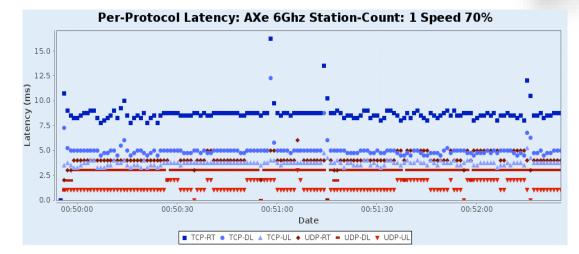
Test Description

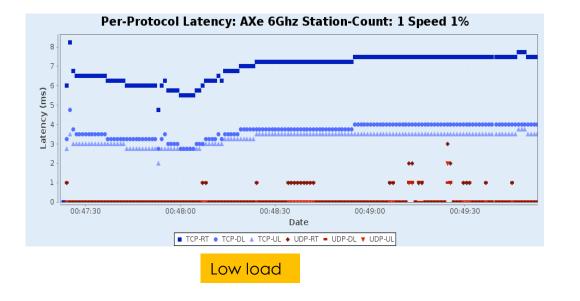
- Three clients were created, one each on three different LANforge radios.
- Each client is connected to the DUT chamber through a different programmable attenuator allowing for different distances emulated for each client.
- The path loss created for the three clients was 10dB, 25dB and 35dB representing a Near, Medium Distance and Far Clients respectively.
- Test run at full rate TCP downstream from AP to all three clients and throughput is measured for each client.

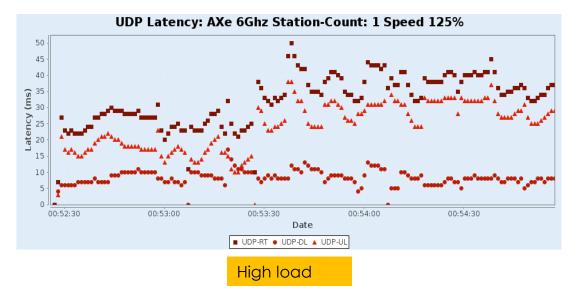

Combined Mbps, 60 second running average

6E QoS Performance test

Test Description

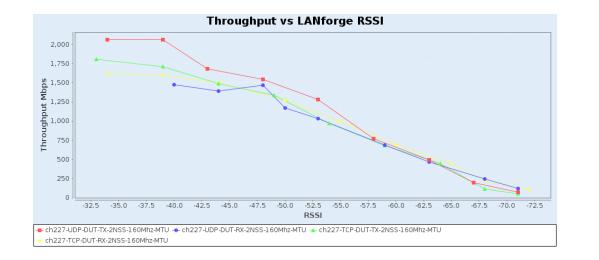

- Test run with 4 clients connected to the 6GHz radio of the AP under test.
- Downlink(AP to client) TCP traffic streams were set up to each client with different QoS access categories to each client Client1: Voice, Client2: Video, Client3: Best Effort, Client4: Background
- > All 4 traffic streams were run at full rate.

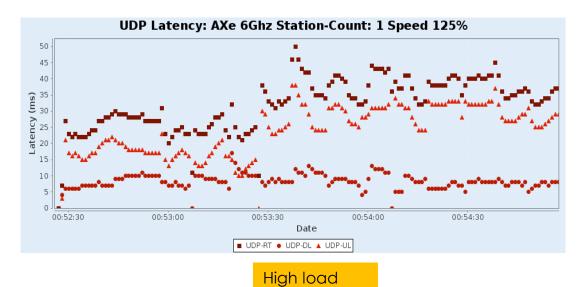

6E Latency test

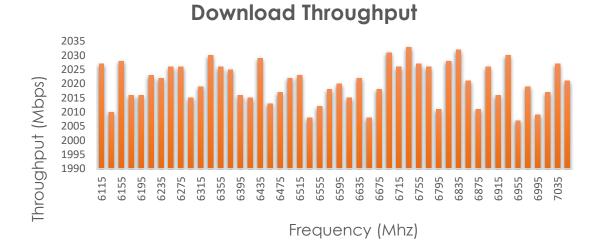


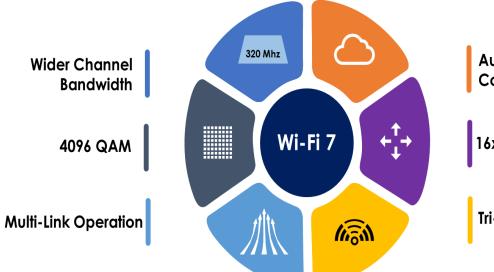
- The Latency test intends to verify latency under low, high, and maximum AP traffic load, with 1 stations. Traffic load is a 4 bi-directional TCP streams for each station, plus a low speed UDP connection to probe latency.
- Low load considered as 1% of max TCP throughput
- Medium load considered as 70% of max TCP throughput
- High load considered as 70% of max TCP throughput

Medium load



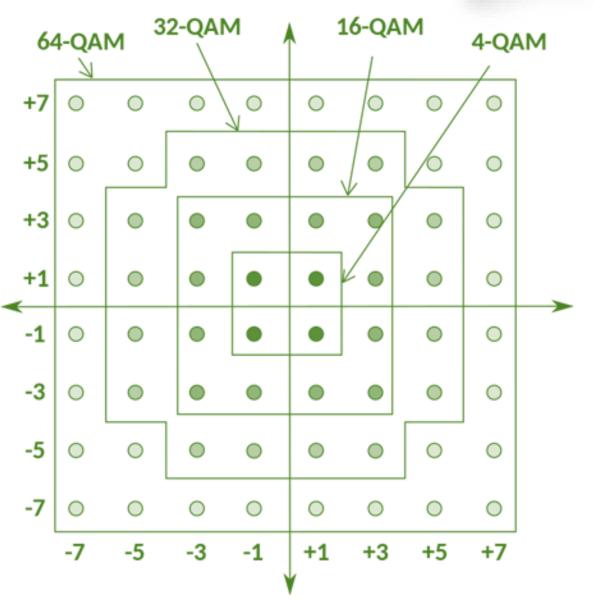



Sample Results:



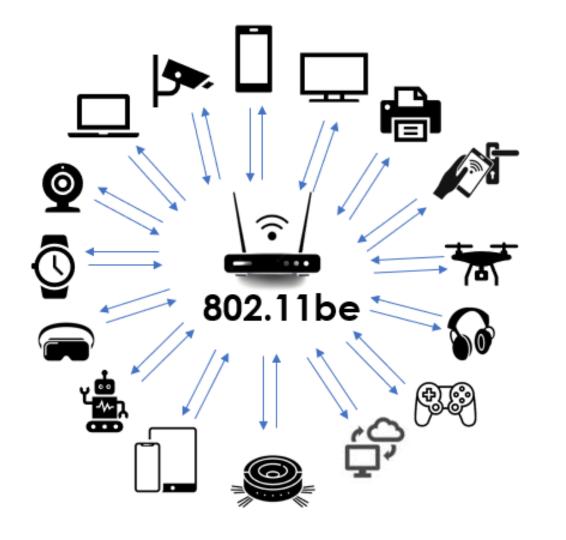
Wi-Fi7 Testing

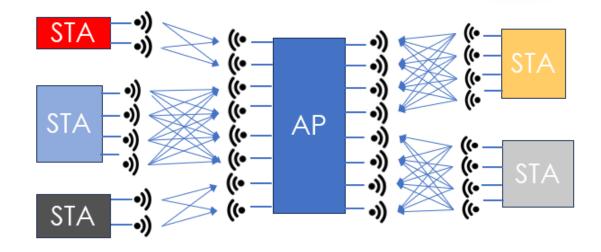
Automatic Frequency Coordination

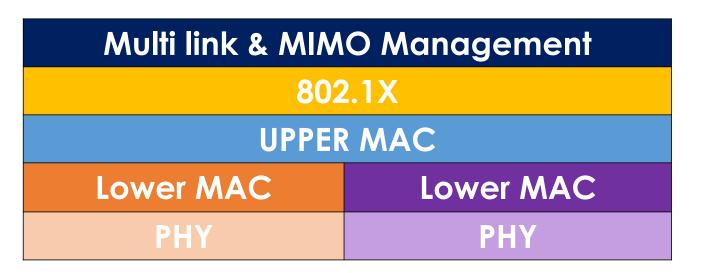

16x16 MU-MIMO

Tri-band Operation

4096 QAM Modulation Scheme:



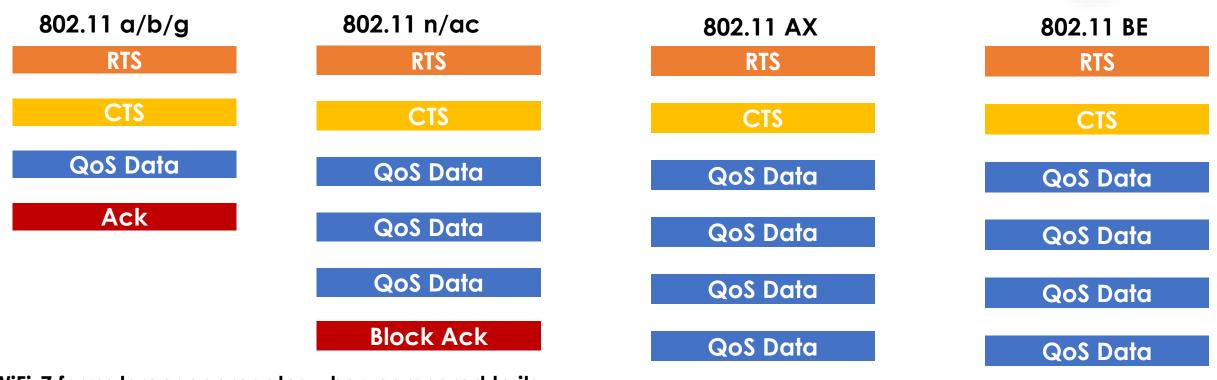

Bits per Symbol	Number of Symbols	QAM Modulation
4	$2^4 = 16$	16-QAM
6	$2^6 = 64$	64-QAM
8	$2^8 = 256$	256-QAM
10	$2^{10} = 1024$	1024-QAM
12	2 ¹² = 4096	4K-QAM



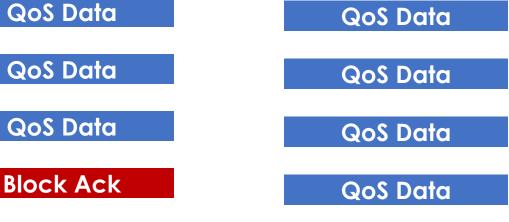
16 x 16 MU-MIMO and PHY Layer:

ECHNOLOGIES 20 MHz 40 MHz 80 MHz 160 MHz 320 MHz

Wi-Fi 7 320 MHz Bandwidth:



MCS Table for Wi-Fi 7:



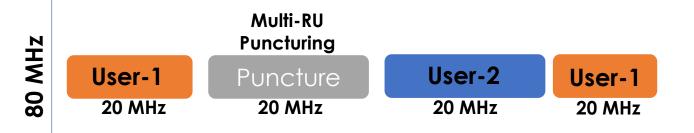
	Data rate (Mbit/s)																
MCS	Modulation	•	20	MHz chan	nels	40 N	AHz chan	nels	80 N	MHz chan	nels	160	MHz char	nnels	320 /	MHz chan	nels
index	type	rate		1600 ns	800 ns	3200 ns	1600 ns	800 ns	3200 ns	1600 ns	800 ns	3200 ns	1600 ns	800 ns		1600 ns	800 ns
			GI	GI	GI	GI	GI	GI	GI	GI	GI	GI	GI	GI	GI	GI	GI
0	BPSK	1/2	7	8	9	15	16	17	31	34	36	61	68	72	123	136	144
1	QPSK	1/2	15	16	17	29	33	34	61	68	72	122	136	144	245	272	288
2	QPSK	3/4	22	24	26	44	49	52	92	102	108	184	204	216	368	408	432
3	16-QAM	1/2	29	33	34	59	65	69	123	136	144	245	272	282	490	544	577
4	16-QAM	3/4	44	49	52	88	98	103	184	204	216	368	408	432	735	817	865
5	64-QAM	2/3	59	65	69	117	130	138	245	272	288	490	544	576	980	1089	1153
6	64-QAM	3/4	66	73	77	132	146	155	276	306	324	551	613	649	1103	1225	1297
7	64-QAM	5/6	73	81	86	146	163	172	306	340	360	613	681	721	1225	1361	1441
8	256-QAM	3/4	88	98	103	176	195	207	368	408	432	735	817	865	1470	1633	1729
9	256-QAM	5/6	98	108	115	195	217	229	408	453	480	817	907	961	1633	1815	1922
10	1024-QAM	3/4	110	122	129	219	244	258	459	510	540	919	1021	1081	1838	2042	2162
11	1024-QAM	5/6	122	135	143	244	271	287	510	567	600	1021	1134	1201	2042	2269	2402
12	4096-QAM	3/4	131	146	155	263	293	310	551	613	649	1103	1225	1297	2205	2450	2594
13	4096-QAM	5/6	146	163	172	293	325	344	613	681	721	1225	1361	1441	2450	2722	2882

Compressed Block Ack: [512,1024 MPDU's]

- WiFi-7 forms larger aggregates when compared to its previous Wi-Fi standards.
- So, to acknowledged the QoS data frames, creating Block acks like WiFi-6 deployment might increase the Airtime overhead, because the Block operates at 24 Mbps PHY-rate.
- So, WiFi-7 has compressed Block Ack feature which acknowledge up to 512 &1024 MPDU's.

QoS Data

Compressed BA


MU-OFDMA: [1024 Multi RU]

Multi RU

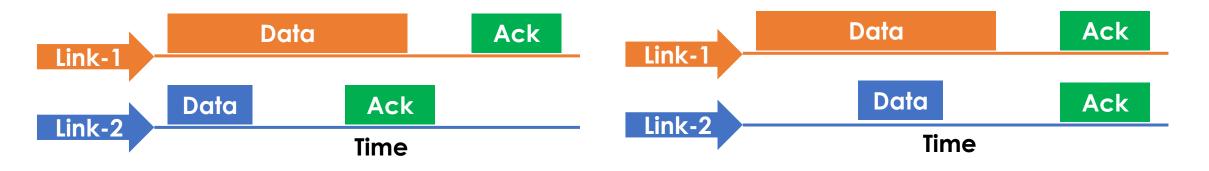
User-1 User-2 X No Puncturing User-1 Unused User-2 64-tone WiFi-6 64-tone 242-tone WiFi-6 RU-242 **RU-52 80 MHz** 20 MHz 20 MHz 40 MHz User-2 **User-1** User-1 User-2 **RU-Puncturing** RU-52 RU-242 **RU-52** WiFi-7 64-tone 64-tone 242-tone WiFi-7 20 MHz 40 MHz 20 MHz Multi-RU

Multi-RU Puncturing in Wi-Fi 7:

- There are some advancements in WiFi-7 based on OFDMA as there is a scope of communication in multiple channels.
- The clients also have the possibility of communicating in various Resource Units available such that it has more capacity for data exchange.

RU Puncturing

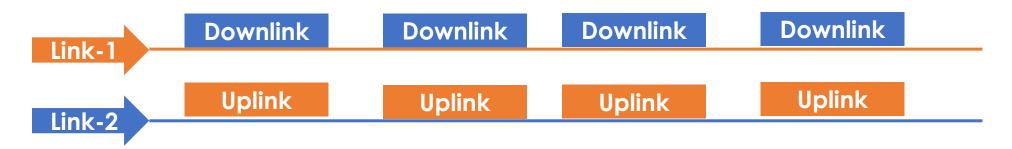
A Client can connect only to any of the single band of the AP which is available and may vary based on signal.


A Client can connect to any of the band based on the conditions of traffic and load on can get data.

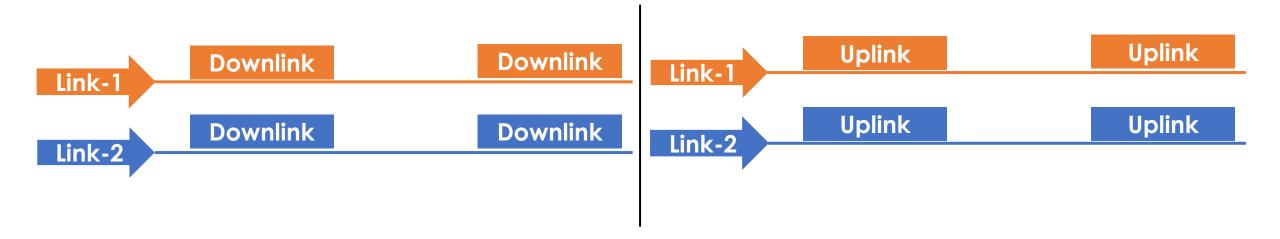
Multi-Link Operation variants:

Asynchronous Multi-Link Operations:

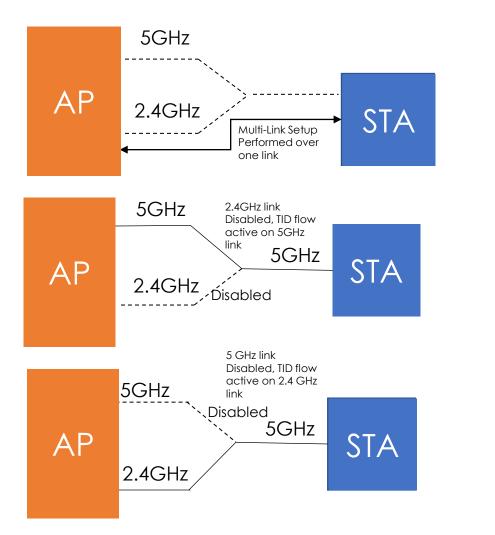
Synchronous Multi-Link Operations:

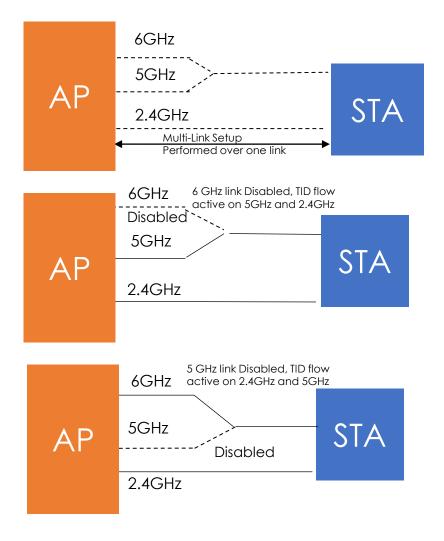


In this kind of MLO implementation, irrespective of data if both the links acknowledge the data at the same time, then it considered as Synchronous Multi-link operation, and if they are acknowledged at different times then it considered as Asynchronous Multi-link operation.

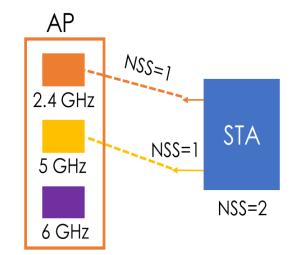

Multi-Link Operation variants:

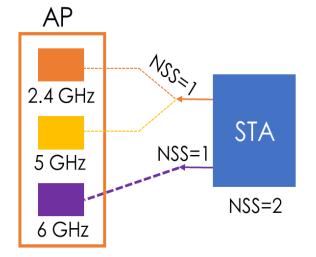
STR Mode (Simultaneous Transmit and Receive Operation):

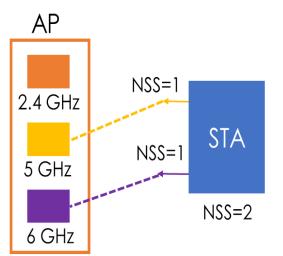

NSTR Mode (Non simultaneous Transmit and Receive Operation):

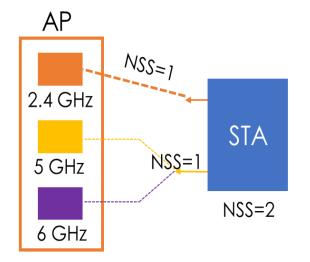

Types of Multi-Link Operation:

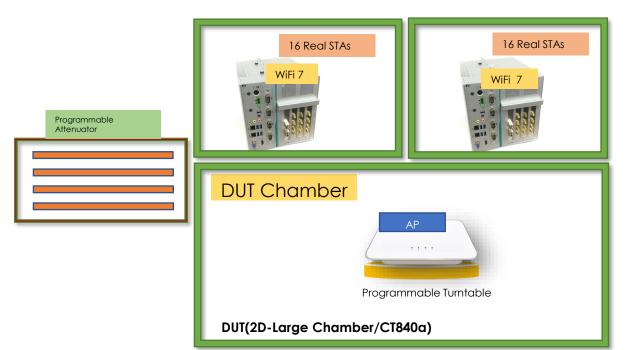
Multi-Link Single Radio[MLSR]


Multi-Link Multi Radio[MLMR]


Multi-Link Operation variants [EMLSR]:


EMLSR [2-links] 2.4GHz and 5GHz


EMLSR [2-links] 2.4/5GHz and 6GHz


EMLSR [2-links] 5GHz and 6GHz

EMLSR [2-links] 2.4GHz and 5/6GHz

WiFi7 Test cases/Features Covered (802.11be):

Throughput Benchmark

This test gives the 6E performance with different packet sizes, channel BWs, traffic types, MIMO types.

Wider Bandwidth -320Mhz

Supports Bandwidth upto 320Mhz

Airtime Fairness, QoS

Client Capacity

Airtime Fairness Test intends to verify the capability of Wi-Fi device to ensure the fairness of airtime usage.

Near/Far Clients, Band Steering

I E C H N O L O G I E S

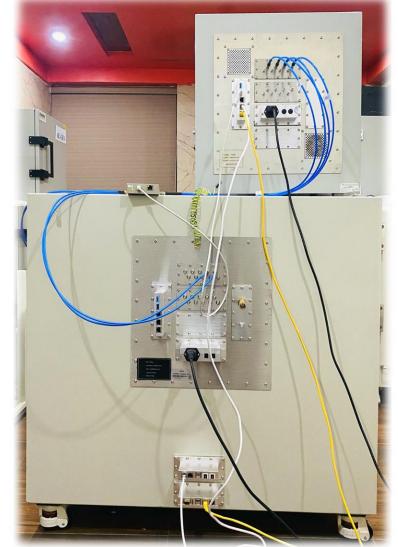
Measure the performance and stability of the 6E clients based on low and high RSSI levels

4096-QAM offers the potential for extremely

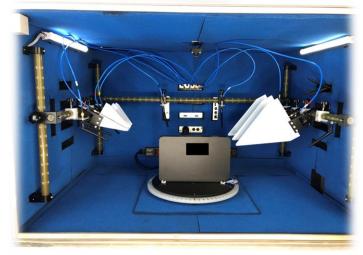
MLO (Not Supported for now)

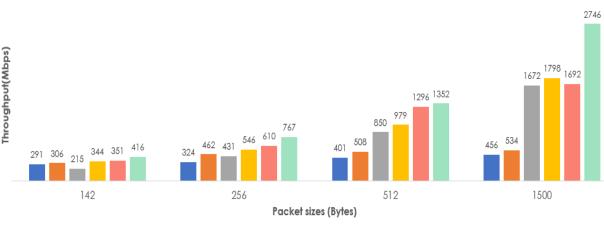
Latency

This test intends to verify latency under low, high and maximum AP traffic load with multiple

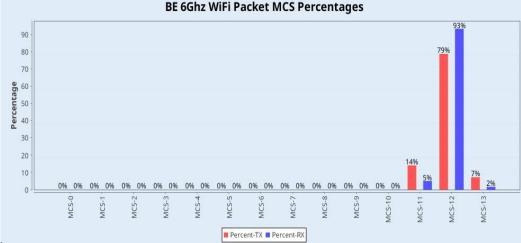

performance of an Access Point when handling

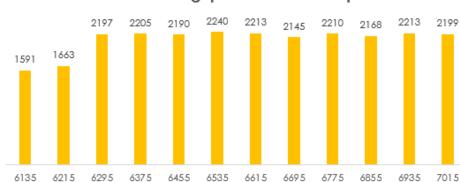
WiFi Capacity test is designed to measure


Testbed Images



Wi-Fi 7 Throughput Benchmarking Test:

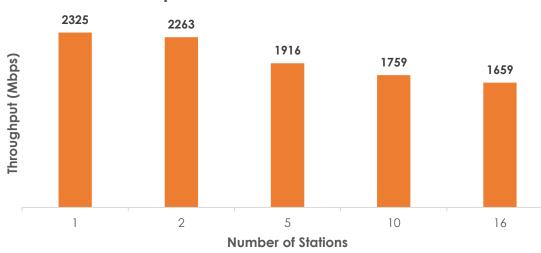




Throughput vs Packet Size-TCP-Download – Real Client

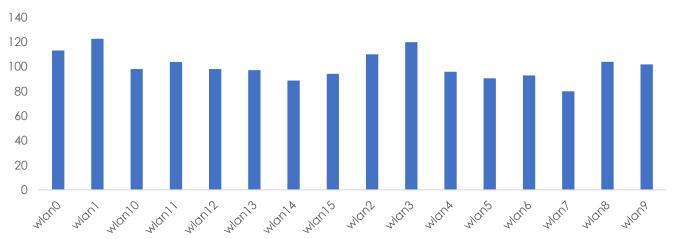
■ 2GHz 11Ax ■ 2GHz 11Be ■ 5GHz 11Ax ■ 5GHz 11Be ■ 6GHz 11Ax ■ 6GHz 11Be

The Candela Wi-Fi data plane test is designed to conduct an automatic testing of all combinations of station types, MIMO types, Channel Bandwidths, Traffic types, Traffic direction, Frame sizes etc.... It will run a quick throughput test at every combination of these test variables and plot all the results in a set of charts to compare performance. The user is allowed to define an intended load as a percentage of the max theoretical PHY rate for every test combination. The expected behavior is that for every test combination the achieved throughput should be at least 70% of the theoretical max PHY rate under ideal test conditions. This test provides a way to go through hundreds of combinations in a fully automated fashion and very easily find patterns and problem areas which can be further debugged using more specific testing. The below chart shows the throughput with all the 6E channels.


Frequencies (Mhz)

802.11be TCP Throughput at Various Frequencies

Throughput(Mbps)


Wi-Fi 7 Client Capacity Test

[hroughput(Mbps)

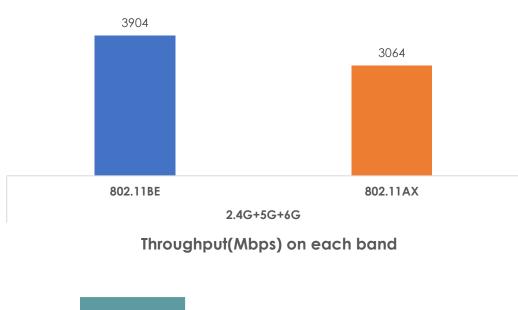
Total Mbps Received – 11be Virtual Clients

Individual Throughput for 16-11be Clients

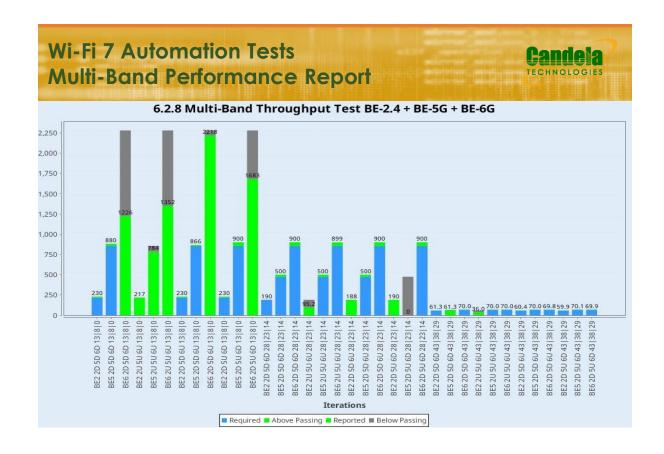
The Candela Wi-Fi Capacity test is designed to measure performance of an Access Point when handling several 6E Wi-Fi Stations. The test allows the user to increase the number of stations in user defined steps for each test iteration and measure the per station and the overall throughput for each trial. Along with throughput other measurements made are client connection times, % packet loss, DHCP times and more. The expected behavior is for the AP should be able to handle several stations (within the limitations of the AP specs) and make sure all stations get a fair amount of airtime both in the upstream and downstream.

Wi-Fi 7 Rate vs Range Test:

This test measures the performance over distance of the Device Under Test. Distance is emulated using programmable attenuation and a throughput test is run at each distance/RSSI step and plotted on a chart. The test allows the user to plot RSSI curves both upstream and downstream for different types of traffic and different station types.

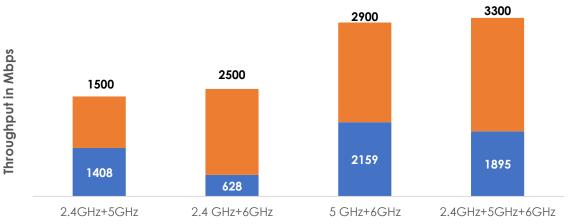


Wi-Fi 7 Multi-Band Throughput Test:



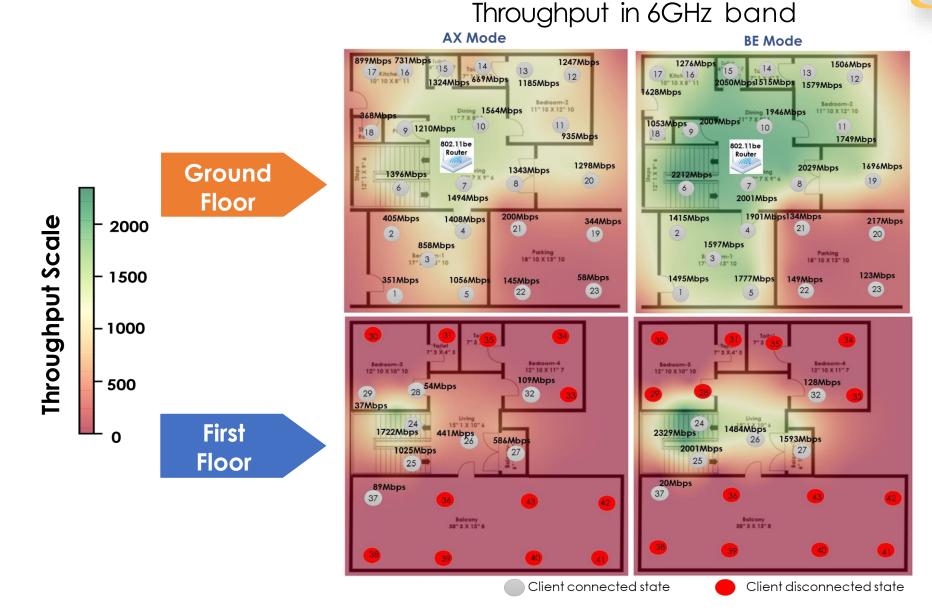
This test creates each client on 2.4, 5 and 6Ghz bands and run the traffic simultaneously. The Multi Band Performance test intends to verify that the Wi-Fi AP throughput with multiple bands active with a single station on each band. The configured speed will be 20% higher than the passing value for MTU sized frames in the throughput test. If the throughput test was skipped, then fixed values will be used.

Multi-Band Throughput-TCP Download



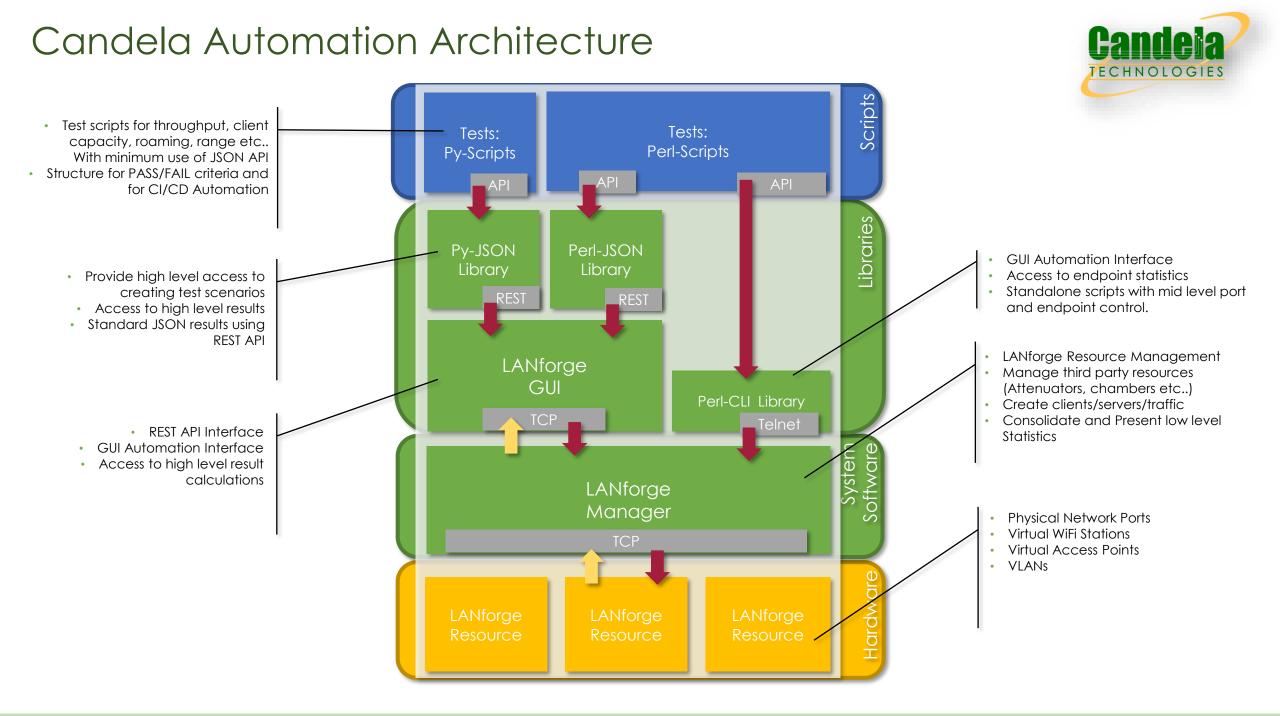
Multi-Link Operation:

It enables devices to simultaneously send and receive data across different frequency bands and channels. With MLO, Wi-Fi 7 supports establishing multiple links between the Station (STA, such as your phone) and Wi-Fi access point (AP, such as your router). Connecting to the 2.4 GHz, 5 GHz, and 6 GHz bands simultaneously increases throughput, reduces latency, and improves reliability. It is ideal for emerging applications like VR/AR, online gaming, remote office, and cloud computing.


Multi-Link Operation in BE Mode

Achieved Expected

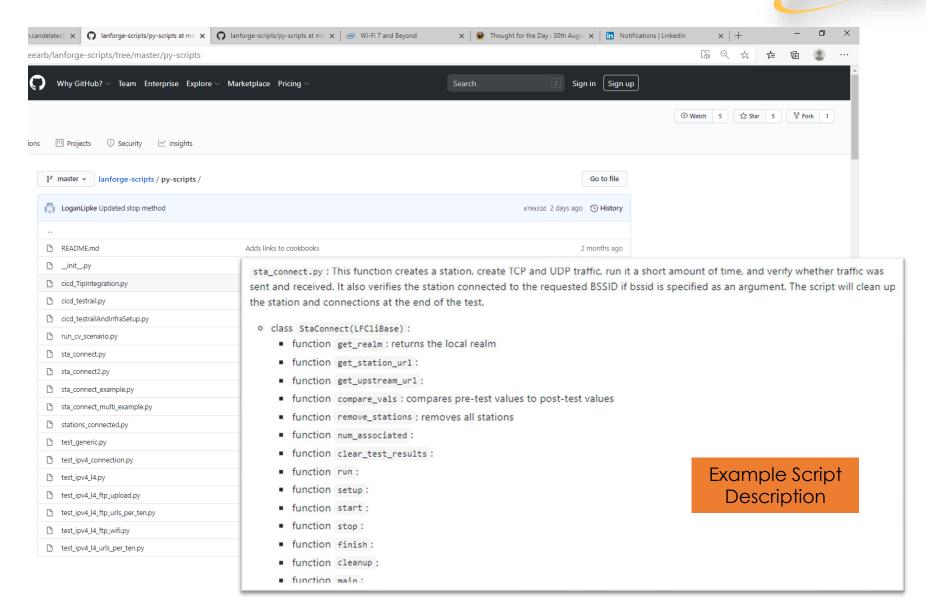
Band	Client Connected	MLO Enabled	MLO Working	Mode	NSS	MCS	Bandwidth	Channel	RSSI (dBm)	PHY-rate (Mbps)	TCP-DL Throughput (Mbps)	TCP-UL Throughput (Mbps)
2.4GHz + 5GHz	5GHz	Yes	Yes	BE	2	13	160	36	-30	2882	1408	1324
2.4GHZ + 6GHZ	2.4GHz, 6GHz	Yes	Yes	BE	2	9	320	1, 37	-19	1921, 3843	628	342
5GHz + 6GHz	5GHz	Yes	No	BE	2	12, 11	320	36	-29	5187, 4803	2.15 Gbps	2.43 Gbps
2.4GHz + 5GHz + 6GHz	6GHz	Yes	No	BE	2	13	320	1	-14	5764	1.89 Gbps	1.73 Gbps


802.11be Test-house Results:

Automation

Running GUI Tests from CLI

Candela TECHNOLOGIES


- > Create test scenarios in the GUI and save the test configurations.
- Run the GUI created test configurations from the command line using "run_cv_scenario.py" script and passing the arguments with the Test name and the test profile name.
- > Watch the test progress from the command line and also watch the test results in the GUI.
- > The CLI based test run will save all the results and reports to the file system.

./run_cv_scenario.py -d DFLT -c 1_station_test -n "WiFi Capacity" -s 1_wifi_station_test

				0	Mate	Terminal	\odot \sim \otimes
PDU Mix Settings Advanced Settin	ngs Pass/Fail Settings Select Output Note	es Report 1 🗙 Report-2 1	×	File Edit View Search Terminal Ta	bs Help		
Settings	Select Ports		Test Groups	Mate Terminal	~	Mate Terminal	~
connection times, Fairnes several stations (within th upstream and downstread added.	and the overall throughput for each trial. Ai ess, % packet loss, DHCP times and more. Th he limitations of the AP specs) and make sur am. An AP that scales well will not show a sig Add your notes below: time Graph shows summary download and upload Realtime	ne expected behavior is for the re all stations get a fair amount mificant over-all throughput de d RX bps of connections created by	AP to be able to handle of airtime both in the screase as more stations are		ts]\$./run_cv_scenario.py -d DFLT proceeding	<pre></pre>	station_test
650 - 600 - 550 - 500 - 450 - (90 - 450 - 450 - 450 - 200 - 150 - 100 - 50 -				<pre>running cv create 'WiFi Capacity' test sleeping 2proceeding running cv load test_ref 'l_wifi_stat: sleeping 1proceeding running cv click test_ref 'Auto Save I sleeping 5proceeding running cv click test_ref Start sleeping 60proceeding running cv get test_ref 'Report Locat: sleeping 5proceding running cv click test ref 'Close'</pre>	ion_test'proceeding Report'proceeding proceeding ion:'proceeding		
0 J22:18:55 22:19:00	Dat		_	sleeping 1 proceeding running cv click test_ref Cancel			
Fi Capacity Test 1 / 1 stations.		osity: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Close Save HTML Save Stop Pause Canc	PASSED: report finished			
				scenario failed to start. [lanforge@LF1-Mobilestations py-scrip	ts]\$		

Building from Existing Script Examples

- Libraries of scripts for various tests are available on GitHub: <u>https://github.com/greearb/la</u> <u>nforge-scripts</u>
- Generic set of scripts for simple test functions like creating WiFi stations and traffic and making measurements.
- Scripts available for more involved CI/CD automation to help automate command and controls for various CI/CD build and execution modules.
- Python modules to help create specific test scenarios like testing specific wireless security setting, traffic types, power save features etc.
- Perl scripts available for Captive Portal Login testing.

ECHNOLOGIE

Low Level CLI Commands

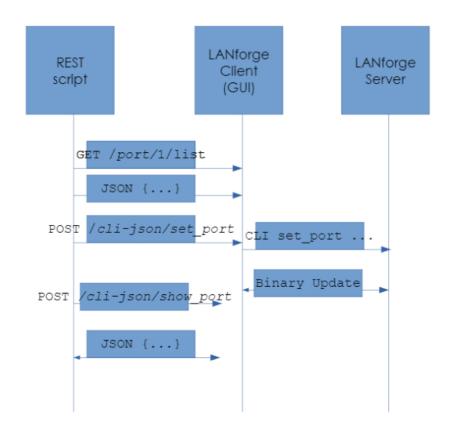
add_arm_endp	Add an Armageddon (Kernel accelerated UDP) endpoint
add_cx	Add a cross-connect to a test-manager
add_cd	Add a Collision Domain (grouping of WanLinks)
add_cd_endp	Add an Endpoint to a Collision Domain
add_cd_vr	Add a Virtual Router to a Collision Domain
add_file_endp	Add a File endpoint to the LANforge Manager
add_gen_endp	Add a Generic endpoint to the LANforge Manager
add_l4_endp	Add a Layer-4 endpoint to the LANforge Manager
add_channel_group	Add a grouping of DS0 channels to be used by PPP
add_ppp_link	Add a PPP interface connection
add_t1_span	Add a T1/E1 SPAN to the LANforge Manager
add_voip_endp	Add a VOIP endpoint to the LANforge Manager
add_vr	Add or modify a Virtual Router object
add_vr_bgp	Add BGP configuration to a virtual router
add_bgp_peer	Add/Modify BGP peer configuration to a virtual router
add_vrcx	Add or modify a Virtual Router Connection Endpoint
add_vrcx2	Modify a Virtual Router Connection Endpoint object
set_vrcx_cost	Modify a Virtual Router Connection interface cost
add_endp	Add an endpoint to the LANforge Manager
add_event	Add a new event or modify an existing one
add_bond	Add a Linux Bond Device
add_br	Add a Linux Bridge Device
add_mvlan	Add a MAC based VLAN (Requires kernel support)
add_rdd	Add a Redirect-Device (Requires kernel support)
add_gre	Add a GRE Tunnel device
add_sec_ip	Add or update secondary IP Address(es)
add_vlan	Add an 802.1Q VLAN (Requires kernel support)
add_venue	Add/modify a Venue
add_sta	Add/modify a WIFI Virtual Station (Virtual STA) interface
add_vap	Add/modify a WIFI Virtual Access Point (VAP) interface
add_monitor	Add/modify a WIFI Montior interface
add_tm	Create and add a new test manager to the system
add_group	Create a new test group
add_tgcx	Adds CX to test group
add_wl_endp	Add a WanLink (ICE) endpoint to the LANforge Manager

add_wanpath	Add a WanPath (ICE) personality to a WanLink
admin	Various admin commands
apply_vr_cfg	Apply all of the virtual routing settings
cancel_vr_cfg	Cancel a virtual-router configuration process
clear_cx_counters	Clear counters for one or all cross-connects
clear_endp_counters	Clear counters for one or all endpoints
clear_cd_counters	Clear counters for one or all Collision Domains
clear_group	Clears all cross-connects in a test group
clear_port_counters	Clear one or all port counters or other items
clear_resource_counters	Clear counters on one or all resources
clear_wp_counters	Clear WanPath counters for one endpoint
discover	Force discovery of nodes on the management
diag	Get diagnostic information from the LANforge
notify_dhcp	Handle input from the DHCP client process
do_pesq	Start a PESQ calculation
file	Download files through LANforge API
gossip	Send a message to everyone else logged in
getintxrate	Get tx pps rate over the last 3 seconds
getinrxrate	Get rx pps rate over the last 3 seconds
getinrxbps	Get rx bpsrate over the last 3 seconds
gettxpkts	Get the total tx packets sent
getrxpkts	Get the total rx packets sent
getpktdrops	Get the total packets dropped
getavglatency	Get the average latency for an endpoint
getrxporterrpkts	Get the total error packets detected
getrxendperrpkts	Get the total error packets detected
getipadd	Get the IP for an endpoint
getmask	Get the IP Mask for an endpoint
getmac	Get the MAC address for an endpoint
?	Show help for command(s)
init_wiser	Initialize the Wiser NCW/HNW module
licenses	Print out license information. See also: set_license
load	Load a previously saved test database
login	Login as the client who's name you enter
create_client	Create a new client

log_level	Query or modify the logging level
motd	Get the message of the day (alerts
nc_show_endpoints	Non-Cached Show one or all endpoints
nc_show_pesq	Non-Cached Show PESQ results
nc_show_ports	Show one/all ports for one/all
c_show_ports	Show one/all ports for one/all resources
nc_show_channel_grps	Show one/all ChannelGroups for one/all resources
nc_show_spans	Show one/all Spans for one/all resources
nc_show_vr	Show one/all Virtual Routers for one/all resources
nc_show_vrcx	Show one/all Virtual Router Connections
nc_show_cd	Show one/all Collision Domains
nc_show_ppp_links	Show one/all PPP Links for one/all resources
probe_port	Probe & report low-level details for a port
probe_ports	Check for the existence of new (virtual) interfaces
port_reset_completed	notify LANforge the reset has completed
exit	Log out of the LANforge control server
report	Configure server-side reporting
reset_port	Reset an Ethernet port or ports
reset_serial_span	Reset a serial span
reboot_os	Restart the OS on a remote resource
rm_attenuator	Remove Attenuator
rm_cd	Remove a Collision Domain
rm_cd_endp	Remove an Endpoint from a Collision Domain
rm_cd_vr	Remove a Virtual Router from a Collision Domain
rm_endp	Remove one or all endpoints
rm_channel_group	Remove a channel group
rm_event	Remove one or more events from the event log
rm_group	Deletes a new test group
rm_threshold	Remove existing threshold-alert
rm_tgcx	Removes CX from test group
rm_venue	Remove a venue
rm_vr	Remove one or all Virtual Routers
rm_vrcx	Remove one or all Virtual Router Connections
rm_span	Remove a Serial Span
rm_ppp_link	Remove a PppLink

Running LANforge CLI Commands

- > LANforge CLI commands are used by scripts and the GUI.
- Available Perl scripts can access the CLI commands directly.
- > Python scripts talk to the GUI that issues CLI commands.
- > Perl script debug mode can show all CLI commands being issued.


Create a Layer 4-7 Web Connection Layer 4-7 connections are created with a one-sided technique, the curl command always operates on the A-side and the **B-side** is unmanaged. The endpoint and connection naming does not follow the Layer-3 convention. Shell script: ./lf_vue_mod.sh --mgr jedtest --resource 2 --create_14 --name yh200 --sta sta200 --url http://www.yahoo.com/ --utm 2400 --log_cli /tmp/clilog.txt --quiet 1 Command Composer [set_port] Perl script: Commands are set using lf_firemod.pl --action do_cmd --cmd ... This is the curl command: CLI commands: \$ echo '' > /tmp/curl data add 14 endp yh200 1 2 sta200 14 generic 0 10000 2400 'dl http://www.yaho \$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' http://atlas:8080/cli-form/set_port set endp tos yh200 DONT-SET 0 This is the CLI command: set endp flag yh200 L4Enable404 0 set endp report timer yh200 5000 1 3 sta3000 NA NA NA NA 2147483649 NA NA NA NA 16384 3 NA set endp flag yh200 ClearPortOnStart 0 NA NA NA NA NA NA NA NA NA set endp quiesce yh200 3 add cx CX yh200 default tm yh200

Candela

REST APIs

- LANforge GUI contains an embedded webserver that processes REST requests.
- LANforge GUI can handle multiple REST requests at once.
- REST provides more information than available from CLI.
- REST APIs can be used from all programming language

Creating a WiFi Station

Please refer to the scripts 1f_associate_ap.pl and 1f_vue_mod.sh for examples of how to produce lists of CLI commands involved in creating stations. Please refer to:

- 1. Learn CLI Commands used to operate WiFi stations
- 2. and Changing Station WiFi SSID with the CLI API

These will provide ways of collecting the CLI commands in log files for you to place into the command /help/ page.

• Use ssh to log into your LANforge manager. Use the 1f_vue_mod.sh script to create a station:

\$ cd scripts

```
$ ./lf_vue_mod.sh --mgr localhost --resource 3 --create_sta --name sta3101 \
    --radio wiphy1 --ssid idtest-1000-open --passphrase '[BLANK]' \
    --log_cli /tmp/clilog.txt
```

```
$ cat /tmp/clilog.txt
set_wifi_radio 1 3 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
add_sta 1 3 wiphy1 sta3101 1024 idtest-1000-open NA [BLANK] AUTO NA 00:0e:8e:c1:df:45 8 1
set_port 1 3 sta3101 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:c1:df:45 NA NA NA
```

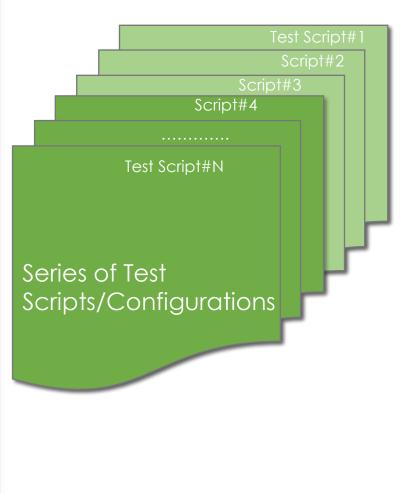
- Enter each command into the your browser toolbar by altering the command into a url:
 - 1.//localhost:8080/help/set_wifi_radio?cli=1 3 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA

Produces:

\$ echo 'shelf=1&resource=3&radio=wiphy1&channel=-1&flags=0x1' > /tmp/curl_data
\$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
http://localhost:8080/cli-form/set wifi radio

2. http://localhost:8080/help/add_sta?cli=1 3 wiphy1 sta3101 1024 idtest-1000-open NA [BLAN

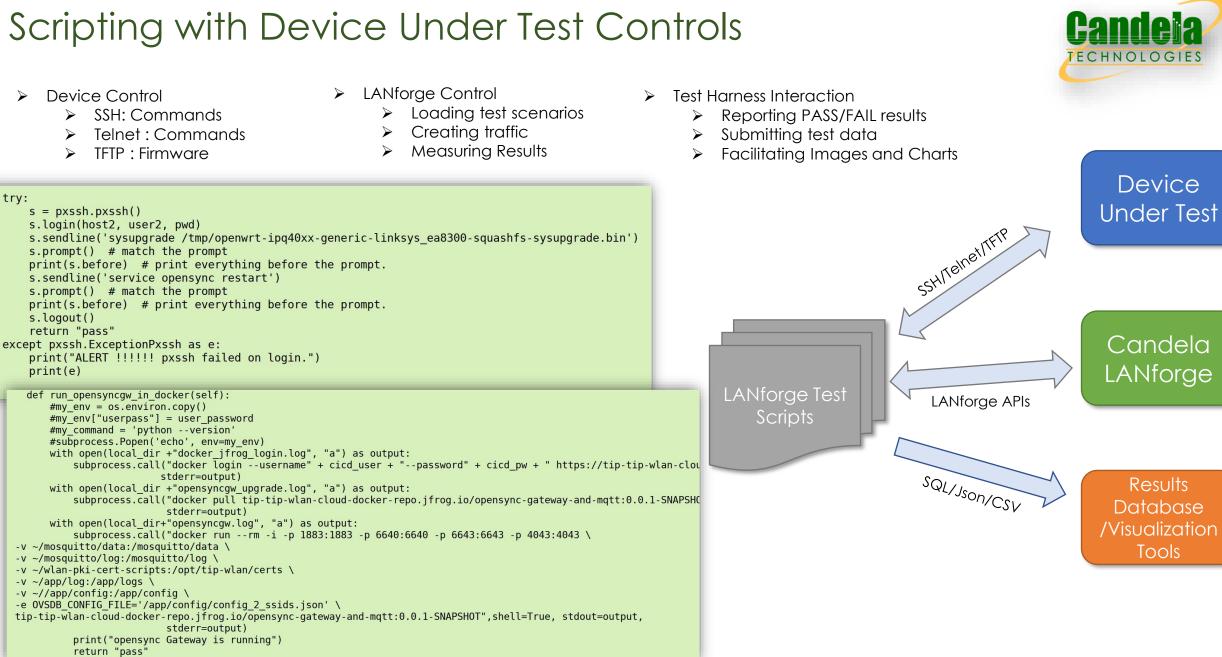
Produces:


- \$ echo 'shelf=1&resource=3&radio=wiphy1&sta_name=sta3101&flags=1024&ssid=idtest-1000-ope \$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \ http://localhost:8080/cli-form/add_sta
- 3.http://localhost:8080/help/set_port?cli=1 3 sta3101 0.0.0.0 255.255.0.0 0.0.0.0 NA 21474

Running Groups of Tests

- Users can use scripts to load different test scenarios.
- Multi connections can be controlled via test groups.
- Reports can be generate at the end of a series of tests.
- Test groups can be integrated easily into any existing automation framework.

File Edit Search Options Help 1#!/bin/bash 2cd /home/lanforge/scripts 3./lf_firemod.pl --mgr localhost --action do cmd $\$ 4 --cmd "load tcp_thruput overwrite" 5 sleep 15 6./lf_firemod.pl --mgr localhost --action do_cmd \ 7 -- cmd "start group tcp group1" 8 sleep 60 9./lf_firemod.pl --mgr localhost --action do_cmd \ 10 --cmd "quiesce_group tcp_group1" 11 sleep 5 12 13./lf firemod.pl --mgr localhost --action do cmd \ 14 -- cmd "load udp thruput overwrite" 15 sleep 15 16./lf_firemod.pl --mgr localhost --action do_cmd \ 17 --cmd "start_group udp_group1" 18 sleep 60 19./lf_firemod.pl --mgr localhost --action do_cmd \ 20 --cmd "quiesce_group udp_group1" 21 sleep 5 22 23./lf_firemod.pl --mgr localhost --action do cmd \ 24 --cmd "load mcast_thruput overwrite" 25 sleep 15 26./lf firemod.pl --mgr localhost --action do_cmd \ 27 --cmd "start_group mcast_group1" 28 sleep 60 29./lf_firemod.pl --mgr localhost --action do_cmd \ 30 --cmd "quiesce_group mcast_group1" 31 sleep 5 32


A_OX

Scripting with Device Under Test Controls

try:

s.logout() return "pass"

print(e)

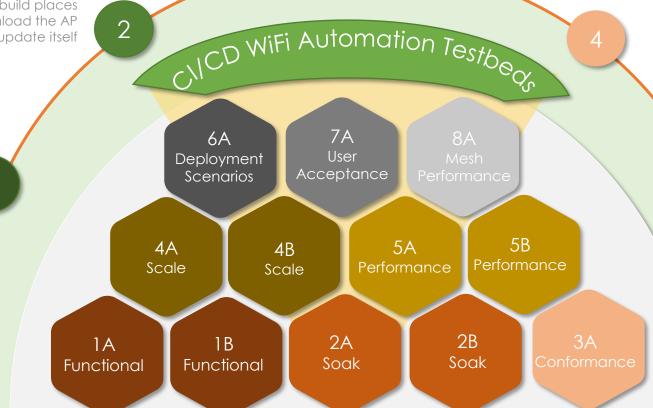
CI/CD WiFi Pipeline

Continuous Integration(CI) / continuous Delivery(CD) Automation

02 Load Builds

When new build is found, determine the hardware platform, and find the least-used test-bed that matches that DUT hardware and testplan schedule. Poll the Test Orchestrator, looking in the web folder specific for this test bed. Download AP image from where the build places it .Use serial port to ask the AP to download the AP image from the test controller and update itself

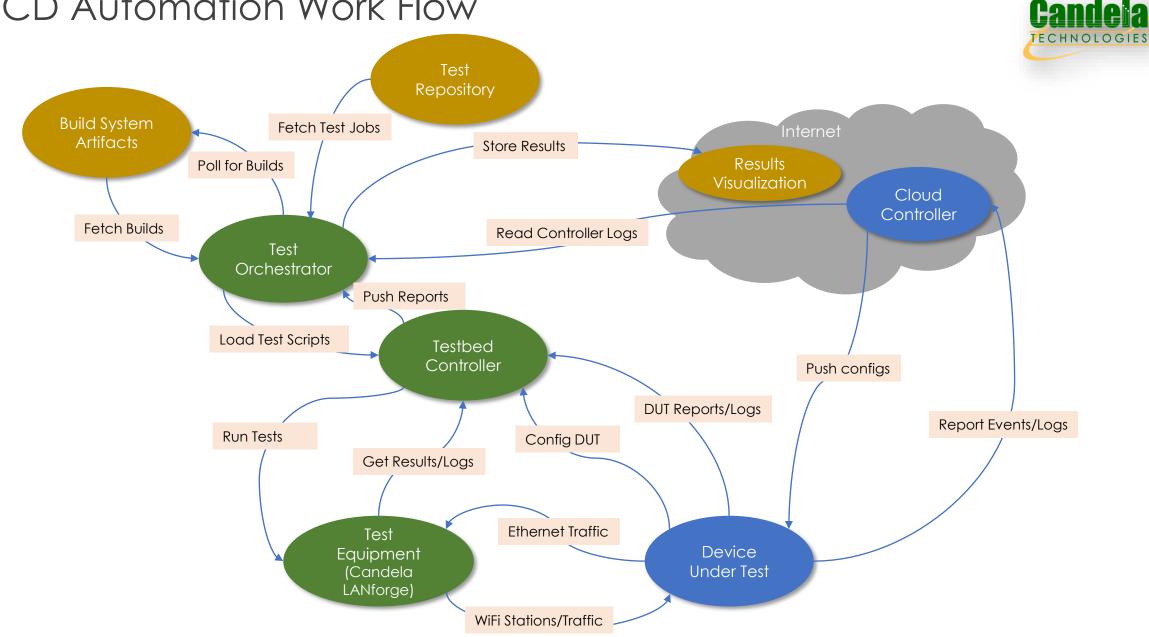
Start


Reboot/Reset DUT and Test system and other testbed components as needed. Pull information about test jobs to run, run the fully automated regression tests.

04 Generate Reports

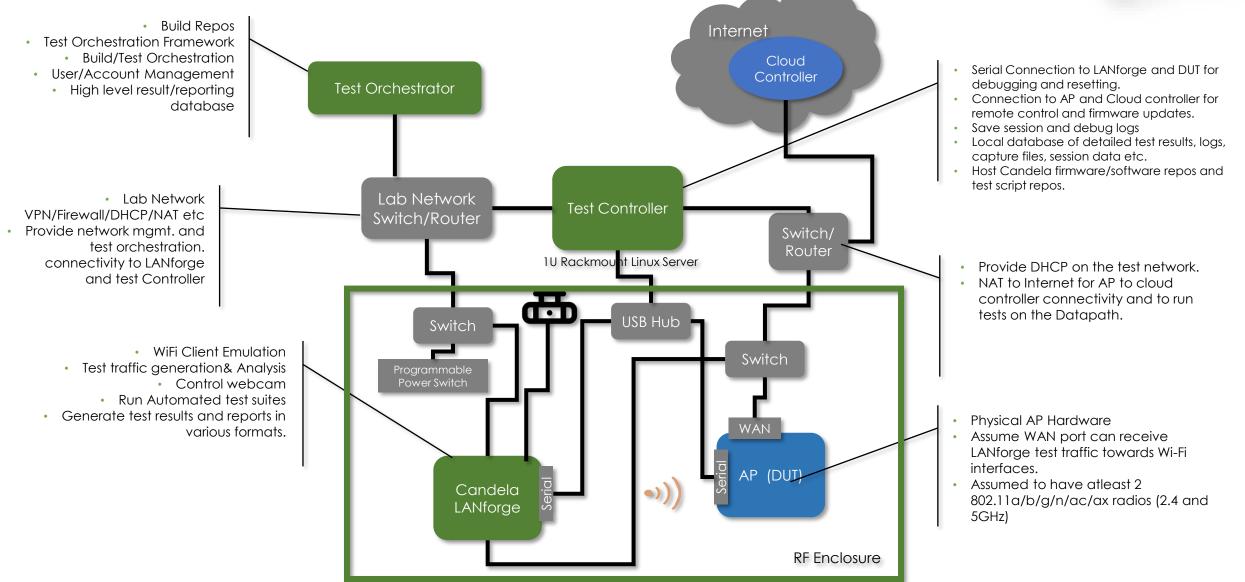
Generate various forms of PDF, CSV, HTML, and PASS/FAIL reports. Save all results and logs in a database. Send emails/alert upon test completion/failures

5

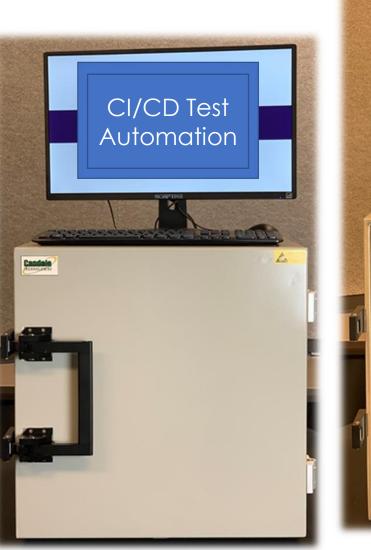


05 Compare/Analyze

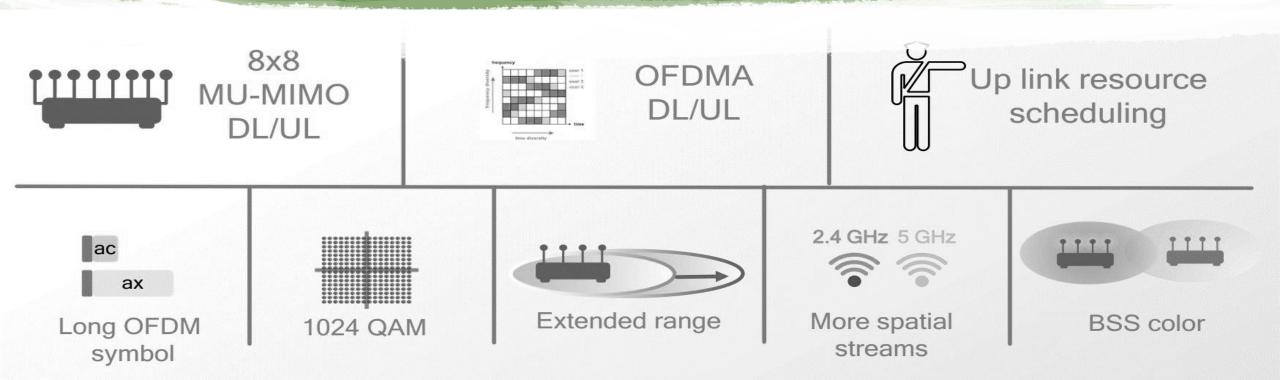
Compare results across builds, DUT models, test setups etc...Presents performance trends and expert analysis.

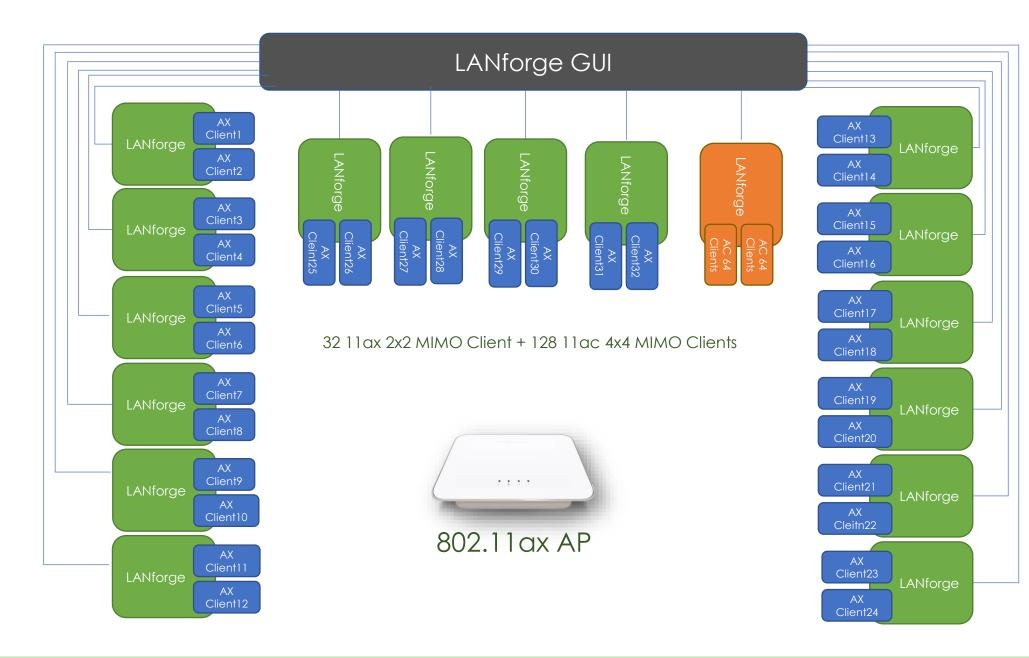

End

CI/CD Automation Work Flow


CI/CD Testbed Diagram

Lights Out AP Testbed Setups




192	2.168.100.64/index.htm		🖂 🕁	lii\
ra Ma	gazine 🗎 Fedora Project 🗎 User Communities	🗎 Red Hat 🗎 Free Content		
Cont	roller: TIP Testbed 1			
Wed	Jun 17 22:05:50 2020			
Indivi	dual Control			
#	Name	State	Action	
1	USB Hub	ON	Switch OFF	Cycle
2	Interior Lights	ON	Switch OFF	Cycle
3	Outlet 3	OFF	Switch ON	
4	Outlet 4	OFF	Switch ON	
5	Chamber Fans	ON	Switch OFF	Cycle
6	LANforge System	ON	Switch OFF	Cycle
7	DUT	ON	Switch OFF	Cycle
8	Outlet 8	OFF	Switch ON	
Maste	er Control			
	utlets OFF			
	utlets ON			
Cycle	all Outlets			
		Sequence delay: 1	0 sec.	

11ax Testing

32 11ax + 128 11ac Client Test Setup

✓ MCS 10,11
 ✓ UL/DL MU-MIMO
 ✓ UL/DL OFDMA

• Tests

- ✓ Throughput
- ✓ Client Connectivity
- 🗸 Range
- ✓ Functionality
- ✓ Airtime Fairness
- ✓ Client Scale

CT-523c-8ax-ac2-db-10GE System

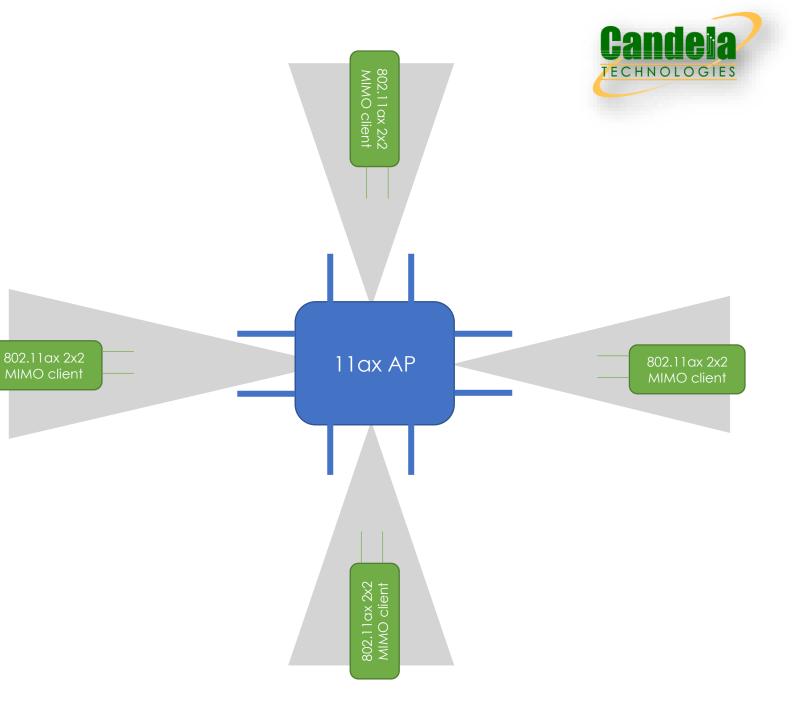
Interfaces: ➢ Slot0: SMA1 Eth0: Management SMA1 \geq SMA1 11ax 11ax Eth1: 1GE Traffic Port \geq 2x2 Client1 2x2 Client5 Slot1 : SMA2 SMA2 llac SMA2 Eth2: 1/2.5/5/10 Gig Ethernet \geq 4x4 MIMO Eth3: 1/2.5/5/10 Gig Ethernet 2.4GHz \geq SMA3 64 clients Slot2 : SMA3 SMA3 Eth0 4 units of 2x2 MIMO 11ax Radios 11ax \geq 11ax Eth2 (Mgmt) 2x2 Client2 2x2 Client6 Slot3 : SMA4 (10GE) SMA4 SMA4 4 units of 2x2 MIMO 11ax Radios \geq Slot4 : Eth3 1 unit of 4x4 MIMO 11ac 2.4Ghz radio \geq SMA5 SMA5 SMA5 (10GE) 1 unit of 4x4 MIMO 11ac 5GHz radio 11ax 11ax 2x2 Client3 2x2 Client7 Eth1 llac SMA6 SMA6 SMA6 (1GE) 4x4 MIMO 8 ax client + 128 11 ac clients 5GHz SMA7 64 clients SMA7 SMA7 11ax 11ax Tests 2x2 Client4 2x2 Client8 SMA8 SMA8 Throughput SMA8 \checkmark Client Connectivity \checkmark Range \checkmark Functionality \checkmark Slot 1 Slot 3 Slot 4 Slot 2 Airtime Fairness **Client Scale** QoS

OFDMA Performance

 \geq

 \geq

 \geq


 \geq

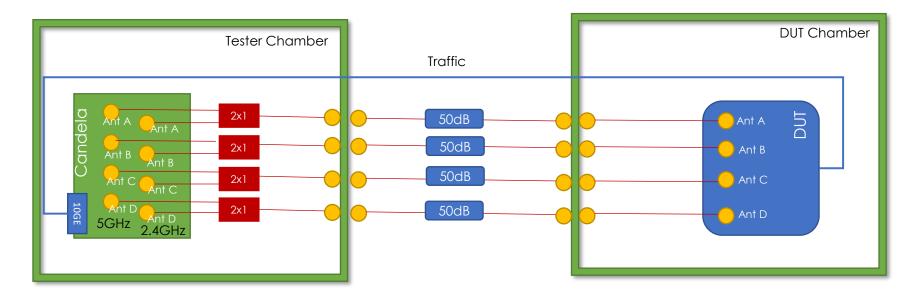
•

Mu-MIMO Performance

Mu-MIMO Testing

Test upto 8x8 MIMO 11ax AP, using Mu-MIMO for upto 4 2x2 MIMO 11ax clients

AP Tx Power Testing


9120AX-E TX Power Test 5GHz (B Domain - US)									
Channel	BW	NSS	RSSI A (dB)	RSSI B (dB)	RSSI C (dB)	RSSI D (dB)			
36	20 MHz	4	-41	-41	-41	-39			
36	20 MHz	4	-41	-42	-42	-41			
36	20 MHz	4	-45	-45	-45	-44			
36	20 MHz	4	-47	-47	-47	-45			
36	20 MHz	4	-50	-51	-49	-50			
36	20 MHz	4	-54	-54	-53	-52			
36	20 MHz	4	-57	-57	-56	-56			
36	20 MHz	4	-59	-60	-60	-59			
36	40 MHz	4	-41	-40	-40	-40			
36	40 MHz	4	-40	-41	-42	-40			
36	40 MHz	4	-44	-44	-45	-44			
36	40 MHz	4	-47	-47	-47	-45			
36	40 MHz	4	-50	-50	-49	-48			
36	40 MHz	4	-53	-53	-53	-52			
36	40 MHz	4	-56	-56	-55	-56			
36	40 MHz	4	-59	-59	-59	-57			
36	80 MHz	4	-41	-40	-39	-40			
36	80 MHz	4	-41	-40	-41	-40			
36	80 MHz	4	-44	-43	-43	-43			
36	80 MHz	4	-46	-46	-46	-46			
36	80 MHz	4	-50	-49	-49	-49			
36	80 MHz	4	-53	-52	-52	-52			
36	80 MHz	4	-56	-55	-55	-55			
36	80 MHz	4	-58	-58	-58	-59			

AP Tx Power Measurement Testbed

Single Candela Unit does:

- WiFi Client creation
- Traffic Generation
- RSSI Measurements
- Control Settings on AP/Controller
- Host and Run automation scripts
- Create Test Reports.

Test Inputs:

- > Channels : All 2.4 and 5GHz channels
- Power Levels : All power level setting supported on AP (1 through 8)
- MIMO Types: 1x1, 2x2, 3x3, 4x4
- Channel BWs : 20,40,80,160 MHz
- Regulatory Domains : Various country modes

Report:

- ✓ Test Inputs: Channel, Set Power, MIMO Type, BW, Reg Domain
- ✓ Measures Power (Antenna A,B,C and D)
- Calculated Tx Power(Antenna A,B,C and D)
- ✓ Offset Values (Antenna A,B,C and D) PASS/FAIL results
- PDF/HTML test report with color coded results

Testbed Components:

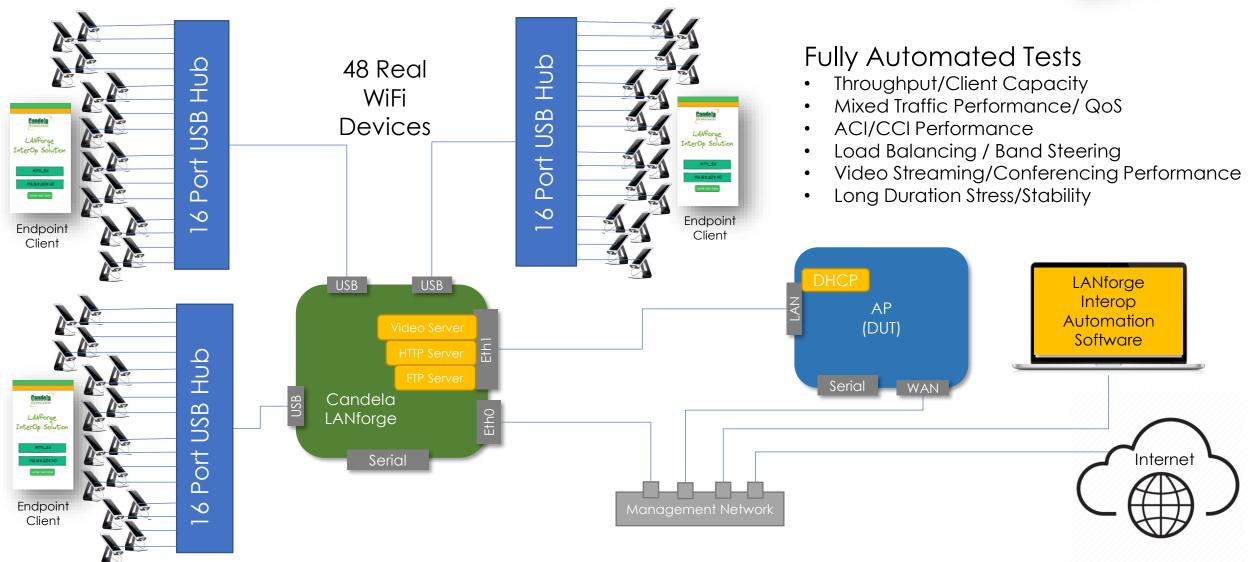
- ✤ 1x Candela 523C Chassis
- 1x Candela 2.4GHz 4x4 MIMO Radio
- 1x Candela 2.4GHz 4x4 MIMO Radio
- 1x Candela 10GE Ports
- ✤ 2x Small RF enclosures
- 20x RF cables
- ✤ 6x 30dB fixed attenuators
- ♦ 6x Cat6 Ethernet Cables
- AP under Test
- AP Tx Power Measurement Automation Script

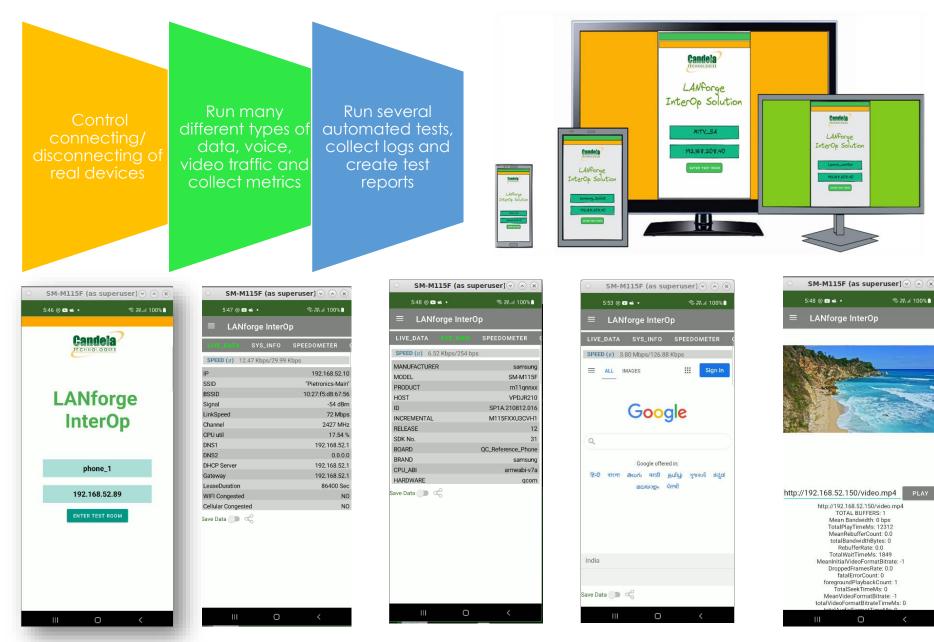
Example Measurements/Results

	9120AX-E TX Power Test 5GHz (B Domain - US)																	
Channel	BW	NSS	Tx Power	Allowed Per-Path (dBm)	Path Loss (dBm)	RSSI	RSSI B	RSSI C	RSSI D	Ant A	Ant B	Ant C	Ant D	Offset A	Offset B	Offset C	Offset D	Pass/Fail
					. ,	(dB)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)	(+-3dB)
36	20 MHz	4	1	17	54	-41	-41	-41	-39	13	13	13	15	-4	-4	-4	-2	FAIL
36	20 MHz	4	2	14	54	-41	-42	-42	-41	13	12	12	13	-1	-2	-2	-1	PASS
36	20 MHz	4	3	11	54	-45	-45	-45	-44	9	9	9	10	-2	-2	-2	-1	PASS
36	20 MHz	4	4	8	54	-47	-47	-47	-45	7	7	7	9	-1	-1	-1	1	PASS
36	20 MHz	4	5	5	54	-50	-51	-49	-50	4	3	5	4	-1	-2	0	-1	PASS
36	20 MHz	4	6	2	54	-54	-54	-53	-52	0	0	1	2	-2	-2	-1	0	PASS
36	20 MHz	4	7	-1	54	-57	-57	-56	-56	-3	-3	-2	-2	-2	-2	-1	-1	PASS
36	20 MHz	4	8	-4	54	-59	-60	-60	-59	-5	-6	-6	-5	-1	-2	-2	-1	PASS
36	40 MHz	4	1	17	54	-41	-40	-40	-40	13	14	14	14	-4	-3	-3	-3	FAIL
36	40 MHz	4	2	14	54	-40	-41	-42	-40	14	13	12	14	0	-1	-2	0	PASS
36	40 MHz	4	3	11	54	-44	-44	-45	-44	10	10	9	10	-1	-1	-2	-1	PASS
36	40 MHz	4	4	8	54	-47	-47	-47	-45	7	7	7	9	-1	-1	-1	1	PASS
36	40 MHz	4	5	5	54	-50	-50	-49	-48	4	4	5	6	-1	-1	0	1	PASS
36	40 MHz	4	6	2	54	-53	-53	-53	-52	1	1	1	2	-1	-1	-1	0	PASS
36	40 MHz	4	7	-1	54	-56	-56	-55	-56	-2	-2	-1	-2	-1	-1	0	-1	PASS
36	40 MHz	4	8	-4	54	-59	-59	-59	-57	-5	-5	-5	-3	-1	-1	-1	1	PASS
36	80 MHz	4	1	17	54	-41	-40	-39	-40	13	14	15	14	-4	-3	-2	-3	FAIL
36	80 MHz	4	2	14	54	-41	-40	-41	-40	13	14	13	14	-1	0	-1	0	PASS
36	80 MHz	4	3	11	54	-44	-43	-43	-43	10	11	11	11	-1	0	0	0	PASS
36	80 MHz	4	4	8	54	-46	-46	-46	-46	8	8	8	8	0	0	0	0	PASS
36	80 MHz	4	5	5	54	-50	-49	-49	-49	4	5	5	5	-1	0	0	0	PASS
36	80 MHz	4	6	2	54	-53	-52	-52	-52	1	2	2	2	-1	0	0	0	PASS
36	80 MHz	4	7	-1	54	-56	-55	-55	-55	-2	-1	-1	-1	-1	0	0	0	PASS
36	80 MHz	4	8	-4	54	-58	-58	-58	-59	-4	-4	-4	-5	0	0	0	-1	PASS

LANforge Interop

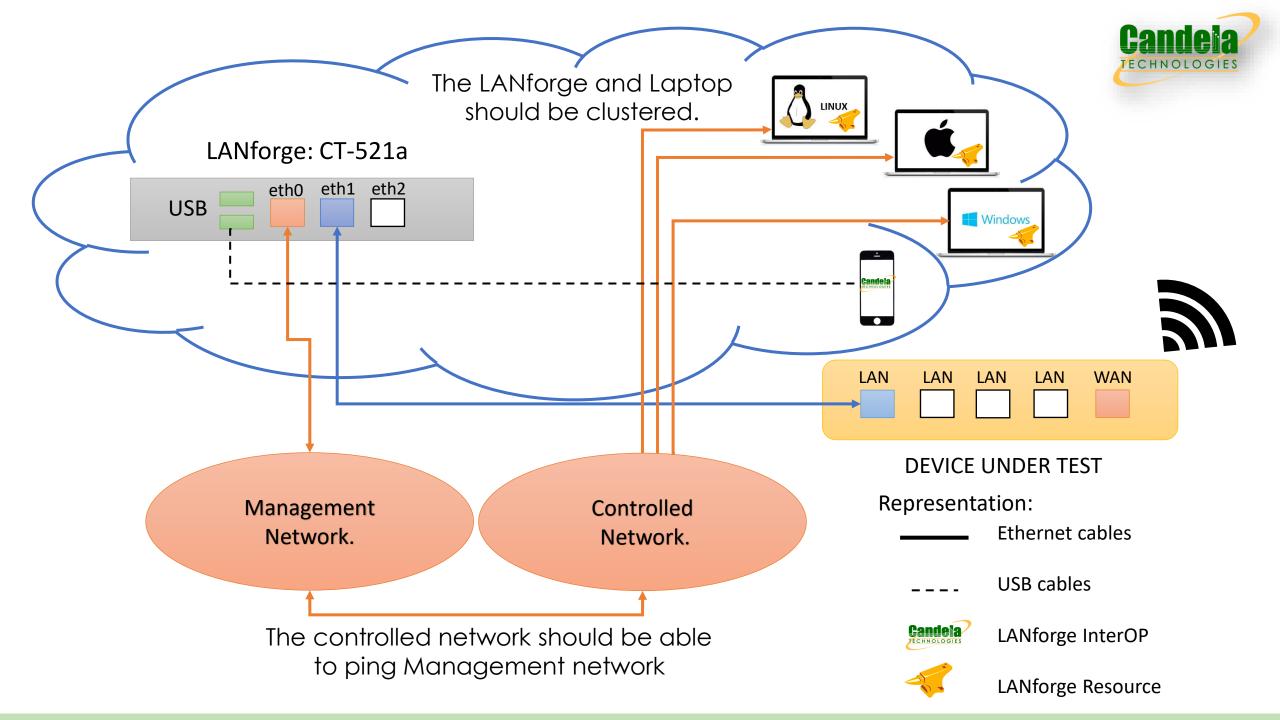
Large Walk-in Chamber with 100+ Real Devices

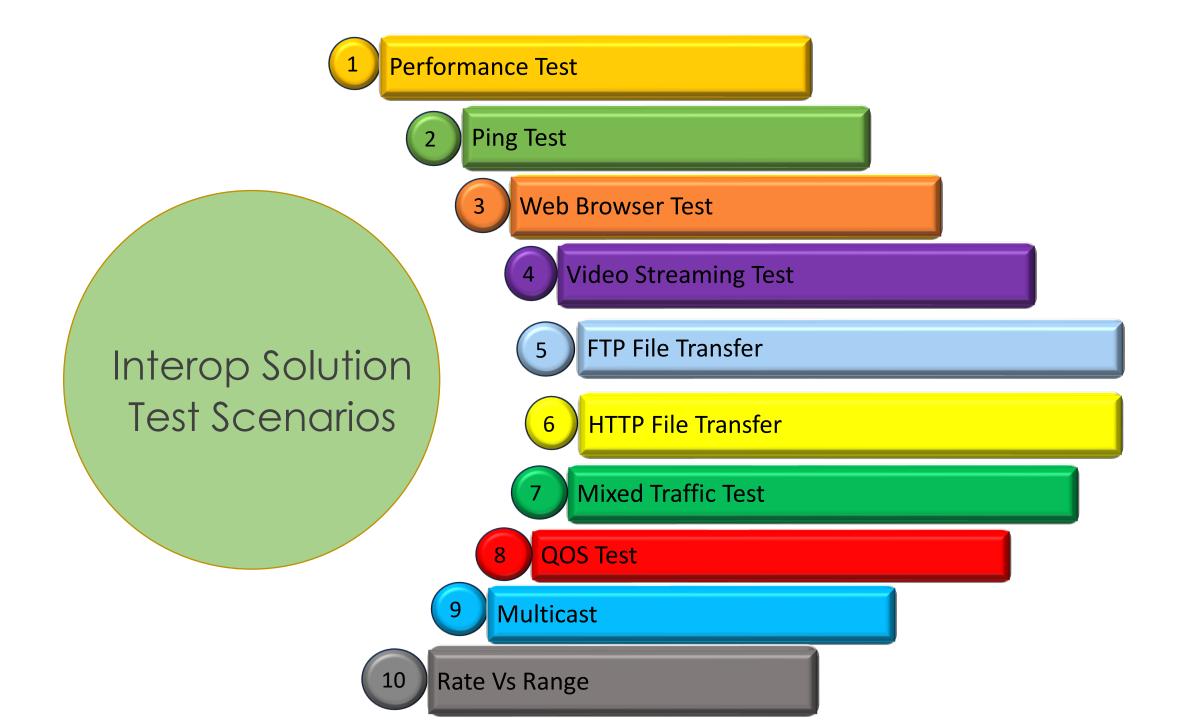

Interop Scale Testbed Topology



Interop Scale Testbed Topology

InterOp Test Application


Candela


Devices Dashboard

Berles Haraget						THE SHEET AND THE SHEET AND THE											00	(ANIA)
Da Salara	City today	Call State	Contraction of the second seco	Cu taing	Basa taing	Cra tadig	0	Cra toing •	e e	0	Canal India	Din techniq	Canal India	Contractions of the second sec	Data codeg	D n being	Da tarte	*
filese hale 7 (to) jaisce Dig maining	vez 1818 Zithaf4 Ciri teatry	Valuez Valuez Valuezasi Va	Crimitan Portaci Criti Institut Criti Institut		Casilo 2013 Data Data Leating	Amonex re.Normonosec 1 0 m sates	Control (Carlon (Carlon))	Lances PEL 1504 Simbolic POINTE D Lances 0	Contacts U-AMMCCS(22/10) U-AMMCCS(22/10) U-AMMCCS(22/10) U-AMMCCS(22/10) U-AMMCCS(22/10)	Circuss Life Lacit Lacit Losevine Life Lacits Lineing	Accretionaries of the second s	ensitation ensitationesconsus on basing	CARLANCOUSTIAN	All read reactions of the Data teams 0	THE ACLESS	tan into microsococie Directory teaching	Transisterur Dis Leining	
HIGORS HIGORS	In A1 m Categories C7/12 being C	Theorem Notes 4 Institution for a Institution Or 2 Institution Or 2	constant colonicat Direction Conting	Anton Kon t Pro california Dia california dia anton A	MIDAUTH collocation Dis testing Dissources	POCO P1 electrico D co cincting	ANKING atomatic Dis District Antices	Hedre Kole 15 estilistis D 15 listing	Noder 15 Toward Data Data Exety Content		Lever Pari Talaati Delli Inden	SH JANC SH JANC Dig Modet A See	SF JACC SCHMMALTIN D IN Testing	SH A73P SChool Cashilletter Do techny	Phone 3 estimations Drug barling	Vietne Kale 5 Pro scharad Dis being	SIX L2 ULACENDENTS Dia Use technic technic	I
Name 7 X Andrectores/outline) Dis Ventry	ver 199 Prosecuraces Po teatra	SH METSO HILDHIGONT Din Leading	Six with racestaves Gri Linding		Hamsensensensensensensensensensensensensens	are second subscriptions on country					DESKICK-OREALIN VIE DIE ZUILEI Destition()(H)		USERI (0144/L80) USERI (0144/L80) USE 165 225 0 S4 5 7294 E USERI (0144/L80)		UEERION-PROCESS III., 198.210.130 III., 198.210 IIII., 198.210 III., 198.210 III., 198.210 III., 198.210 III., 198		UESRIGHALWAANS TO2 INLIGHT SLA TOD DI CODINUUSH	l
* 0%L 102.100.200 () 14.65.200 () 2408064/140	Langer Los Anti-Altra Cara Sal (16) 200 (2) S-4 6 200 (2) (1998 (b-a)(4)	Construction-edde-tack Construction-edde-tack Construction-edde-tack Construction Construction Construction	UNEXTONYINGUNGU VIL: VIL: VIL: VIL: VIL: VIL: VIL: V			North 142 142 5-45 144 <						DERIGINATION DERIGNATION DERIGNATION DERIGNATION DERIGNATION DERIGNATION DERIGNATION						l
Lesson-Joces Too Instance (parametro)		LEEKIGY-N77CBN T02 191 201217 T02 191 201217 LeEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN LEEKIGY-N77CBN			* 1250074960002 102/0021130 0441304 G 12704004	LESCORESING 10:00/2444 447/30/2 (240/40/00)		VELL VIE VIE DIE 10 LET 100 C	V DESKIDHAMUER VIII 19620022 VIII 19620022 VIIII 19620022 VIIII 19620022		DESKID/-BSDEDD TO: 100-256.00 DESKID/-BSDEDD DESKID/-		tacits 102 105 202 10 102 105 202 10 104 10 205 10 104 10 205 10 105 101 205 10 105 100 105 100 105 10					
Tasta Ta			Table Sector															•

0

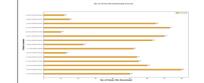
Automation Reports

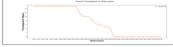
Lanforge Interop Wi-Fi Capacity Test report for Wi-Fi Client Devices LANforge InterOp Rate vs Range Candela Candela 2022-11-08-13-34-14 LANForge Inter otherworket or others Freuder Astrophysics of each real client over a certain distance of the DUT. Distance is emulated using programmodele on at each otherwarks/VBDI real, this heat measures the performance over distance of the Denical Under Test who usinesses and absentions for different toward of tables. For additionation tables for the test of the certain of tables for the test of the certain and the test of tables. HETOEARIA The LANDAUGE STREAM AND CONTROL TO A SUBJECT TO THE ADDRESS AND ADDRESS AND ADDRESS AD Real-Time UDP Throughput Chart Total connected Folled clients clients No.of stations[2G & 5G) traffic rate SG - stations = 3 : 2G -stations = 2 Tohai Upicad - 10vtbpc: Tohai Download - 10vtbps Real Time Chart Realtime Throughpu 200 para france Toble for Good 122030 132706 132730 132860 132860 132960 132968 132968 133058 133058 133160 133130 133230 133230 133280 Date - Trialighted - Trial Download - UK + DL Sun - UK + DL Sun - UDP UK + DL Sun - UDP UK - UDP DK
 Desize Name
 Signet
 Connected SIGN
 Security
 Channel Channel
 Mode
 Mode Test Layer 3 Cross-Connect Traffic: test_13.py Candela Throughput in Mhon Stational State Throughput in hos Ping Test Report Interop QOS Candela ro Aeruki, CW91661-MR leit, Tool, Ilivol 109 vpol2 Packets sent vs received vs drapped ut for all TOS Le BK | BE | Video IVI) | Ve Reductions Reductions Reductions

HTTP DOWNLOAD TEST Candela

	AP Nome	Menual_CW91661
	554D	[fest_fool_Evol]
	Security	(wpa2)
Sect Setue Information	No of Devices	15
neur serup intormonion	File size	100+8
	File location	/usclocol/lonforge/nginu/himi
	Troffic Deection	Downlood
	froffic Eurofion	10.0m

The Webpage Download fest & designer measures the time taken by the client to

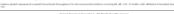

		No of Ernes Rie Download	(Count)		
1.00.00.0000000000000000000000000000000	-				
1.12.00.0000000000000000000000000000000					
1.					-
1.1.2.10.10.000000000000000000000000000					-
Los automatics and the					
1.1.0.00.000000000000000000000000000000					-
				-	
				-	
					-
111.00.00000000000					
1.				-	
1.				-	
1.				-	
1.				-	
1.11.00.000000.00000				-	
-		No of times file Do	enteed [®]	-	-



	AP Name	Merchi, CW91661
	SSID	Test_Tool_Eval
	Security	wpo2
Text Setup Information	No of Devices	15
neur penugi innormanian	File size	100448
	the locotton	/home.tonforge
	Traffic Direction	Downkood
	Traffic Duration	10.0m

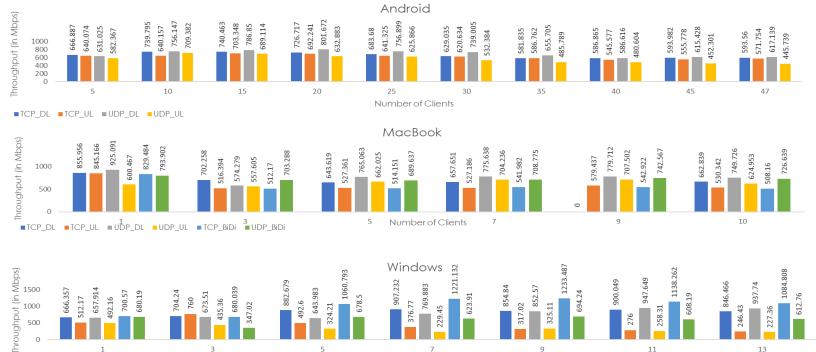
This FTP Test is used to Verify that N clients and measuring the time taken by client to No of times file Download

The below graph represents nur nomes.



Client Nome	MAC	Type of teatho	Troffic Desction	Teaffic Protocol	Offered upload rote(Mbps)	Offered download rofe(Vbps)	Observed upload rote(Mbps)	0 0
1.150 Moc opples- MacBook Pro.local	9801-0784719	Bestellort	Download	UOP	0.0 Mitem	1000-0 Million	0	1.67
1.151 Mac uses- machook-Pro.toccal	6018101667170	Bestellort	Download	UOP	0.0 Mbps	1000-0 Mbps	0	7.61
1.152 Mac mac-11.local	oc.bc.32.77.dc.99	Beneffort	Download	UOP	0.0 Mbps	1000.0 Mbps		28.55
1.153 Mac Apples- MacBook All Jocci	64768007071.08	Besteffort	Download	uor	0.0 Migm	1000.0 Mbps		9.07
1.154 Moc users- MocBook Alt/local	810140-0440234	Bestellort	Download	UOP	0.0 Mitem	1000.0 Mbgs	0	6.43
1.155 Mac mac-12/ecol	64383555583c	Beule/fort	Download	UOP	0.0 Mbps	1000.0 Mbps		11.51
1.157 Mac apples- MacBook Pro.local	00.0032801520	Besheffort	Download	UDP	0.0 MINH	1000.0 MINH	0	4.69
1.158 Mac users- Air.clinb.condelatechindi	0847-0376-4540	Bestellort	Download	upe	0.0 Miles	1000-0 Mbgs		41.14
1.139 Mac Mac-143ecol	00.99.901c.8.6	Beshell(r1	Download	UDP	0.0 Mites	1000.0 Mbes		29.5
1.141 Moc opples- MocBook Air Jocci	9456-061-00512	Benderficat	Download	uor	0.0 Milgini	1000.0 MBgs	0	3.59

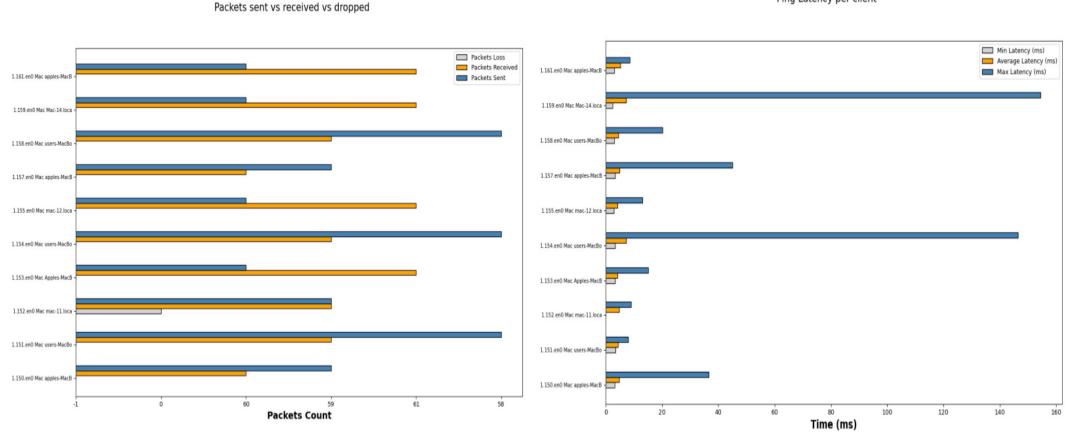
apput of a network under specific Gos of traffic white maintaining acceptable hexpected user demon-th



on for traffic BK(WiFi The belo

In this test, we'll link real clients from various operating systems to the Device Under Test (DUT) and apply the total intended load across different traffic directions and types. Our approach involves comprehensive monitoring and reporting, covering data rates, achieved throughputs, and per-client throughput distributions.

Number of Clients


2

■TCP_DL ■TCP_UL ■UDP_DL ■UDP_UL ■TCP_BiDi ■UDP_BiDi

In this test we will connect multiple clients to any of the available SSID's and run PING sessions parallelly for all clients with various time intervals. Depending on the requirement we monitor and report the Packet loss and latency for ping test.

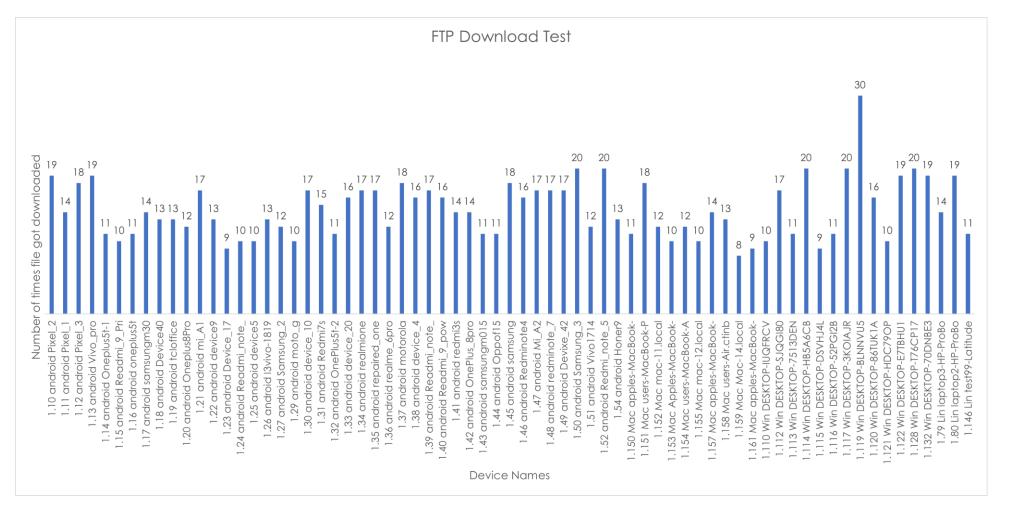
Ping Latency per client

In this test we will try to reach any of the website based on the requirement and check how the user experience to reach the webpage is varying based on the number of real clients involved in the test.

Video Streaming Test

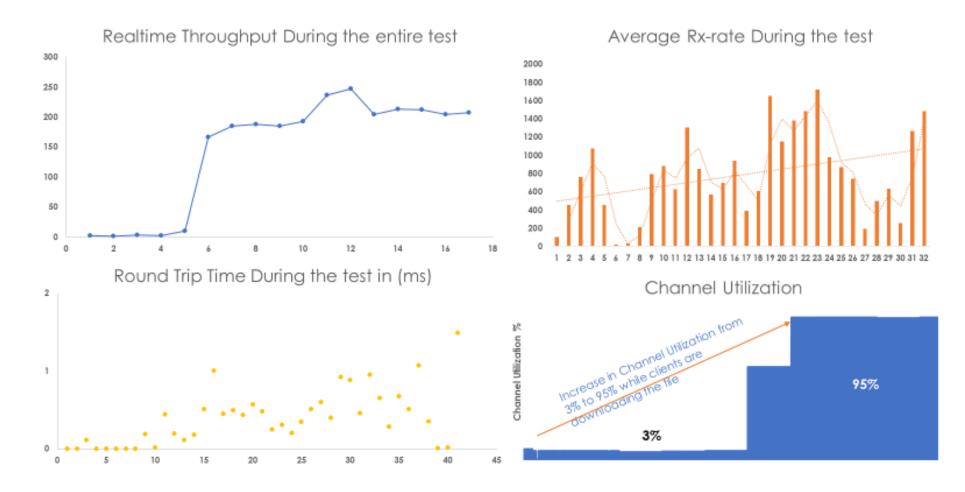
ONEPLUS A5010

DASH VIDED CLIENT

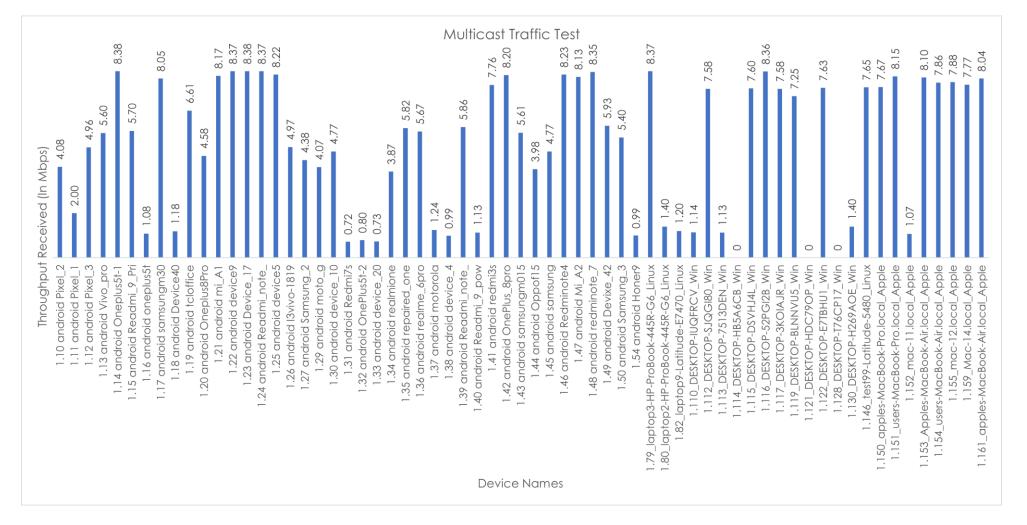

In this test, we'll link all the actual clients to the Device Under Test (DUT) and stream videos on each client using various media sources such as DASH, HLS, Progressive, etc. Through this test, we can observe and track Total number of Buffers, Wait time, and other relevant parameters.

5 Δ SM-A217F (as s 4 Number of Buffers 3 3 3 3 3 3 ly Running : 2 2 2 2 2 2 2 2 2 2 2 2 2222 1 113 438 Mi A1 (as superu... 1 0 ASH_Video_Client21 ASH_Video_Client22 lient8 lient9 Client19 Client20 ent26 Client27 Client28 ent38 ent39 lient6 ent14 ent15 ent16 ent23 ent24 ent29 ent40 Currently Running lient7 lient10 ent11 ent12 ent17 Client18 ent21 ent22 ent25 ent30 ent31 ent32 ent33 ent36 ent37 ent41 ent42 ASH_Video_Client2 ently Running : Currently Running : ASH_Video_Client24 ASH_Video_Client29 SH_Video_Client2 /ideo Android Clients

HLS - Total-Buffers for 1 Complete URL

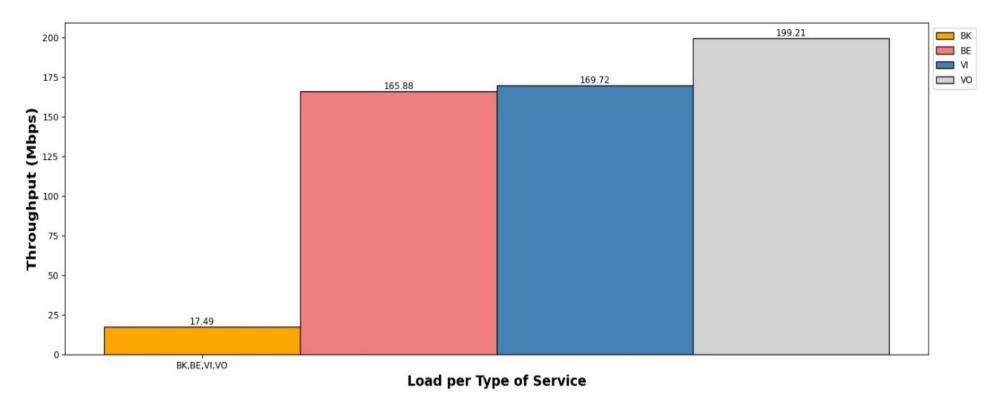


In this FTP test, we confirm that a specified number of clients connected to a particular band can download a file of various sizes from an FTP server simultaneously. We measure the time it takes for each client to complete the Download process and number of times the client downloaded the file in the given test duration.

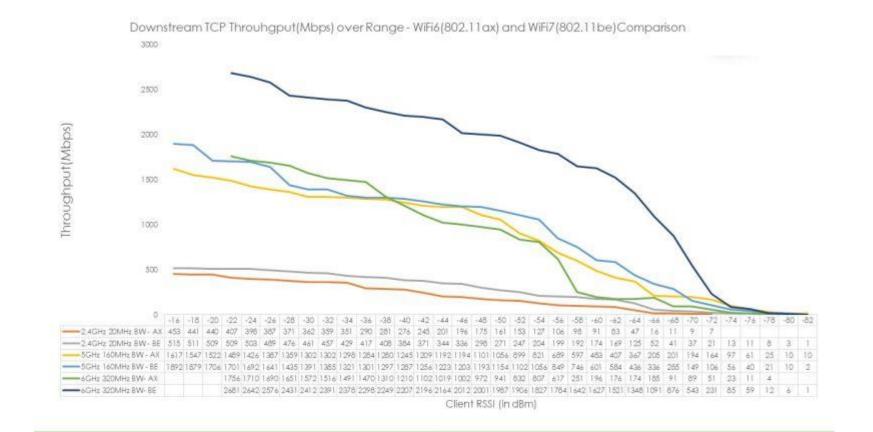


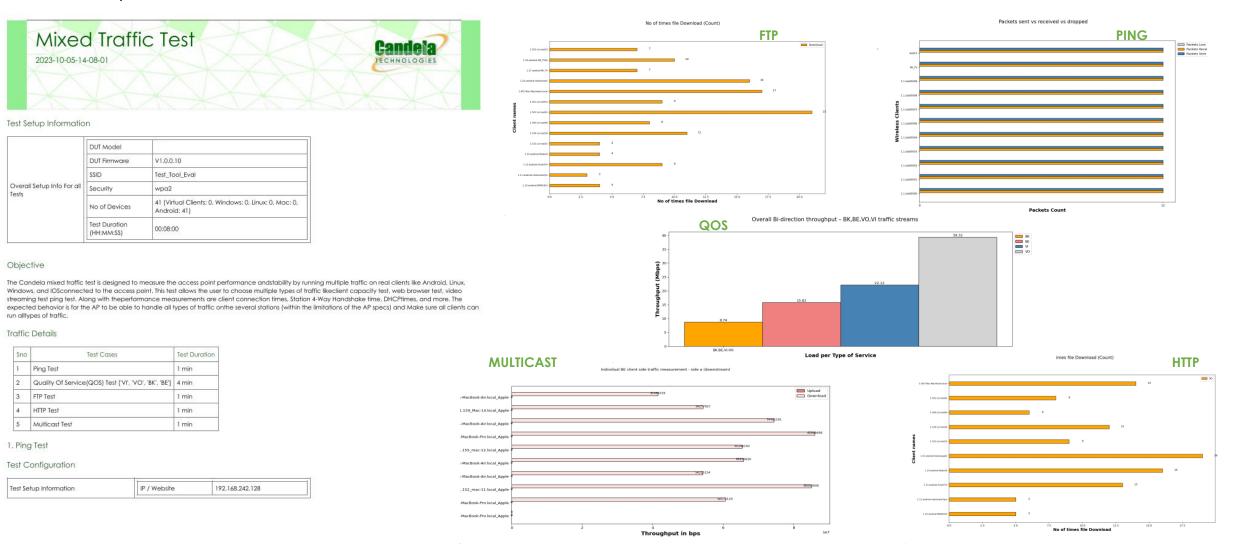
In this test we will try to download a file of various sizes based on our requirement and place them in HTTP server. We will try to download the file from the HTTP server with all the clients connected to it and monitor the Rx rate, RRT etc.

In this test we create a multicast server on an Upstream interface and then initiate multicast sessions. Based on the number of clients we will try to send data to multiple clients from one server and record the packet loss and round-trip times.

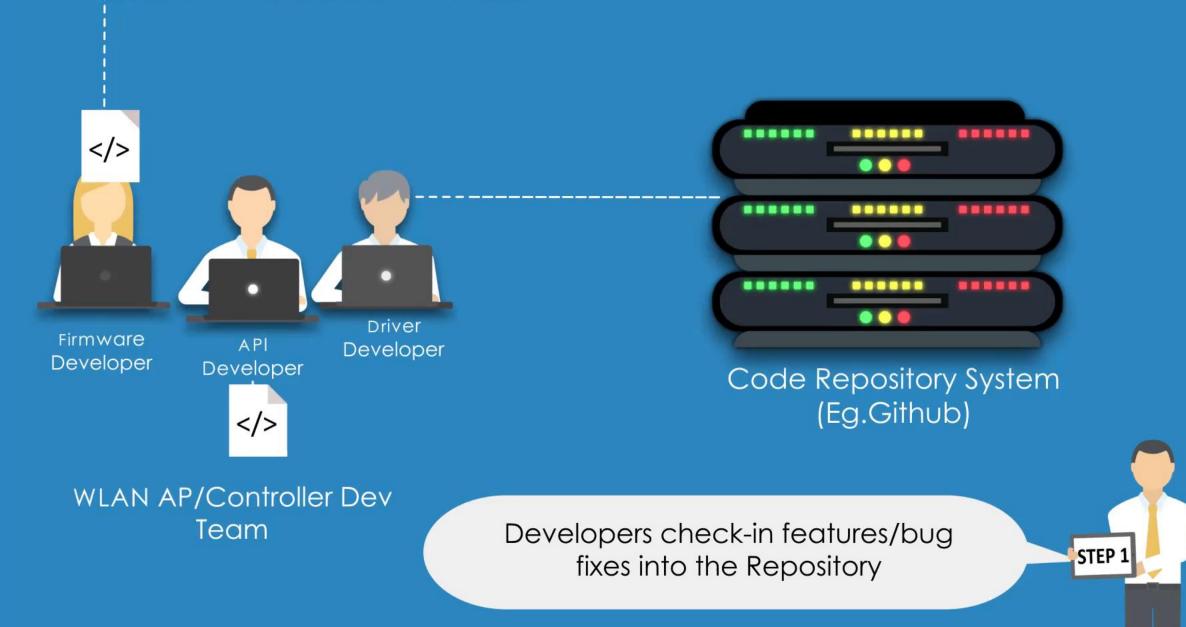


In this test we conduct QoS testing using various Differentiated Services Code Point (DSCP) values for Voice (VO), Video (VI), Best Effort (BE), and Background (BK) traffic and based on the number of clients involved we will try to check which ToS is getting the highest priority.

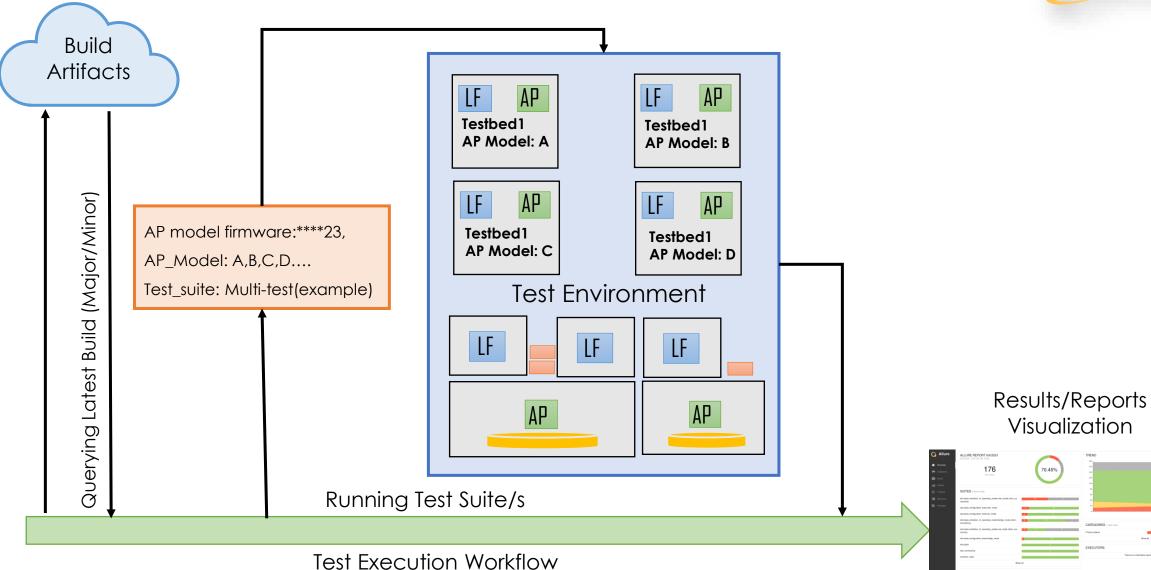

Overall Download throughput - BK, BE, VO, VI traffic streams


In this test, we assess the performance of the Device Under Test (DUT) across varying distances. The distance is simulated using programmable attenuation, and we gauge the throughput at each distance/RSSI step.

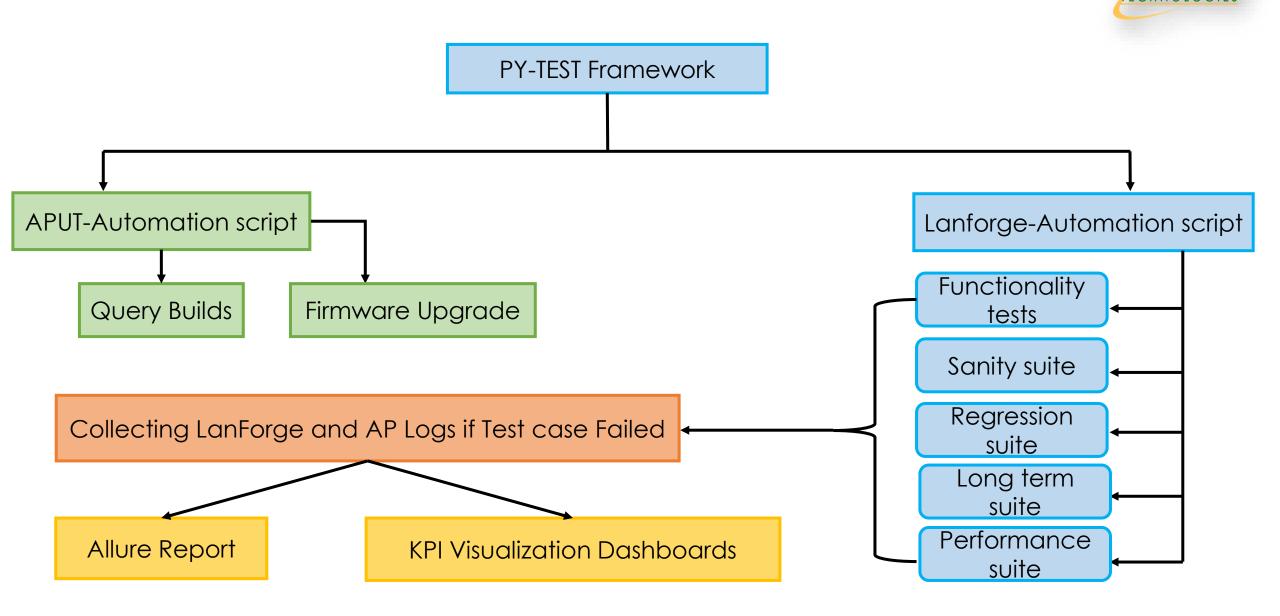
Mixed Traffic Test



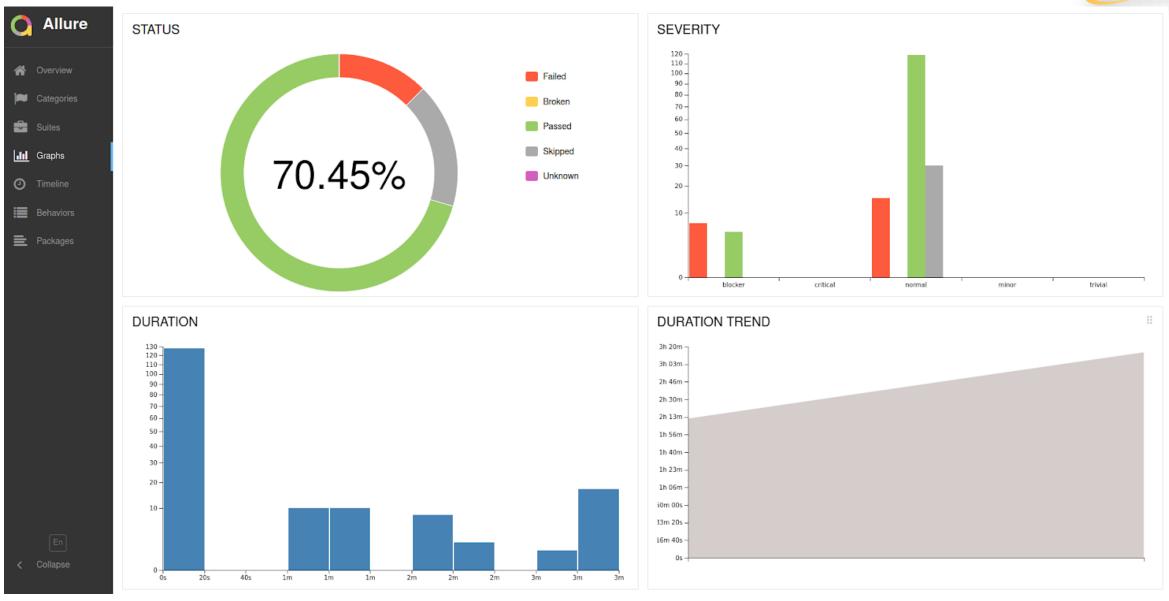
To Measure the Performance and Stability of an access point, we initiate this mixed traffic test by running multiple traffics (Ping, QOS, FTP, HTTP and Multicast) on all the Real devices (Android, Windows, Linux and MacBook) all at a time.



WiFi CI/CD Test Automation Framework



CICD workflow:



Candela

CI-CD framework Architecture:

Results and Report Visualization:

Candela TECHNOLOGIES

Results and Report Visualization:

Allure	Suites		0 🕹
~	order 💠 name 💠 duration 💠 status 🜩	Status: 22 0 124 30 0 Ma	rks: 💣 🛕
Overview	> controller_tests		
	> e2e.basic		4
Categories	> e2e.basic.configuration_tests.bridge_mode		1 33
Suites	> e2e.basic.configuration_tests.nat_mode		3 31
Graphs	> e2e.basic.configuration_tests.vlan_mode		4 30
II Graphs	\sim e2e.basic.validation_of_operating_modes.bridge_mode.	client_connectivity	2 15 5
) Timeline	✓test_enterprise_ttls		1 4 5
Behaviors	✓ TestBridgeModeEnterpriseTTLSSuiteA		123
	S #3 test_wpa2_enterprise_2g[setup_profiles	[/so] {'mode': 'BRIDGE', 'ssid_modes': {'wpa_enterprise': [{'ssid_na	am 1m 05s
Packages	#4 test_wpa2_enterprise_5g[setup_profiles	0] {'mode': 'BRIDGE', 'ssid_modes': {'wpa_enterprise': [{'ssid_na	ame': ' 1ms
	#5 test_wpa3_enterprise_2g[setup_profiles	0] {'mode': 'BRIDGE', 'ssid_modes': {'wpa_enterprise': [{'ssid_na	ame': 's 0s
	#6 test_wpa3_enterprise_5g[setup_profiles	['mode': 'BRIDGE', 'ssid_modes': {'wpa_enterprise': [{'ssid_na	ame':'s 0s
	#1 test_wpa_enterprise_2g[setup_profiles0] {'mode': 'BRIDGE', 'ssid_modes': {'wpa_enterprise': [{'ssid_nar	ne'2m 35s
	#2 test_wpa_enterprise_5g[setup_profiles0] {'mode': 'BRIDGE', 'ssid_modes': {'wpa_enterprise': [{'ssid_nar	ne'3m 23s
	> TestBridgeModeEnterpriseTTLSSuiteTwo		2 2
	> test_general_security_modes		1 11
	> e2e.basic.validation_of_operating_modes.nat_mode.clie	nt_connectivity	2 7 13
	> e2e.basic.validation_of_operating_modes.vlan_mode.cli	ent_connectivity	10 12
	> test_connectivity		3

get configuration::0 0s setup_test_run::0 0s

check ap firmware cloud::0 0s

TR-398

Wi-Fi In-Premises Performance Testing (<u>https://www.broadband-</u> forum.org/download/TR-398.pdf)

TR-398 Test Plan Summary

6.1.1

Receiver Sensitivity Test

Test the Quality/Ability of the AP's receiver in being able to handle different coding schemes at different power levels.

Range Versus Rate Test

Test measures the Throughput of the DUT with the station being at different distances from the AP.

Downlink MU-MIMO Perf

Test to ensure the downlink throughput increases substantially with multiple clients and MU-MIMO enabled.

Maximum Connection Test

6.2.1 Th

The Maximum Connection test intends to verify that the Wi-Fi AP can support 32 STAs simultaneously connected with minimal packet loss and no disassociations taking place

Maximum Throughput Test

6.2.2

6.2.3

Test intends to measure the maximum throughput performance of the DUT.

6.3.2

6.4.1

6.3.1

Spatial Consistency Test

Test measures the performance of the AP at various antenna orientations with respect to the stations.

6.5.2

6.4.3

Long Term Stability

Test to make sure the AP can consistently achieve high throughput over a very long test duration.

Multiple STAs Perf Test

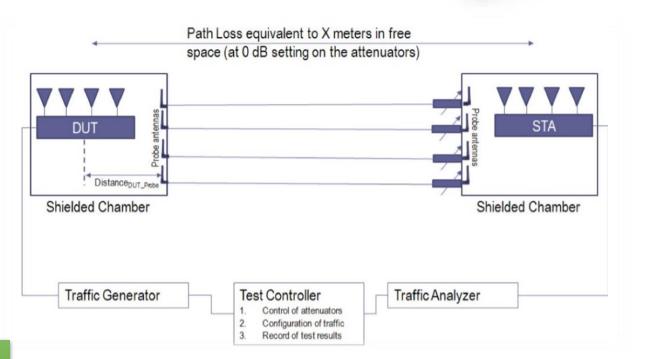
Measure performance of the AP with multiple stations at different distances, to emulate the real world behavior.

AP Coexistence

Test to make sure the AP can achieve good performance in the presence of other neighboring APs and clients

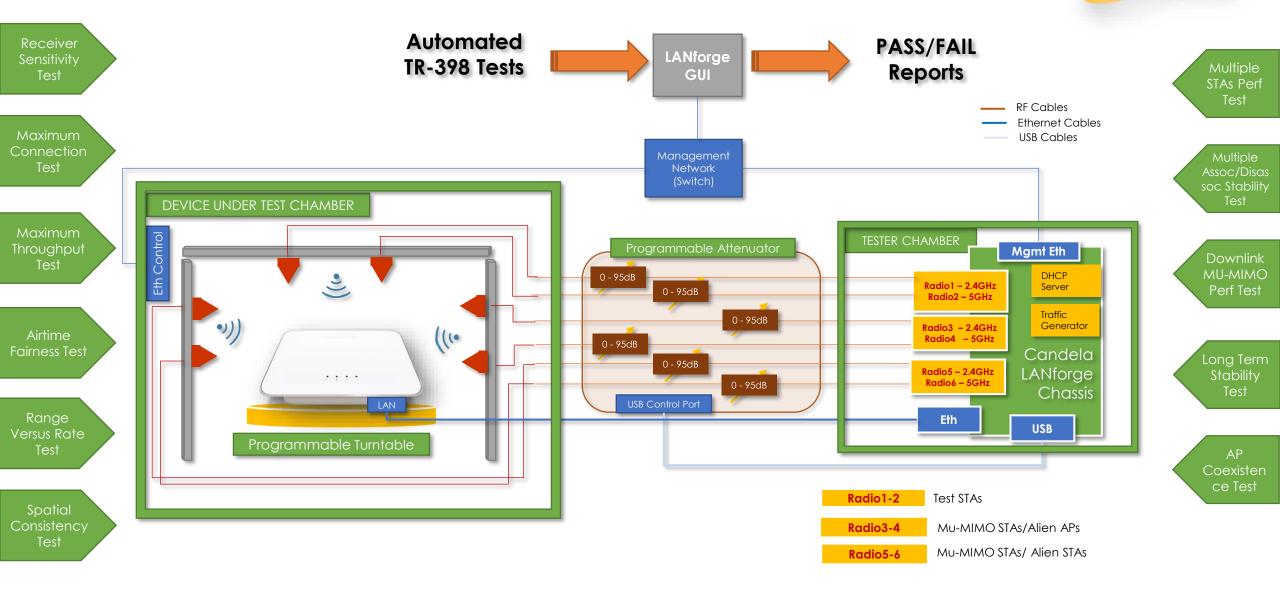
Airtime Fairness Test

Verify the capability of Wi-Fi device to guarantee the fairness of airtime usage when handle a mix of clients using new and legacy 802.11 standards.


Multiple Assoc/Disassoc Stability

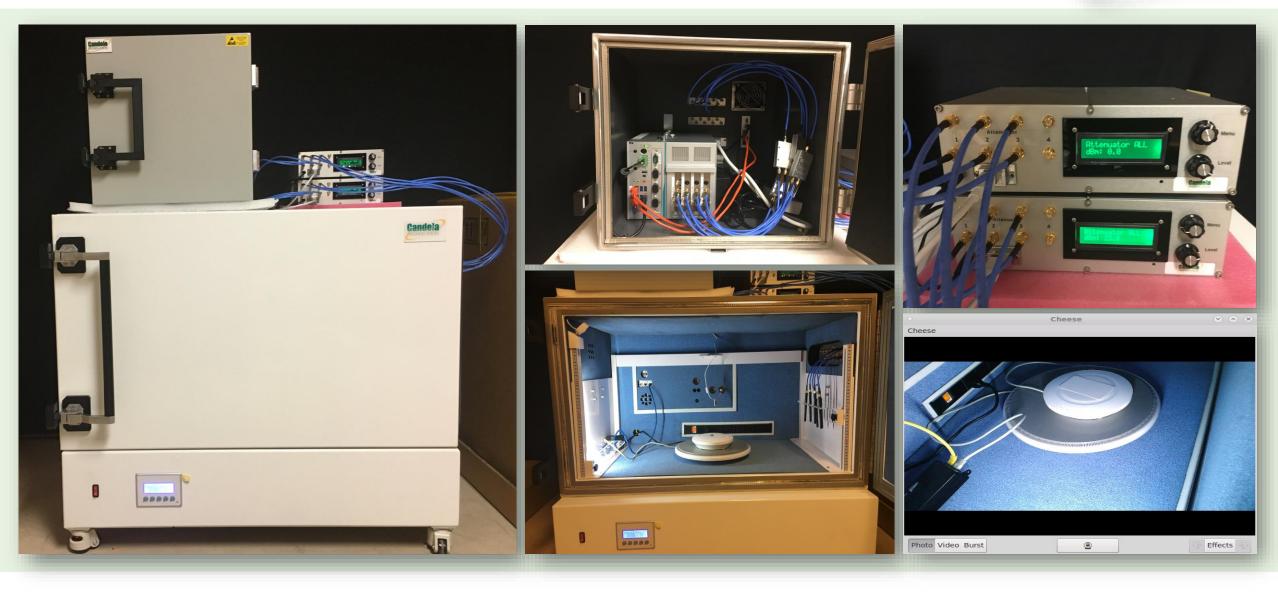
In a multi client scenario, test if the AP throughput performance degrades with other clients connecting and disconnecting simultaneously

TR-398 Testbed Building Blocks



- ✓ Multi-station Emulator
- ✓ Traffic Generator
- ✓ Path Loss Emulator (Programmable Attenuator)
- ✓ Shielded Chambers / RF enclosures
- ✓ Programmable Turntable for Spatial Consistency Testing
- ✓ Mu-MIMO Station emulator for Mu-MIMO testing
- ✓ AP Emulator (to create Alien AP and Alien STAs for coexistence testing)
- ✓ Test Controller and Automation Test Software

Candela Technologies offers a fully automated TR-398 Test suite with PASS/FAIL test results and all the testbed building blocks.


TR-398 Testbed Setup

Candela TECHNOLOGIES

TR-398 Testbed Pictures

TR-398 Automated Test GUI

Selected DUT 5G:	Netgear2 TR398-5G	-	Upstream Port:	1.1.1 eth1 👻				
Selected DUT 2G:	Netgear2 TR398-2G	-	Turn-Table-Chamber:	DUTChamber 👻				
2.4Ghz 2m RSSI	-24	-	5Ghz 2m RSSI	-28 💌				
Extra Download Path-loss								
Group: 0	Radio		2.4Ghz RSSI 0 Atten	5Ghz RSSI 0 Atten	Atte	nuator Modu	les	
5Ghz	1.1.3 wiphy0	-	-23	-31	1.1.	86.0	-	
2.4Ghz	1.1.4 wiphy1		-23	-31	1.1.		-	
			-23	-31			-	
			-23	-31	1.1.	86.3	-	
Group: 1			1	· ·				
5Ghz	1.1.4 wiphy2	-	-25	-32	1.1.	85.0	-	
2.4Ghz	1.1.5 wiphy3	-	-25	-32	1.1.	85.1	-	
			-25	-32			-	
			-25	-32			-	
Group: 2								
5Ghz	1.1.6 wiphy4		-23	-30			-	
2.4Ghz	1.1.8 wiphy5	-	-23	-30	1.1.	85.3	-	
			-23	-30			-	
			-23	-30			-	
TR-398 tests to run:	Estimated Test Durati							
 Receiver Sensitivity Range Versus Rate 	Spatial Consistence		 Maximum Throughput Multiple STAs Performance 	 Airtime Fairness Multiple Assoc State 	ability	,		
Downlink MU-MIMO	AP Coexistence	У	Long Term Stability	Multiple Assoc St	ability	1		
	AF COEXISLENCE		Long Term Stability					
			Start					

Sample Test Results

Summary Results

Test	Result	Score	Elapsed	Info	
6.1.1 Receiver Sensitivity Test	2.4Ghz PASS 5Ghz PASS	100.0		2.4Ghz passed 16 / 16 Pass-Avg: 10.9 5Ghz passed 16 / 16 Pass-Avg: 3.9	
6.2.1 Maximum Connection Test (32-STA)	2.4Ghz PASS 5Ghz PASS	134.2		Throughput: 2.4Ghz UL 104.11% DL 104.39% Throughput 5Ghz UL 101.95% DL 104.34% Passed PER: 128 / 128	
6.2.2 Maximum TCP Throughput Test	2.4Ghz PASS 5Ghz PASS	2.0	5.401 m	Throughput 2.4Ghz UL 1.12% DL 1.14% Throughput 5Ghz UL 1.25% DL 1.24%	
6.2.3 Airtime Fairness Test	2.4Ghz FAIL 5Ghz FAIL	100.0	6.164 m	* Candela is not convinced these pass/fail metrics are very helpful.	
6.3.1 Range Versus Rate Test	2.4Ghz FAIL 5Ghz PASS	83.6		5Ghz UL 13 / 13 DL 13 / 13 2.4Ghz UL 16 / 22 DL 17 / 23 2.4Ghz Retried 0 traffic tests.	
6.3.2 Spatial Consistency Test	2.4Ghz PASS 5Ghz FAIL	93.8	44.3 m	SGhz passed 11 / 12 SGhz retried 1 traffic tests. 2.4Ghz passed 12 / 12 2.4Ghz retried 7 traffic tests.	
6.4.1 Multiple STAs Performance Test	2.4Ghz PASS 5Ghz PASS	100.0		2.4Ghz Passed 6 / 6 SGhz Passed 6 / 6	
6.4.2 Multiple Association / Disassociation Stability Test	2.4Ghz PASS 5Ghz PASS	100.0	7.161 m	2.4Ghz Passed 960 / 960 5Ghz Passed 960 / 960	
6.4.3 Downlink MU-MIMO Performance Test	2.4Ghz PASS 5Ghz FAIL	100.0	13.883 m		
6.5.2 AP Coexistence Test	2.4Ghz FAIL 5Ghz FAIL	62.5		Passed 5 / 8 NOTE: User has calibrated different Interferer transmit rates. TR-398 specified vs actual inteferer rate settings: 56-80Mhz: 195 vs 195 5G-40Mhz: 90 vs 90 2.4Ghz-2 6.3.2 S	bpa
6.5.1 Long Term Stability Test	2.4Ghz FAIL 5Ghz PASS	91.0	54.568 m	2.4Ghz Throughput Avg 198.04 Mbps Passed: 46 / 5 2.4Ghz Packet Error Rate Passed: 0 / 5	уре

6.2.2 Maximum TCP Throughput Test Results

Туре	Result	Notes
Total 2.4Ghz download throughput		Sum-total download: 114.46 Mbps Requires: 100Mbps STA-RSSI: -31 Rx-Rate: 144.4M Tx-Rate: 144.4M
Total 2.4Ghz upload throughput		Sum-total upload: 111.94 Mbps Requires: 100Mbps STA-RSSI: -30 Rx-Rate: 144.4M Tx-Rate: 144.4M
Total 5Ghz download throughput		Sum-total download: 696.93 Mbps Requires: 560Mbps STA-RSSI: -45 Rx-Rate: 866.7M Tx-Rate: 866.7M
Total 5Ghz upload throughput		Sum-total upload: 697.47 Mbps Requires: 560Mbps STA-RSSI: -44 Rx-Rate: 866.7M Tx-Rate: 866.7M

Realtime Throughput for: 6.2.3 Airtime Fairness Test

tial Consistency Test Results

Туре	Result	Notes							
6.3.2 Assumptions This test does not specify RSSI, so calibrating it is difficult. You may shift the attenuation by modifying the Attenuation Adjustment s on the 'Advanced Configuration' screen.									
Configuration NOTE	INFO	Attenuation Adjustment set to: 4							
Configuration NOTE	INFO	Traffic duration is set to: 10s, default is 60s							
Configuration NOTE	INFO	This test will retry below average tests: 3 times and record the best result.							
5Ghz Avg DL Sig: 10	PASS	Avg download must be at least: 500Mbps, reported: 688.1							
5Ghz Minimum DL Sig: 10	PASS	Min download: 623.9 must be at least 60%: 412.8 of the avg: 688.1Mbps							

6.4.2 Multiple Association / Disassociation Stability Test Results

	Туре	Result	Notes
2.4Ghz CX: cv_udp-1.1-1	l.sta06001.0.0 Steady-State	PASS R	tequires: 3.96 Mbps Reported: 4.00 Mbps
2.4Ghz CX: cv_udp-1.1-			
2.4Ghz CX: cv_udp-1.1-	6.4.3 Downlink MU	-MIMC	O Performance Test Results
2.4Ghz CX: cv_udp-1.1-			
2.4Ghz CX: cv_udp-1.1-	Туре	Resul	t Notes
2.4Ghz CX: cv_udp-1.1-	6.4.3.4.3 SU-MIMO Sta-1 Baseline	INFO	Download Rate: 670.31 Mbps STA-RSSI: -45 Rx-Rate: 866.7M Tx-Rate: 866.7M
2.4Ghz CX: cv_udp-1.1- 2.4Ghz CX: cv_udp-1.1-	6.4.3.4.4 SU-MIMO Sta-2 Baseline	INFO	Download Rate: 347.54 Mbps STA-RSSI: -53 Rx-Rate: 433.3M Tx-Rate: 433.3M
2.4Ghz CX: cv_udp-1.1-	6.4.3.4.5 SU-MIMO Sta-3 Baseline	INFO	Download Rate: 349.77 Mbps STA-RSSI: -49 Rx-Rate: 433.3M Tx-Rate: 433.3M
2.4Ghz CX: cv_udp-1.1- 2.4Ghz CX: cv_udp-1.1- 2.4Ghz CX: cv_udp-1.1-	6.4.3.4.6 MU-MIMO Sta1 - 3 Total	INFO	Total Download Rate: 575.00 Mbps Sta-1 Download Rate: 300.15 Mbps STA-RSSI: 45 Rx-Rate: 32.6M Tx-Rate: 866.7M Sta-2 Download Rate: 274.85 Mbps STA-RSSI: 50 Rx-Rate: 32.6M Tx-Rate: 390M Sta-3 Download Rate: 0 Mbps STA-RSSI: -38 Rx-Rate: 433.3M Tx-Rate: 390M
bandwidth. M M M M	6.4.3.4.7 SU-MIMO Sta1 - 3 Total	INFO	Total Download Rate: 575.00 Mbps Sta-1 Download Rate: 204 07 Mbps STA-RSSI: -45 Rx-Rate: 866.7M Tx-Rate: 866.7M Sta-3 Download Rate: 105.97 Mbps STA-RSSI: -49 Rx-Rate: 433.3M Tx-Rate: 390M Sta-3 Download Rate: 0 Mbps STA-RSSI: -38 Rx-Rate: 433.3M Tx-Rate: 390M
	MU-MIMO-Throughput	FAIL	Requires: 615.43 Mbps Reported: 575.00 Mbps
M	6.4.3.5.B MIMO Throughput Compar	ison PASS	SU-MIMO-Total: 419.52 Mbps MU-MIMO-Total: 575.00 Mbp

Comprehensive PDF Test Reports

Objective

The TR. 389 WHT Reformance test plan by the Broadbard forum provides a comprehensive std of tests to ouality the performance of WHT access points (APD) designed for residential and end office environments. Bado performance, Through public, Carrecton Stability, Artimer Farness, APC o-existence, Mu, MMO Performance. Statistic consistency and Long-term Stability are some of the test areas covered in this test plan. The test plan is designed for anxics providers displaying in home WHT APS to quarkity than APS in the labelinar designment and for subputer makers to last during the development of tests are nn fully automated at one cick of a builton. Measurements are made and compared to the specified PASSVALL criteria in the TR-198 test plan and this report will show the summary PASSFAR. Tests Bitowerd more distabilial results for ach test.

Summary Results

6.1.1 Receiver Sensitivity Test

Summary

Receiver Sensitivity is a receiver's ability to receive and correctly demodulate weak signals. This test provides a simplified measurement of the receiver's sensitivity, relative to the total alternuation inserted between the DUT and the STA. As that alternuation is increased, the STA is limited to a single coding scheme, eventually causing the connection to degrade. The paired which the connection degrades represents the receiver's approximate sensitivity. This is an approximate measurement only, where a detailed receiver sensitivity measurement would typically be performed in a conducted test environment with calibrate transmitter power wheels. The test is the repeated with multiple coding schemes, ensuring the DUT should smoothly transition between coding the conducted test provides the state the repeated with multiple coding schemes, ensuring the DUT should smoothly transition between coding to the scheme coding and the scheme test provides the state test provides and the scheme test provides and the scheme coding scheme coding test provides and the scheme test is the scheme test provides and test provides and the scheme test provides and the scheme test provides and test provides and the scheme test provides and the scheme test provides and t

6.1.1 Receiver Sensitivity Test Results

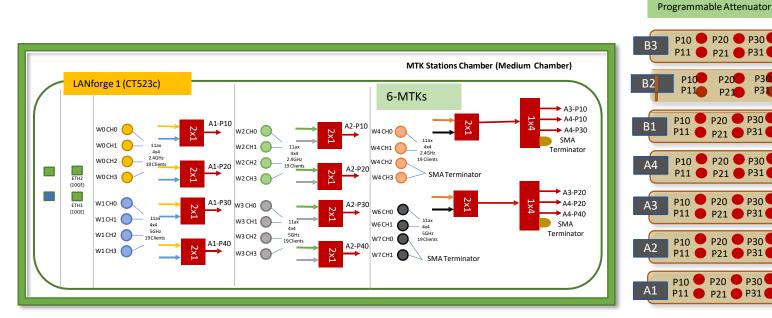
Type	Result	Notes		
6.1.1 Assumptions	INFO	This test does not specify RSSI, so calibrating it is difficult. You may change the attenuation by modifying the Attenuation Adjustment setting on the 'Advanced Configuration' screen.		
Configuration NOTE	INFO	Attenuation Adjustment set to: 4		
	PASS	5Ghz mcs: 0 BW: 80 rot: 0 last-atten-pass: 47 passing value: 46 STA RSSI: -60 Expected AP RSSI: -65		
	PASS	5Ghz mcs: 9 BW: 80 rot: 0 last-atten-pass: 27 passing value: 21 STA RSSI: -38 Expected AP RSSI: -45		
	PASS	5Ghz mcs: 0 BW: 80 rot: 45 last-atten-pass: 51 passing value: 46 STA RSSI: -61 Expected AP RSSI: -69		
	PASS	5Ghz mcs: 9 BW: 80 rot: 45 last-atten-pass: 31 passing value: 21 STA RSSI: -40 Expected AP RSSI: -49		
	PASS	5Ghz mcs: 0 BW: 80 rot: 90 last-atten-pass: 50 passing value: 46 STA RSSI: -62 Expected AP RSSI: -68		
	PASS	5Ghz mcs: 9 BW: 80 rot: 90 last-atten-pass: 27 passing value: 21 STA RSSI: -38 Expected AP RSSI: -45		
	PASS 5Ghz mcs: 0 BW: 80 rot: 135 last-atten-pass: 50 passing value: 46 STA RSSI: -61 Expected AP RSSI: -68			
	PASS	5Ghz mcs: 9 BW: 80 rot: 135 last-atten-pass: 26 passing value: 21 STA RSSI: -36 Expected AP RSSI: -44		
	DACC	5Ghz mcs: 0 BW: 80 rot: 180		

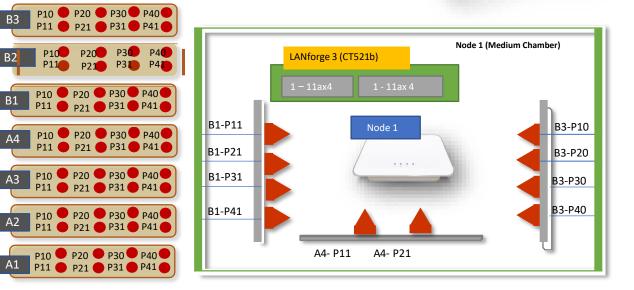
6.2.1 Maximum Connection Test (32-STA) Results

	Туре	Result	Notes
-	6.2.1 Assumptions	INFO	The spec is open to interpretation: Candela assumes stations can run at full available NSS and bandwidth.
-	6.2.1.5.A 2.4Ghz cv_udp-1.1-1.sta06001.0.0	PASS	Download-PER: 0STA-RSSI: -26 Rx-Rate: 600M Tx-Rate: 240M
	6.2.1.5.A 2.4Ghz cv_udp-1.1-1.sta06011.0.0	PASS	Download-PER: 0STA-RSSI: -26 Rx-Rate: 600M Tx-Rate: 180M
	6.2.1.5.A 2.4Ghz cv_udp-1.1-1.sta06021.0.0	PASS	Download-PER: 0STA-RSSI: -26 Rx-Rate: 600M Tx-Rate: 180M
	6.2.1.5.A 2.4Ghz cv_udp-1.1-1.sta06031.0.0	PASS	Download-PER: 0STA-RSSI: -26 Rx-Rate: 600M Tx-Rate: 240M
	6.2.1.5.A 2.4Ghz cv_udp-1.1-1.sta06041.0.0	PASS	Download-PER: 0STA-RSSI: -26 Rx-Rate: 600M Tx-Rate: 240M
	6.2.1.5.A 2.4Ghz cv_udp-1.1-1.sta06051.0.0	PASS	Download-PER: 0STA-RSSI: -26 Rx-Rate: 600M Tx-Rate: 240M

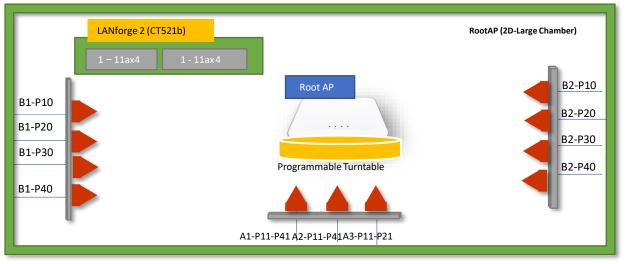
TR-398 Test Equipment and Components

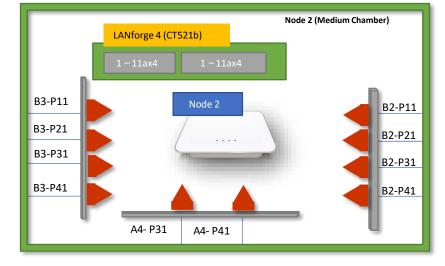
TR-398 Issue 3 Test Cases


- 6.1. RF capability
 - 6.1.1 Receiver Sensitivity Test
- 6.2. Baseline Performance
 - 6.2.1 Maximum Connection Test
 - 6.2.2 Maximum Throughput Test
 - 6.2.3 Airtime Fairness Test
 - 6.2.4 Dual-band Throughput Test
 - 6.2.5 Bidirectional Throughput Test
 - 6.2.6 Latency under Load Test
 - 6.2.7 Quality of Service
- 6.3. Coverage
 - 6.3.1 Range Versus Rate Test
 - 6.3.2 Spatial consistency test -
 - 6.3.3 802.11ax Peak Performance Test
- 6.4. Multiple STAs Performance
 - 6.4.1 Multiple STAs Performance Test
 - 6.4.2 Multiple Association/Disassociation Stability Test
 - 6.4.3 Downlink MU-MIMO Performance Test
 - 6.4.4 Multicast Multi-Station
- 6.5. Stability/Robustness
 - 6.5.1 Long Term Stability Test
 - 6.5.2 AP Coexistence Test
 - 6.5.3 Automatic Channel Selection Test
- 6.6 Mesh Performance
 - 6.6.1 Mesh Backhaul RVR
 - 6.6.2 Mesh Backhaul Node2 RVR
 - 6.6.3 Mesh Roam Time



The testcases in Orange colour represent new tests added in TR-398 Issue3

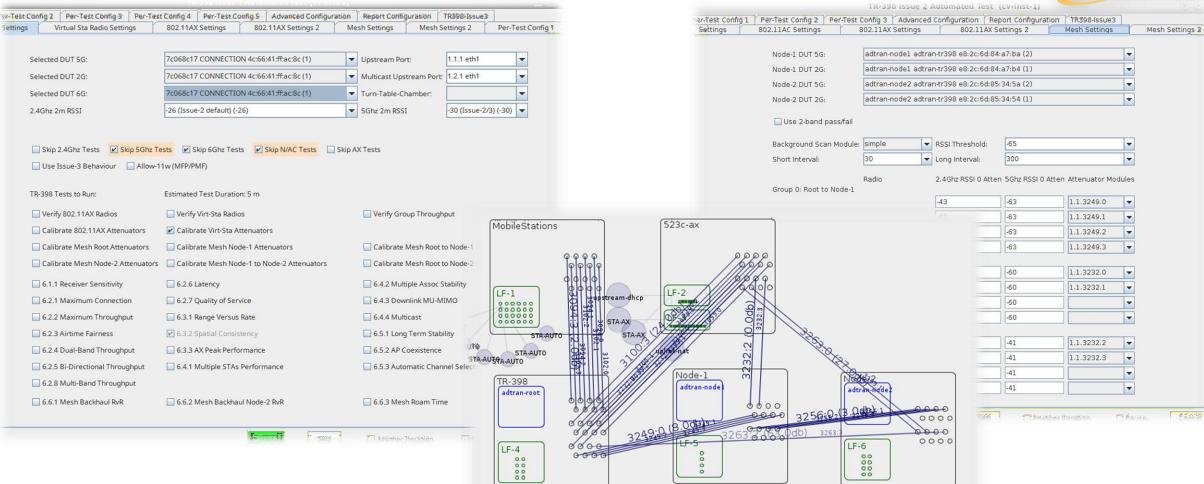

TR398 issue 3 + Mesh Wiring Diagram



Candela

TECHNOLOGIES

TR-398 Issue 3+ Mesh Testbed Images



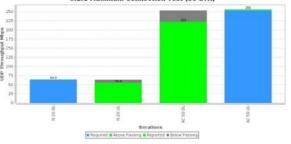
TR-398 Issue 3 GUI

TR-398 Issue3 Test Report

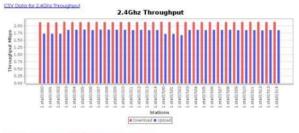
TR-398 Issue 2 WiFi Performance Test Plan

	Test Setup Infor	mation	
Device Under Test	Nome	DUT	
	SSIDs	DUT_2G DUT_5G	
	Passwords		
	BSSIDs		
	Notes	[BLANK]	
Estimated Run Time	17.3 h		
Actual Run Time	13.011 h		

Objective


The TR-378 Issue 2 WiRi Performance test plan by the Broadband forum provides a comprehensive set of tests to qualify the performance of WiRi access points (AN) designed for residential and small affice environments, Radio performance, Throughput, Connection Stability, Aitmen Farmes, AP Co-exiltence, Mu, MiNO Performance, Spatial Consistency and Long-term Stability, attress referes a AP co-exiltence this test plan. The test plan is designed for service providers deploying in thore WiRi AP1 to gualify the APL Candelo Technologies offers a fully outformer RR-378 Bisue 2 test system. The user can select from the list of less available, Matt test can un fully automated, through some require user interaction. Measurements, are made and compand to the specified PASS/FAL criteria in the TR-376 Bisue 2 test plan and this report will show the summary PASS/FAL exists followed more defined results for each test.

Summary Results

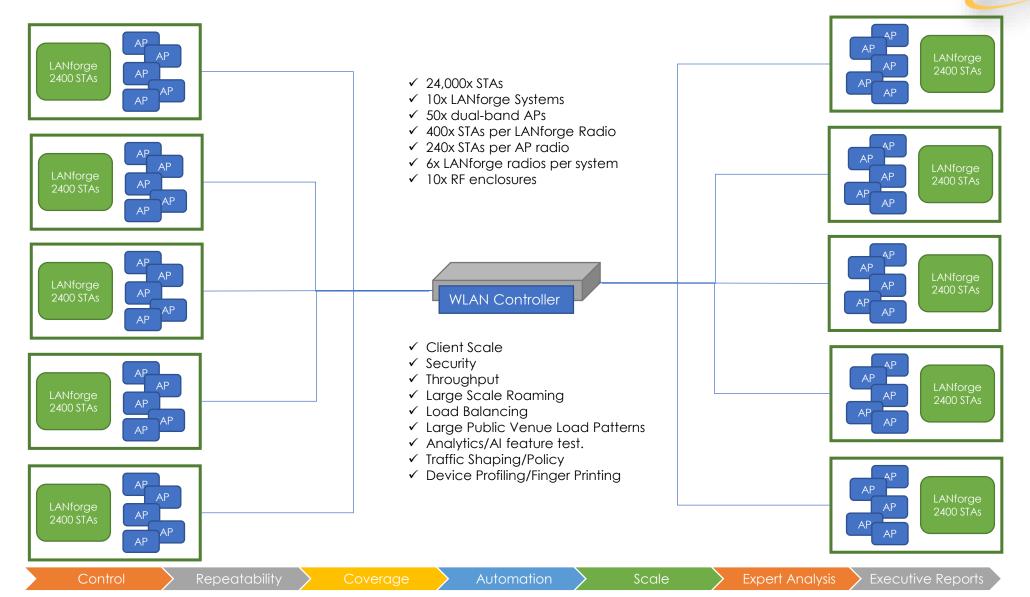

Test	Result	Condela \$core	Bapsed	Info
Colbrate Mesh Zero Attenuation RSSI (STA to Node-1)	Skipped	0	0	
Calibrate Mesh Zero Attenuation RSSI (STA to Node-2)	Skipped	0	0	
6.1.1 Receiver Sensitivity Test	2.4Ghz EAL SGhi EASS	41	2.505 h	N 2.4Ghz passed 2 / 16 N Fail-Avg 10.1 N Pass-Avg; 13.0 9.24Ghz Failed by-thep: 142.0 Passed-by-thep: 24.0 4.2 Ghz passed 16 / 16 Pasi-Avg 4.2 AC SGhz Foiled-by-thep: 0.0 Passed-by-thep: 60.0 Internal ERROR: Rotation table tailed to inlate.
6.2.1 Maximum Connection Test (30-	2.4Ghr EAL	95	12.159	Throughput: N 2.4Ghz UL 86.61% 0 101.03% Throughput: AC 5Ghz UL 101.02%

STA)	5Ghz EAIL		m	DL 87.54% Passed PER: 116 / 120
6.2.2 Maximum TCP Throughput Test	2.4Ghz PASS SGhz FAIL	92	8.867 m	Throughput N 2.4Ghz UL 110.13% DL 108.31% Throughput AC 5Ghz UL 64.24% DI 86.36%
6.2.3 Airtime Fairness Test	2.4Ghz FAIL 5Ghz FAIL	0	32.324 m	AC 5Ghz passed 0 / 6 N 2.4Ghz passed 5 / 6
6.2.3 Issue-3 Airtime Fairness Test	Skipped	0	0	
6.4.4 Multiple STA Multicast Test	Skipped	0	0	
6.2.4 Dual-Band Throughput Test	2.4Ghz PASS 5Ghz FAIL	45	25.212 m	N 7 / 12 AC 4 / 12
6.2.5 Bidirectional UDP Throughput Test	2.4Ghz FAIL 5Ghz FAIL	50	36.453 m	N 2.4Ghz passed 1 / 3 AC 5Ghz passed 2 / 3
6.2.6 Latency Test	Skipped	0	0	
6.2.7 Quality of Service Test	Skipped	0	0	
6.3.1 Range Versus Rate Test	2.4Ghz FAIL SGhz FAIL	38	2.127 h	N 2.4Ghz UL 5 / 17 DL 3 / 17 AC 5Ghz UL 9 / 14 DL 6 / 14
6.3.2 Spatial Consistency Test	2.4Ghz PASS SGhz PASS	0	58.054 m	Internal ERROR: Rotation table failed to rotate. N 2.4Ghz passed 0 / 0 AC 5Ghz passed 0 / 0 AX 24Ghz passed 0 / 0 AX 5Ghz passed 0 / 0 AX 6Ghz-160 passed 0 / 0
6.3.3 AX Peak Performance TCP Throughput Test	Skipped	0	0	
6.4.1 Multiple STAs Performance Test	2.4Ghz FAIL 5Ghz FAIL	33	29.817 m	N 2.4Ghz Passed 4 / 6 AC 5Ghz Passed 0 / 6
6.4.2 Multiple Association / Disassociation Stability Test	2.4Ghz FAL SGhz PASS	96	4.755 m	N 2.4Ghz Passed 15 / 16 AC 5Ghz Passed 16 / 16
6.4.3 Downlink MU-MIMO Performance Test	Skipped	0	0	
6.5.2 AP Coexistence Test	2.4Ghz FAL 5Ghz FAL	156	36.986 m	Passed 6 / 8 NOTE: Auto-Calibrated Interferer transmit rates: 5G-80Mhz-AC: 133.33 Mbps 5G-40Mhz-AC: 54.39 Mbps 2.4Ghz-20Mhz N: 23.40 Mbps
6.5.3 Automatic Channel Selection	Skipped	0	0	
8.1.1 Mesh Backhaul RvR	Skipped	0	0	
8.1.2 Mesh Backhaul Node-2 RvR	Skipped	0	0	
8.2.1 Mesh Roam Time	Skipped	0	0	

6.2.1 Maximum Connection Test (30-STA)

N 2.4Ghz Throughput (goodput) for each station.

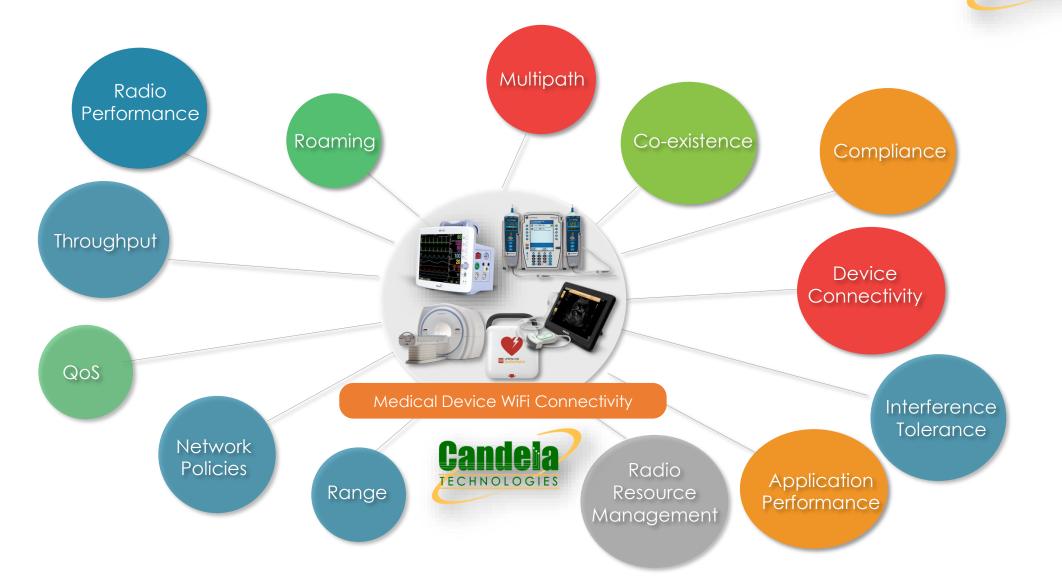
Max-Cx-Test: Snapshot N 2.4Ghz Download


Port	Te-Bps Lm	Ra-Bps 1m	Te Fol	Te Link- Rote	Rx Link- Rote	Mode	Channel	Lost CX- Time (ms)	PSSI (dBm)	AP		MAC
1.1.10	25 bps	2.195 Mibipi	3.571	144.4 Mbps	144.4 Mbps	802.11 bgn 20 2x2	2,437	246	-26	78:97:41:0E:17:P9	192,168,29,188	80:8a:52:06:1a:2
1.1.11 sta01001	25 bps	2.189 Mbps	7.143	117 Mibps	144,4 Mbps	802.11bgn 20 2x2	2,437	256	-26	70:97:41:DE:17:F9	192,168,29,181	80:84:52:06:05:2
1.1.12 sta01002	25 bps	2.191 Mbps	10	144.4 Mbps	144.4 Mbps	802.11bgn 20.2x2	2,437	311	-26	78:97:41:DE:17:F9	192.168.29.98	00:0a:52:06:3a:2
1.1.13 sta01003	35 bps	2.203 Mbps	3.571	117 Mbps	144.4 Mbps	802.11bgn 20.2x2	2,437	263	-26	79:97:41:06:17:P9	192.168.29.32	88:84:52:06:84:2
1.1.14 sta01004	35 tips	2.2 Mbps	15.625	144.4 Mbps	144.4 Million	802.11bgn 20.2x2	2,437	252	-26	78 : 97 : 41 : 06 : 17 : P9	192.168.29.116	60 (0a) 52 (96) 01: 2
1.1.15 sta01005	35 bips	2.196 Mbps	4	130 Mbps	144.4 Mops	802,11bgn 20.2x2	2.437	279	-26	70:97:41:00:17:P0	192.165.29.240	60:0a:52:06:1e:2
1.1,18 sto01006	35 bps	2.194 Mbps	13.333	13D Mbps	144.4 Mbps	802.11bgn 20.2x2	2,437	259	-26	78:97:41:0E:17:F9	192.168.29.59	88:89:52:86:37:2
1.1.19 sto01007	35 tips	2.203 Mbps	13.333	117 Mbp6	144.4 MIQ08	802.11bgn 20.2x2	2,437	290	-26	78 (97) 41 (DE (17) PS	192.168.29.33	88+6a+52+86+35+2
1.1.20	35 bps	2.2 Mbps	6.897	150 Mbps	144.4 Mops	802.11bgn 20.2x2	2.437	257	-26	70:37:41:06:17:79	192.168.29.78	e6:5a:52:66:25:2
1.1.21 1001009	31 bps	2.19 Mbps	6.897	115.6 Mbps	144.4 Mbps	802.11bgn 30.2x2	2,437	251	-26	79:97:41:DE:17:P9	192.168.29.201	88:0a:52:86:18:2
1.1,22 sto01010	31 tips	2,193 Mb/bi	3.571	144.4 Mbps	148.4 MIDDS	802.11bgn 20.2x2	2,437	271	-28	70:57:41:06:17:F9	192,168,29,97	60 - 6a : 52 - 66 - 13 - 3
1.1.23 sto01011	39 bps	2.193 Mbps	6.897	130 Mbps	144.4 Mbps	802.11bgn 20.2x2	2,437	260	-26	70:07:41:DE:17:F9	192.168.29.195	60:0a:52:06:2a:2
1.1,24	35 bps	2.192 Mbps	10.714	130 Mbps	144.4 Mbps	802.11bgn 20.2x2	2.437	258	-26	78:97:41:0E:17:P8	192.168.29.7	88:82:52:86;33:2
1.1.25 sto01013	31 bps	2.198 Mibple	8	130 Mbps	144.4 MOIDS	802.11 bgn 20.2x2	2,437	195	-26	78 : 97 : 41 : DE : 17 : F9	192.168.29,13	00-0a-52-06-20-2

Controller Testing

WLAN Controller Testing – 24,000 11n STAs

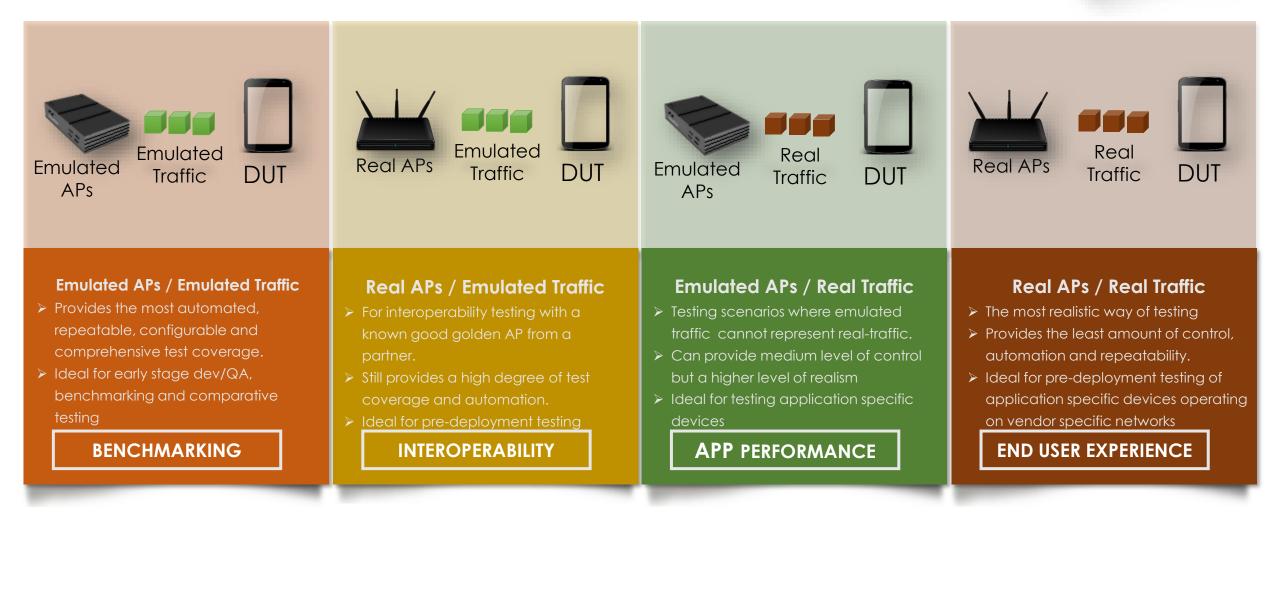
Testing Stations (IoT Devices)



IOT DEVICE TEST REQUIREMENTS

Home	Healthcare	Retail/Industrial	Transportation	Module Vendors	Service Providers
					Image: state
 HD Video Quality Tolerance to Interference Interoperability Crowded environment Client Connectivity Latency for Gaming Range & Roaming Security Mesh performance Battery Life Automation/Test Coverage 	 Connection Reliability Mobility Performance QoS and consistent throughput Security Coexistence on hospital Wi-Fi networks Location Services Proper Device/Network Management Proof of Concept Vendor Selection Test Services/Consulting 	 Zero Downtime Range Performance Application throughput Low Latency Security Location Services Cellular and Wi-Fi Handover /Co- existence Proof of Concept /Vendor Selection Test Services/Consulting 	 Passenger Experience Zero Downtime Range Performance Video Performance Low Latency Security Location Services Cellular and Wi-Fi Handover /Co- existence Proof of Concept /Vendor Selection Test Services/Consulting 	 Radio Performance Protocol Compliance De-Sense Testing Manufacturing Test MAC Performance/ Throughput DFS testing Application Performance Roaming & Range Battery Life Security Automation/Test Coverage 	 Vendor Selection Proof of Concept Mesh Performance Video Performance Throughput Cellular and Wi-Fi Co- existence DFS testing Application Performance Roaming / Range Battery Life Security Automation

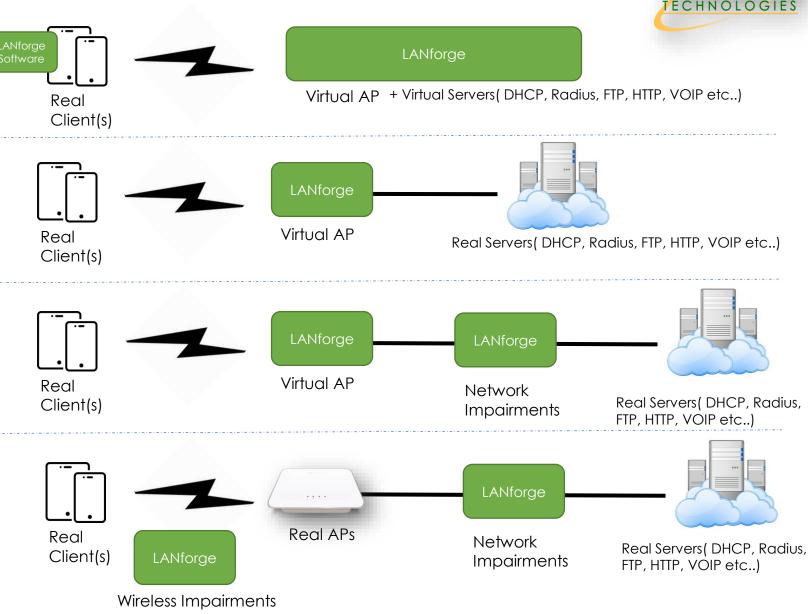
Medical Device Testing Scenario

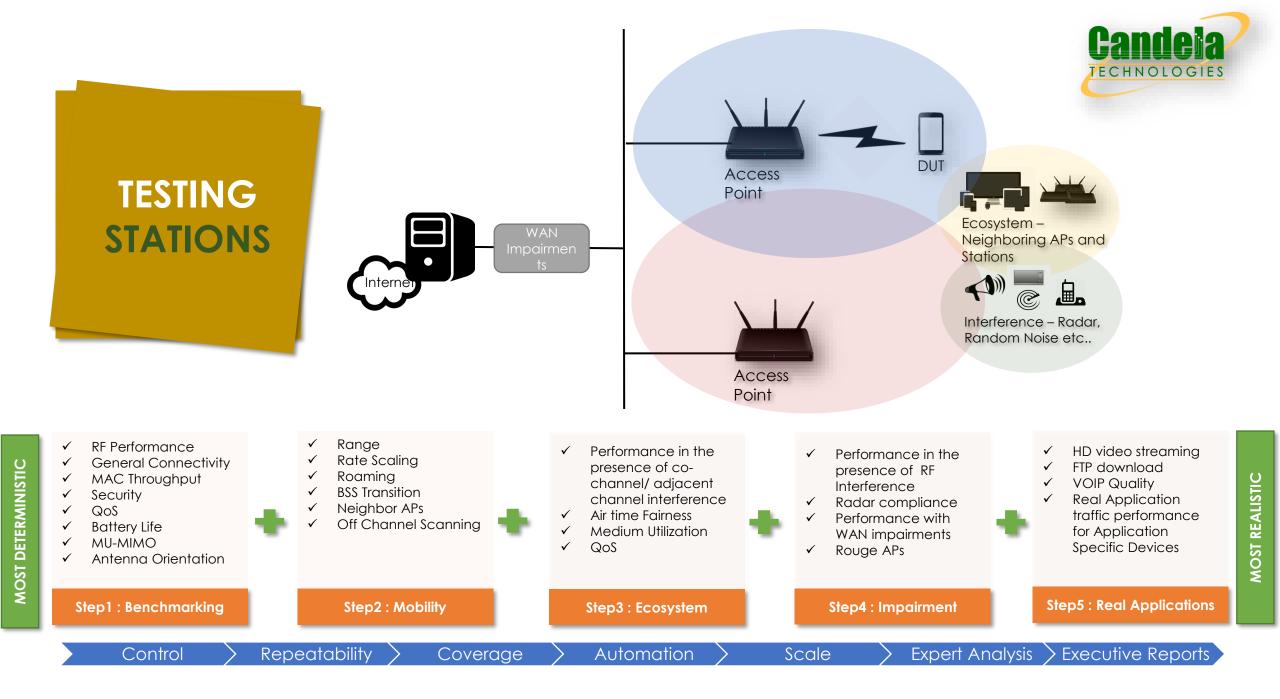


Candela

TECHNOLOGIES

SUPPORTED OPTIONS

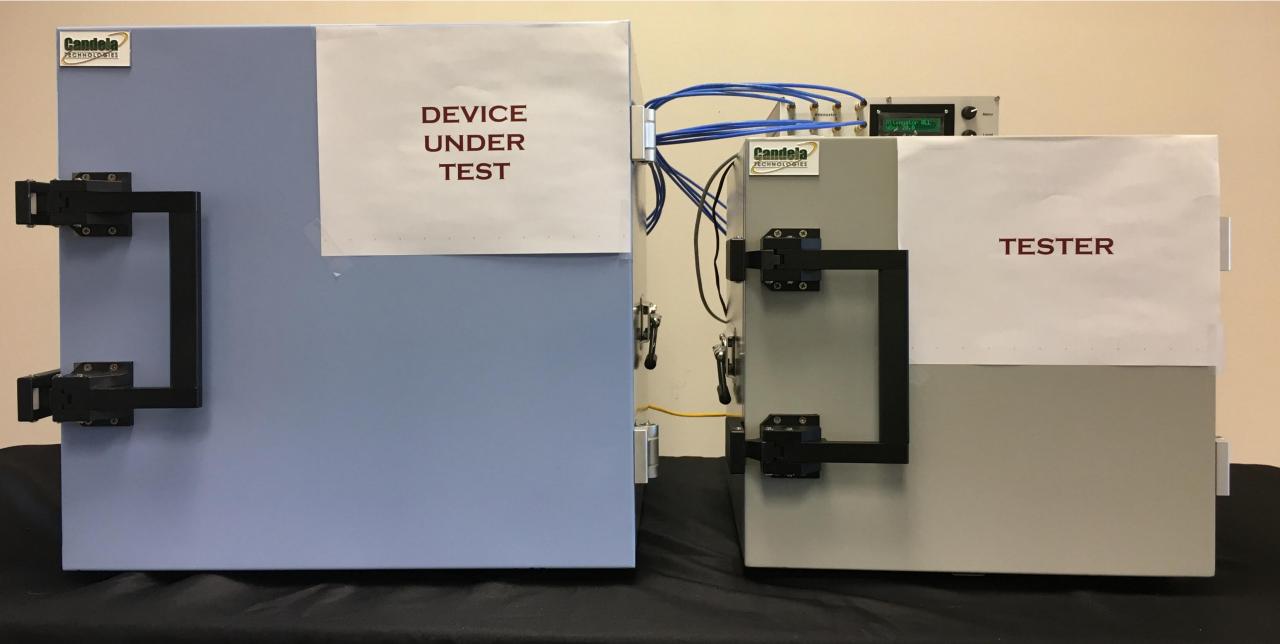

Some Test Topologies

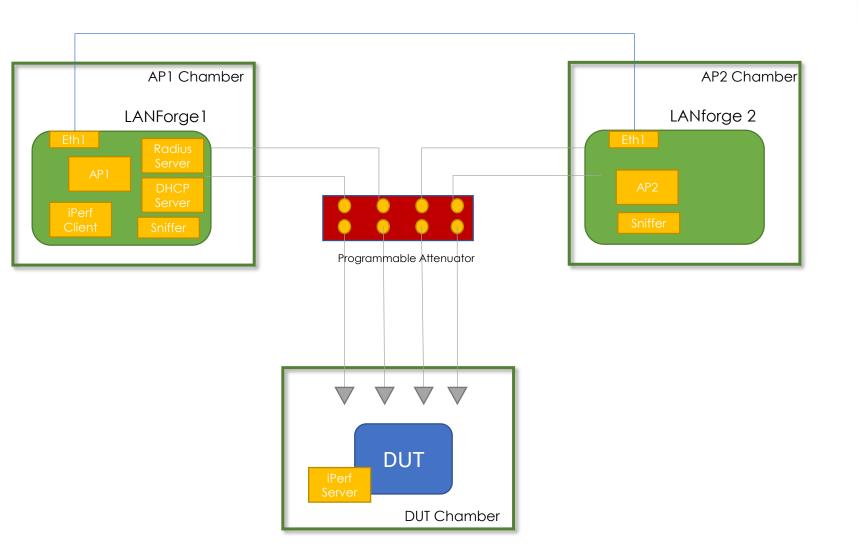

Testing real client (DUT) with LANforge acting as the AP, traffic generator and all the network servers behind the AP. Use iPerf or LANforge endpoint software on the DUT.

Testing real client (DUT) with LANforge acting as the AP, but connecting to real network servers. The traffic between DUT and servers can be real application traffic and LANforge will automate creation of may different types of emulated APs an test scenarios

Same scenario as above, but in this case LANforge can also add various network impairments on the wired network between the virtual APs and the real network servers to test the effects of various network conditions on applications.

Testing real client (DUT) connected to real APs and real network servers. LANforge can create various wireless impairments (like co-channel/adjacent channel interference, emulated distance, noise, roaming et..) and also various impairments on the wired network (loss, jitter, packets errors etc..) and test effects on application traffic.




LANforge WiFi Network Emulation

Simple Client Roaming Test Setup

Candela

TECHNOLOGIES

Candela WiFi Client Testbed

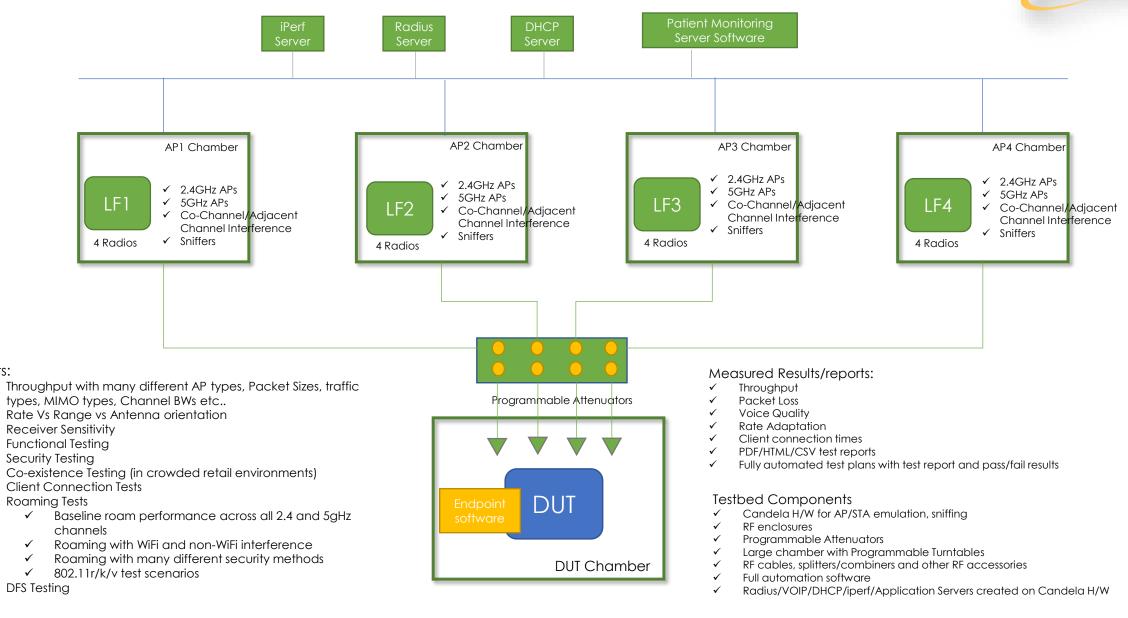
Tests:

 \checkmark

 \checkmark

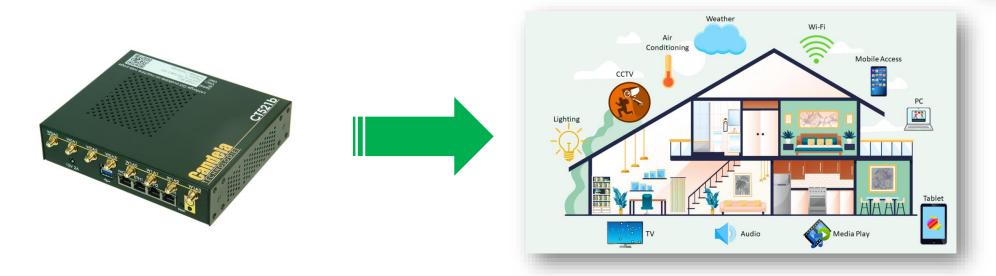
 \checkmark

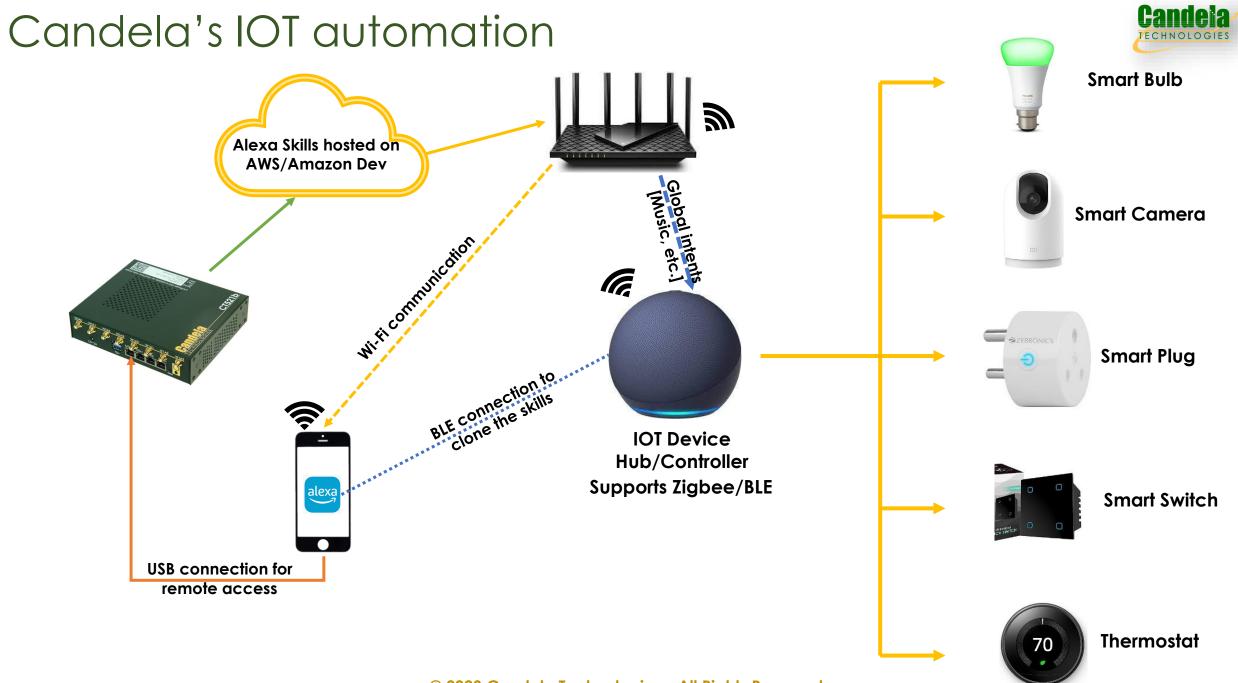
 \checkmark


 \checkmark

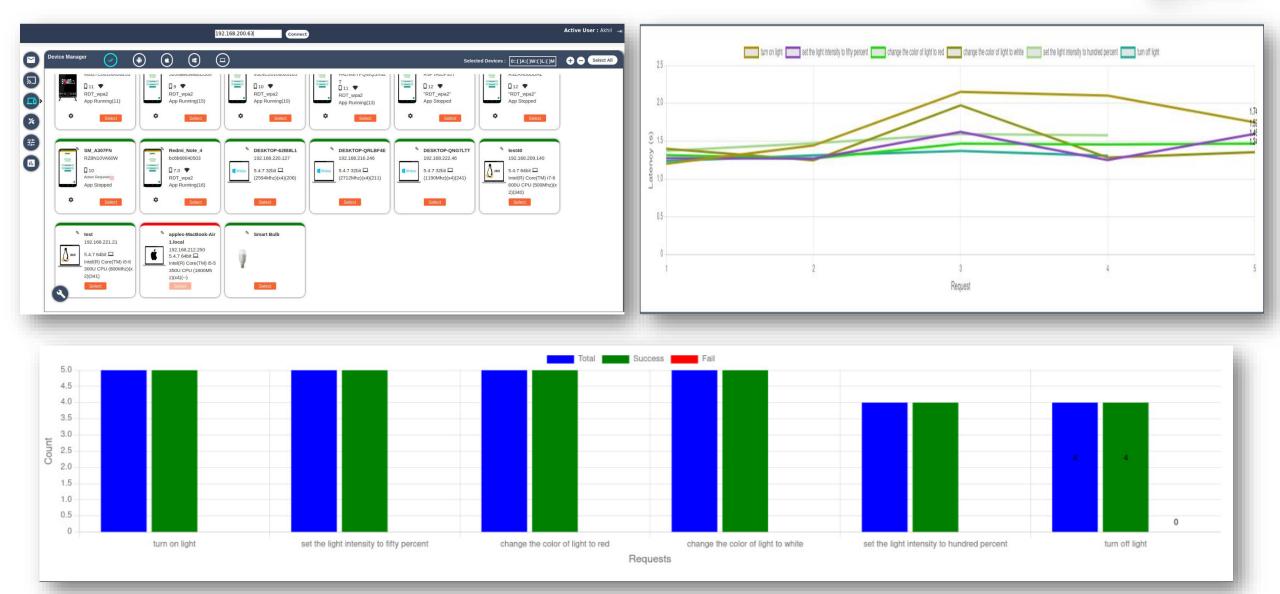
✓

✓

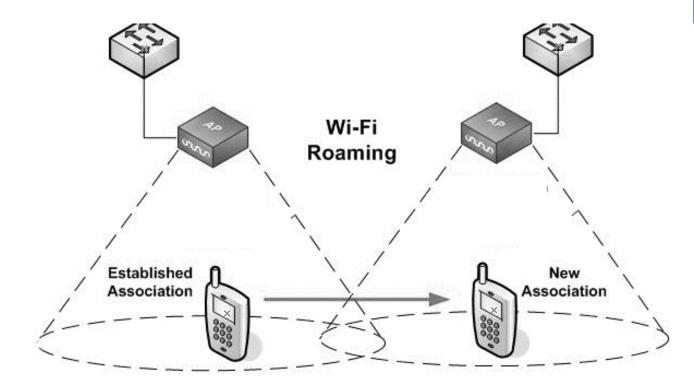

 \checkmark



Candela's IOT automation



- We have automated various IOT controllers like Alexa, Google nest such that with a single click we would be able to give actions for various devices which are present in an ideal home.
- Using this automation, we can try to validate the latency of the IOT devices which have got
 invocations from the IOT controller through the Access Point.
- We report the performance of the bulb in long durations with repetitive change in the actions that triggered like change in brightness, changing the color, etc..
- Using our Web-UI you can have the test triggered with a less manual intervention.
- A detailed test report is generated after the test is completed with various kinds of information like API's initiated and delay responses, along with log files such that we can easily narrow down to the problem.


Candela's IOT automation

© 2023 Candela Technologies – All Rights Reserved

Roaming Testing

ROAMING PROCESS

Roam Initiation

- Measure RSSI, Packet Loss, Reties etc..
- Off Channel Scanning
- Create Neighbor AP lists
- Opportunistic Key Caching

Roam Decision

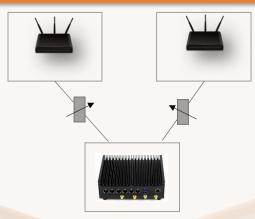
- Check if RSSI, Loss, Retry Thresholds are hit.
- Monitor AP assisted handoff commands.
- Look for loss of connectivity/service disruption of any kind

Roam Execution

- Disconnect with old AP.
- Initiate 802.11
 connection with new AP.
- 802.1x Authentication Handshakes
- Session Key generation.
- Routing traffic through new AP.

ROAMING TEST METHODS

Walk Tests


Pros

- ✓ Highly realistic.
- \checkmark Can test Interoperability with most popular stations.
- ✓ Can test all three steps of roaming (initiation, decision and execution)

Cons

- ✓ Not Scalable
- ✓ Not Repeatable
- ✓ Not Automatable ✓ Extremely time
- consuming ✓ Extremely hard to debug issues

Using Attenuators

Forced Roaming

Pros

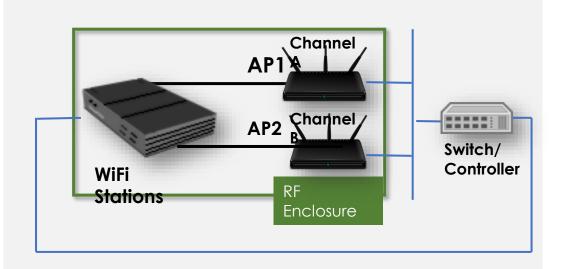
- ✓ Can scale to 1000s of roams for many hours and the only way to find issues related to scale.
- ✓ Can run tests very fast.
- ✓ Fully Automatable, Controllable and
- ✓ Cost per roam the Lowort

Cons

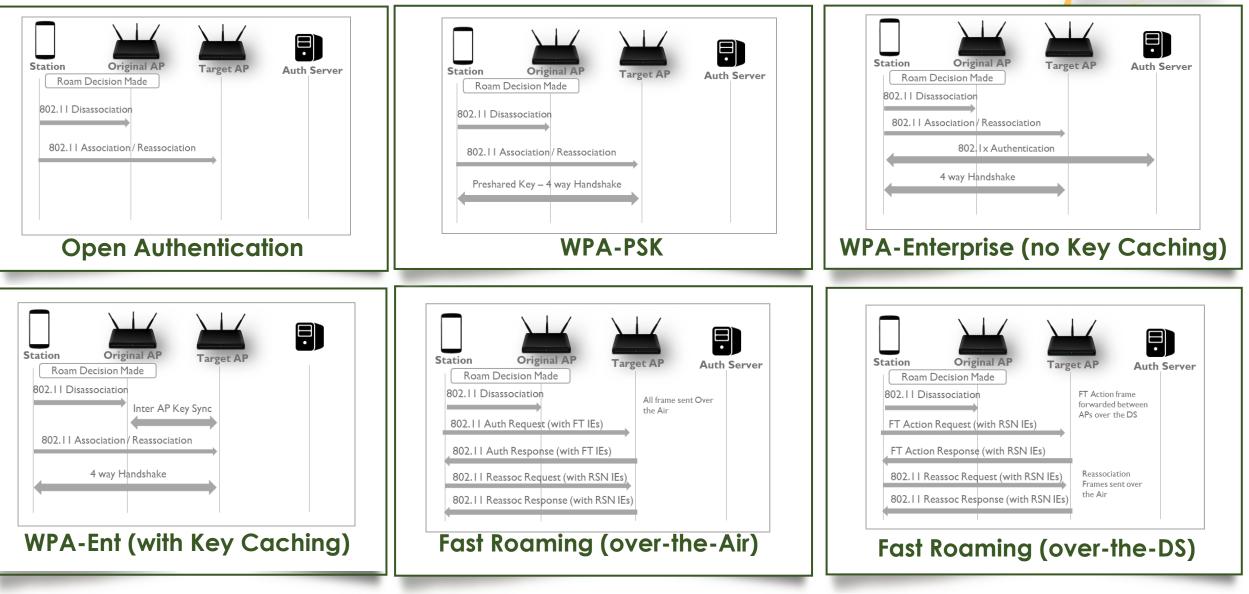
- ✓ Can only test Roam execution.
- ✓ Cannot test improvements in execution because of steps taking during roam initiation.
- ✓ Not very real-world

Pros

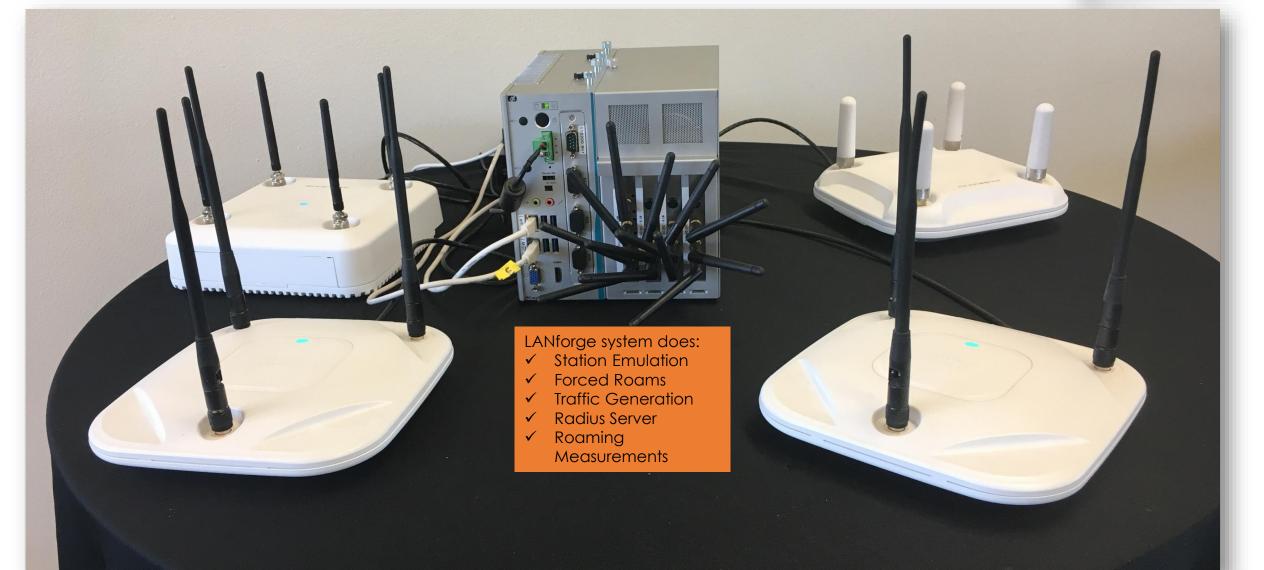
- ✓ Reapable
- \checkmark Automatable.
- ✓ Can test all three steps of roaming (initiation, decision and execution)

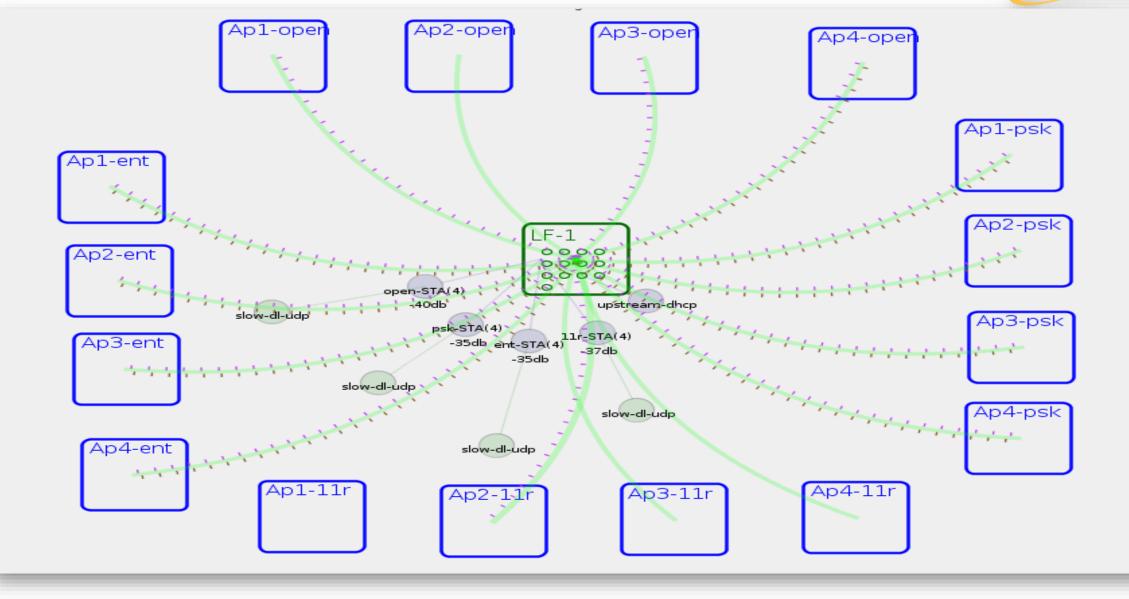

Cons

- ✓ Not Scalable
- ✓ Expensive setup
- ✓ Not easy to measure roaming delays and debug issues.
- \checkmark Not easy to isolate AP issues from station issues
- Repeatable

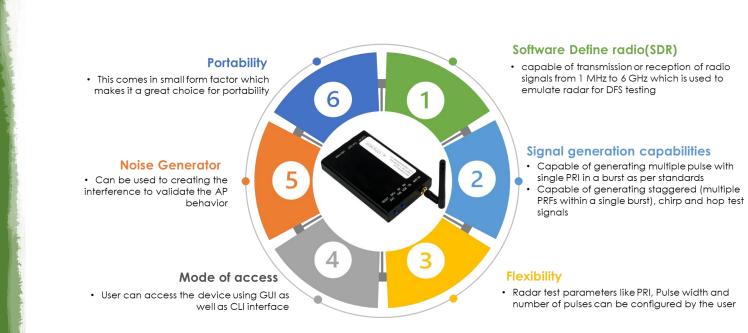


FORCED ROAM METHOD


ROAM EXECUTION METHODS


FORCED ROAM TEST SETUP PICTURE

LANforge GUI View



Sample Test Results


DFS Testing

What is DFS?

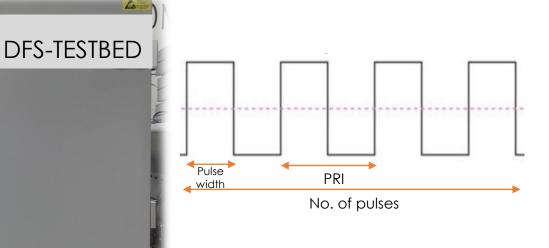
• Dynamic Frequency Selection allows APs to detect radar and avoid interference with radar pulses.

Software Define radio(SDR)

 capable of transmission or reception of radio signals from 1 MHz to 6 GHz which is used to emulate radar for DFS testing

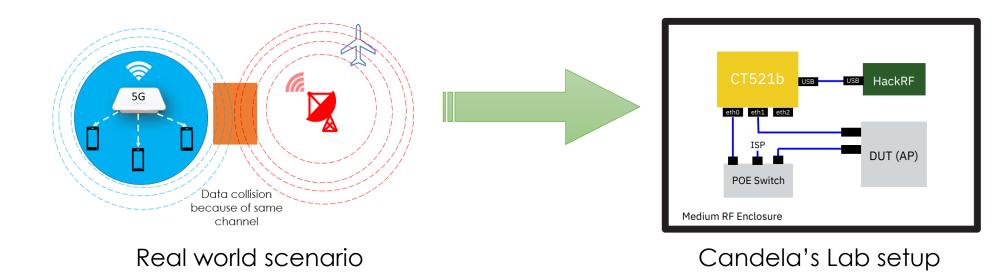
Signal generation capabilities

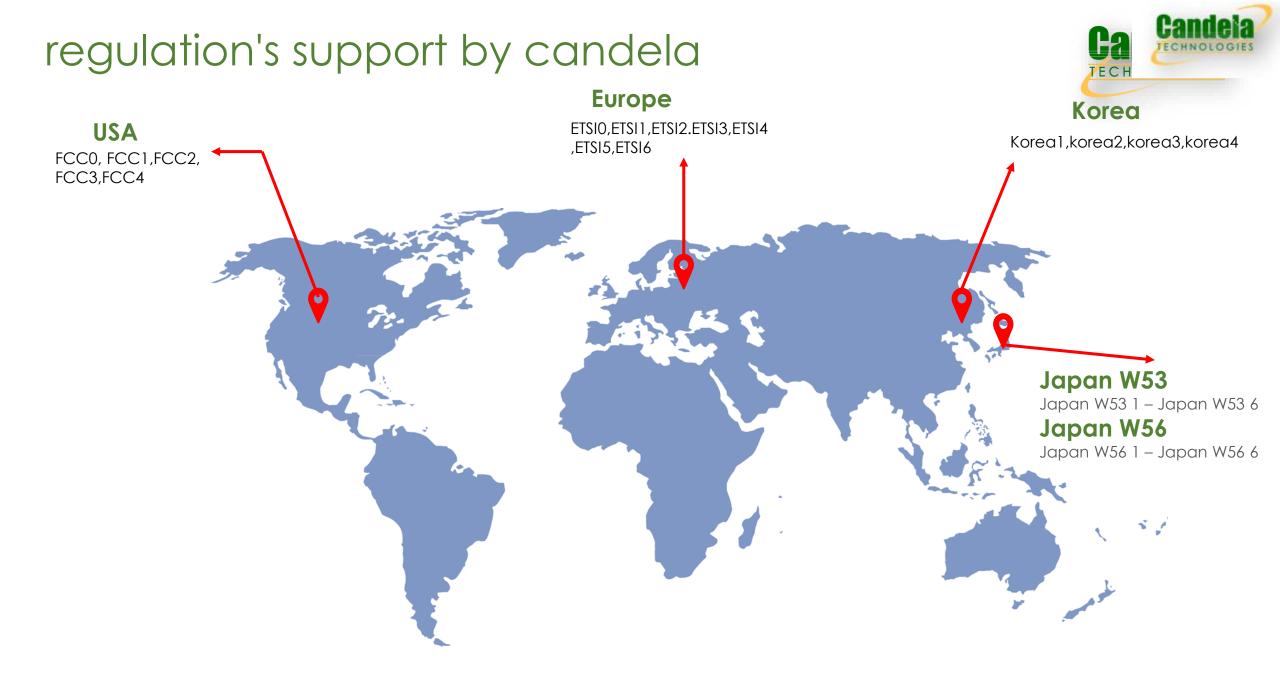
- Capable of generating multiple pulse with single PRI in a burst as per standards
- Capable of generating staggered (multiple PRFs within a single burst), chirp and hop test signals


Flexibility

• Radar test parameters like PRI, Pulse width and number of pulses can be configured by the user

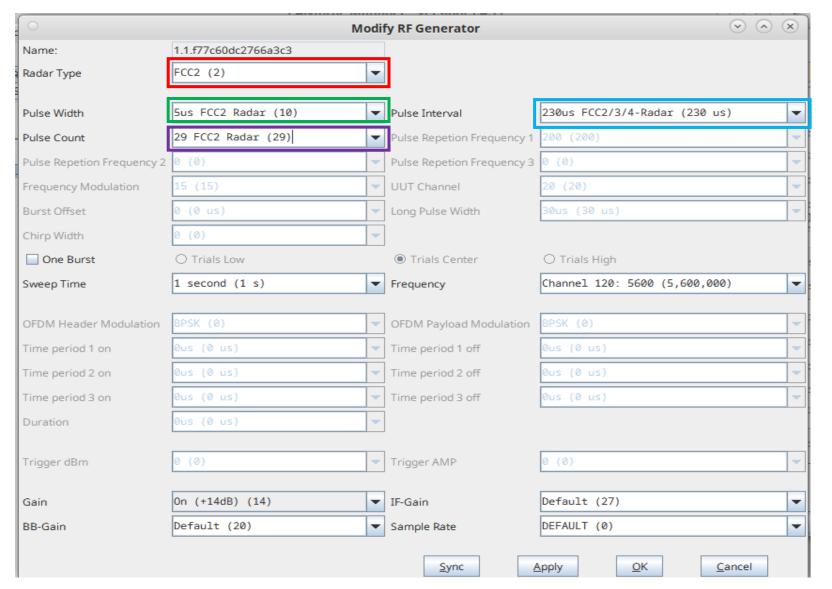
DFS Testbed Images


- > We can generate various radar signals using an RF generator by adjusting the radar parameters.
- We can perform below test cases using candela LANforge
 - 1. The detection probability test
 - 2. The detection Bandwidth test

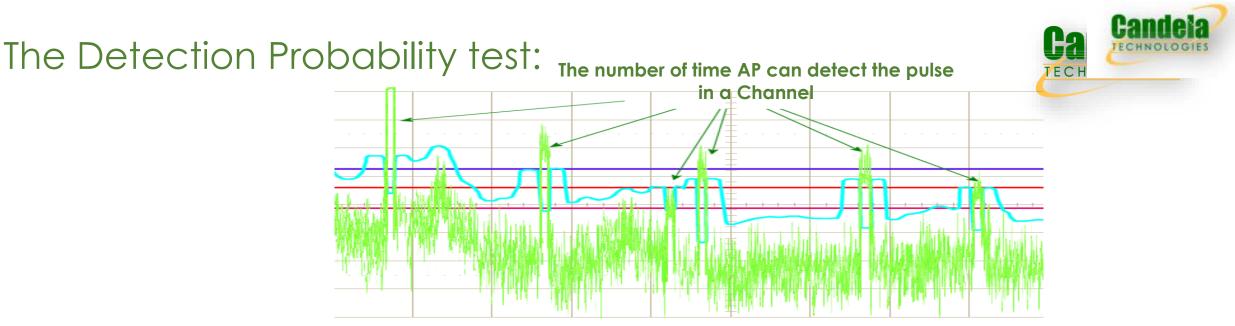

The DFS solution:

- This setup has the Candela Radar Signal Generator to generate all the Radar pulses.
- The Candela chassis to control the signal generator, run all the automation, and create background traffic and generate test reports.
- Medium RF chamber is used to provide RF isolation for this test setup, all in a super compact form factor.

Test Signals

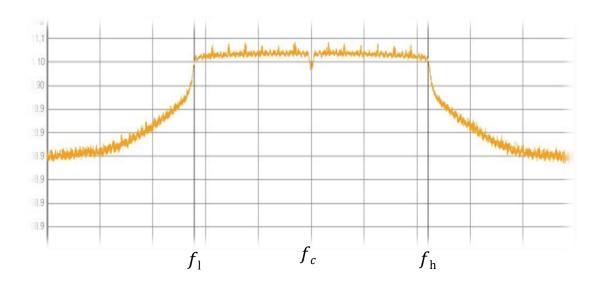

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Туре	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\begin{array}{c} \text{Roundup} \begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}}\right) \end{cases} \end{cases}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (I	Radar Types 1-	4)		80%	120

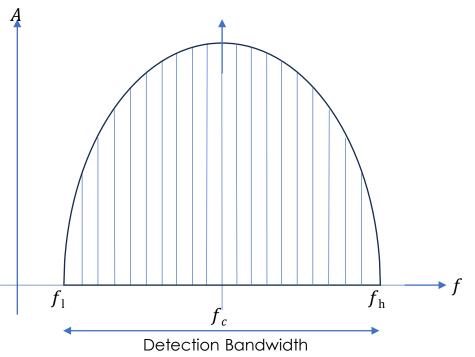
Radar test signal # (see note 1 to note 3)	Pulse W (ion frequency (PPS)	Number of different	Pulses per burst for each PRF (PPB) (see note 5)
	Min	Мах	Min	Max	PRFs	
1	0,5	5	200	1 000	1	10 (see note 6)
2	0,5	15	200	1 600	1	15 (see note 6)
3	0,5	15	2 300	4 000	1	25
4	20	30	2 000	4 000	1	20
5	0,5	2	300	400	2/3	10 (see note 6)
6	0,5	2	400	1 200	2/3	15 (see note 6)


Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Radar Type	Pulse Repetition Frequency (pps)	Pulse Width (µs)	Number of Pulses (per Burst)	Number of Trials	Burst Period (sec)
1	700	1	18	1	10
2	1800	1	10	1	2
3	330	2	70	1	60
4	3000	1	3 (per Hop)	100 (Number of Hop)	10

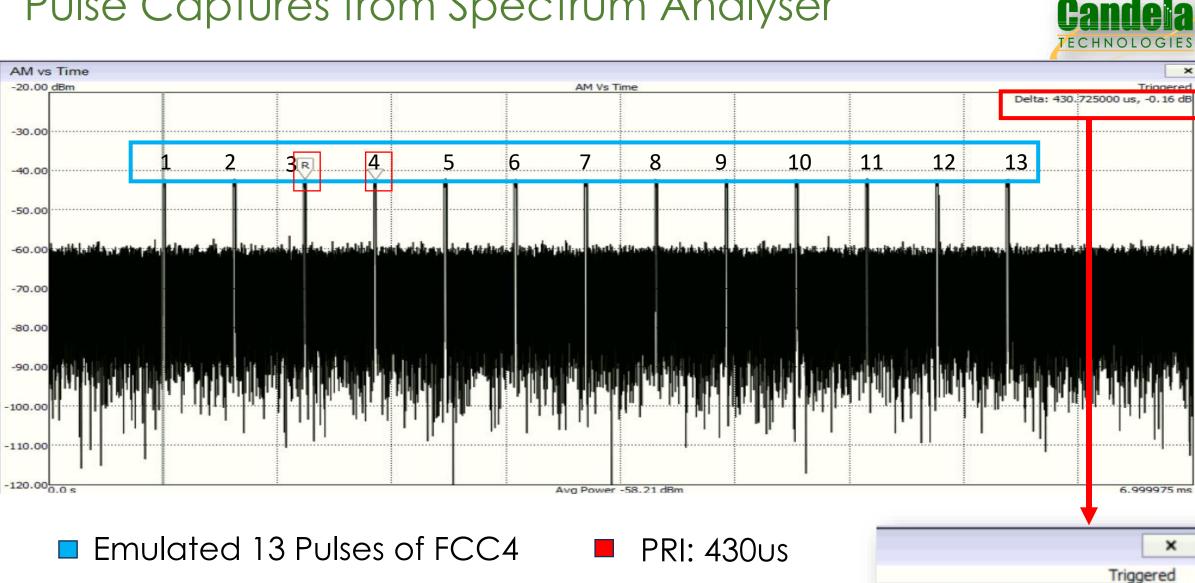
LANforge RF Generator GUI:


- The radar signal being tested. The drop down contains list of radar pulses of various standards
- Width of the pulse
- Pulse Repeating Interval of the pulse in a burst
- Number of pulses within a burst



- The detection probability test aims to check if an AP can detect the RADAR pulses which are generated on the active channel of the AP.
- RADAR pulses will be generated based on different parameters like pulse width, number of pulses and Pulse Repeating Interval.
- For a given test case, certain number of trials must be conducted to see if AP detects RADAR.
- The parameters of pulses might vary for every trial based on the type of RADAR pulse being tested.
 After triggering the pulses for the specified trials, we need to check how many times the AP can detect the RADAR.
- The detection percentage of RADAR must be greater than or equal to the specified value by the respective governing bodies.

The Detection Bandwidth test:

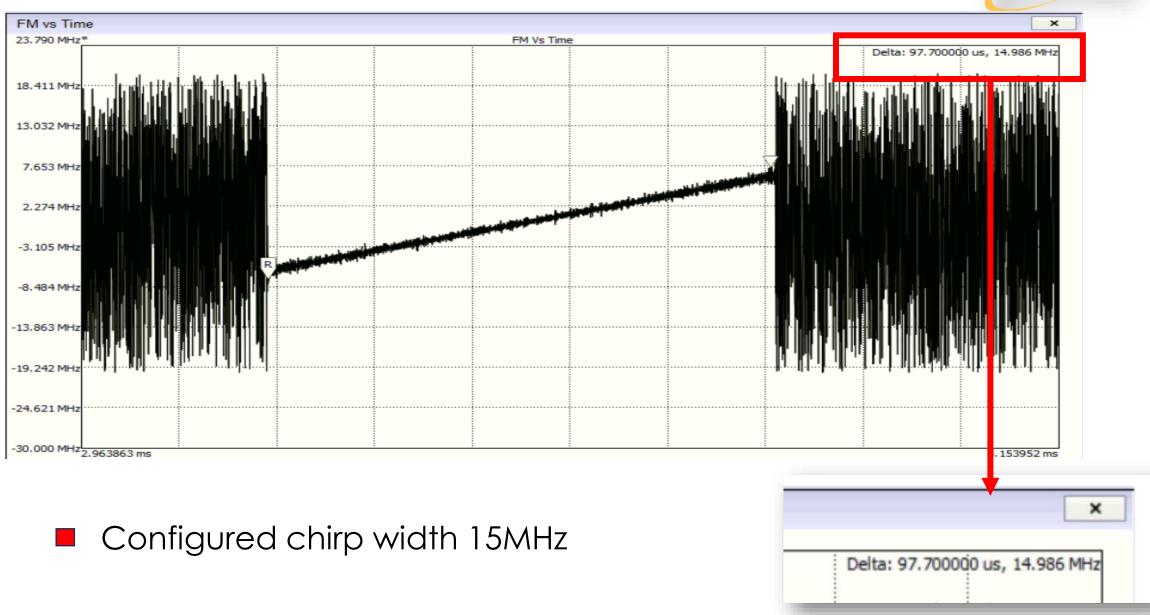

- Test Objective is to verify radar pulse detection across the entire bandwidth of the AP.
- Radar pulses are sent at every 1MHz frequency step within the AP bandwidth for 10 trails.
- Detection percentage is calculated at every frequency step.
- The range of frequencies with successful detection is calculated and will be checked as per standard's requirements.

Pulse Captures from Spectrum Analyser

Delta: 430.725000 us, -0.16 dB


Pulse width Captures from Spectrum Analyser

×


Triggered

Delta: 15.700000 us, 2.05 dB

Configured pulse width 15.7us

Chirp Modulation

Sample Test Reports:

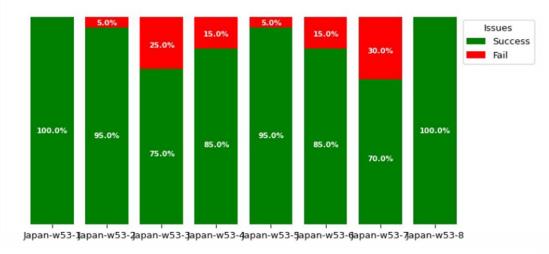
Detection Probability Test Report

Detection Bandwidth Test Report

2023-09-16-02:17:16

lest Setup Information

2023-09-16-20:06:54


	DUT Name	Test_AP		
Device under test	SSID	candelatest		
	Test Duration	0:55:26		

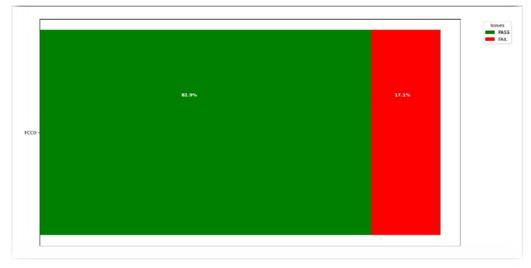
Objective

Detection Probability Test is compilance to the Dynamic Frequency Selection (DFS) Regulation, it creates regulatory specified radar pulses to the DUT epeatedly to measure the probability of detection.

Result Summary

he below graph provides information regarding detection probability percentage for various RADAR Types.

est Setup Information


	DUT Name	NXP_AP
Device under test	SSID	None
	Test Duration	1:11:07

Objective

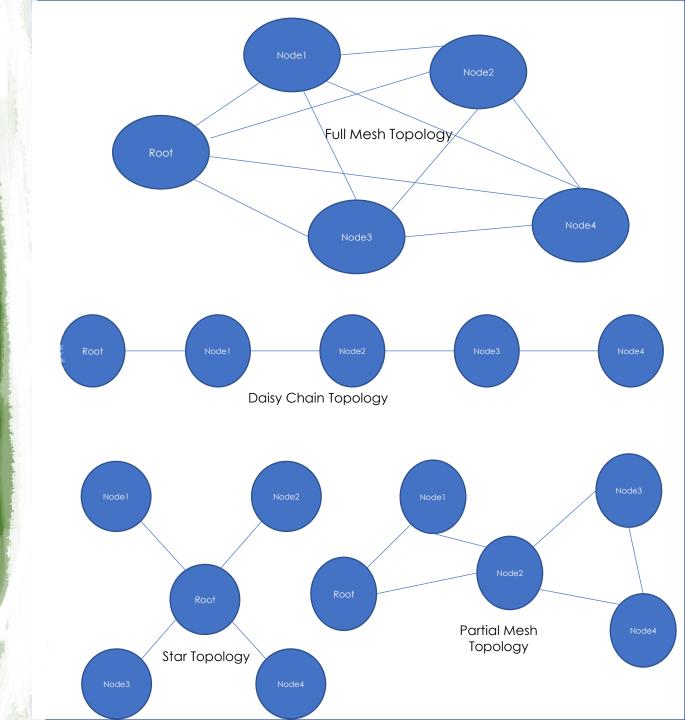
Detection Probability Test is compilance to the Dynamic Frequency Selection (DFS) Regulation. The purpose of this test is to subject the DUT to a Type 0 CC radar pulsewhile moving the frequency of the radar signal through the channel to characterized range of frequencies over which the DUT can detect the radar pulse.

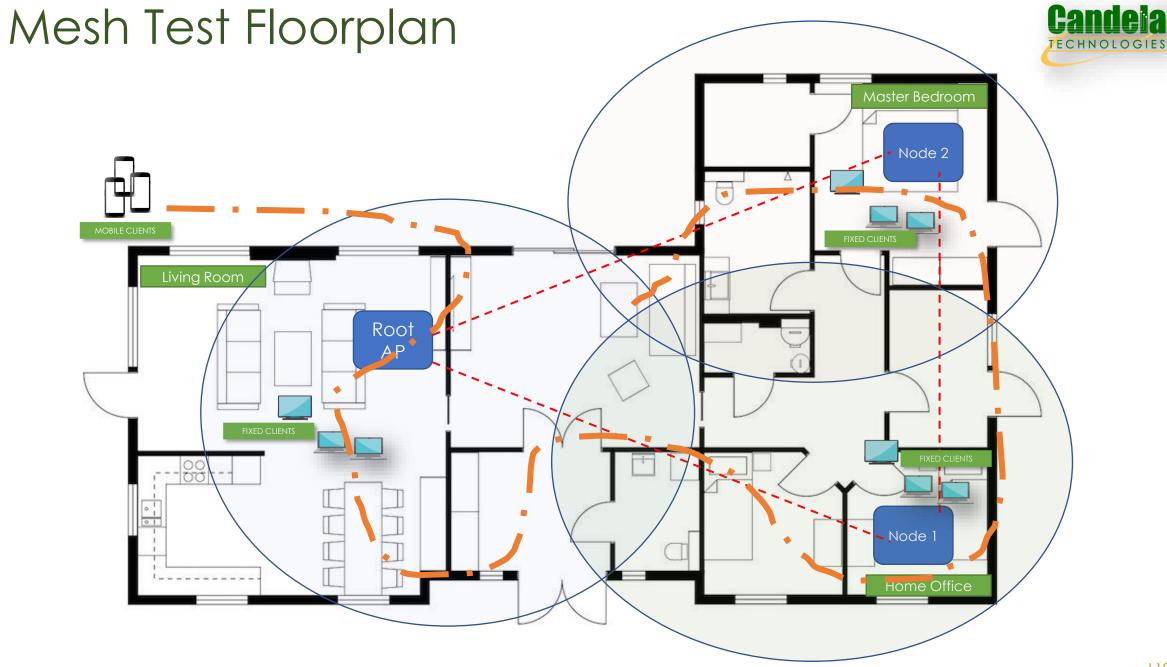
Result Summary

he below graph provides information regarding detection probability percentage for various RADAR Types.

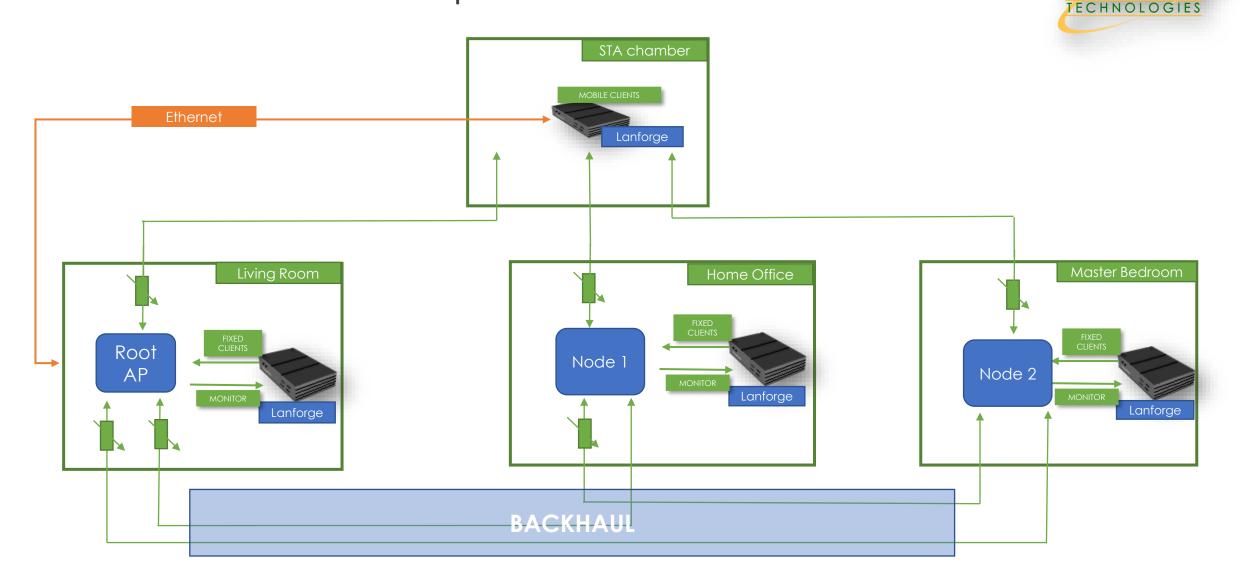
DFS Web-UI:

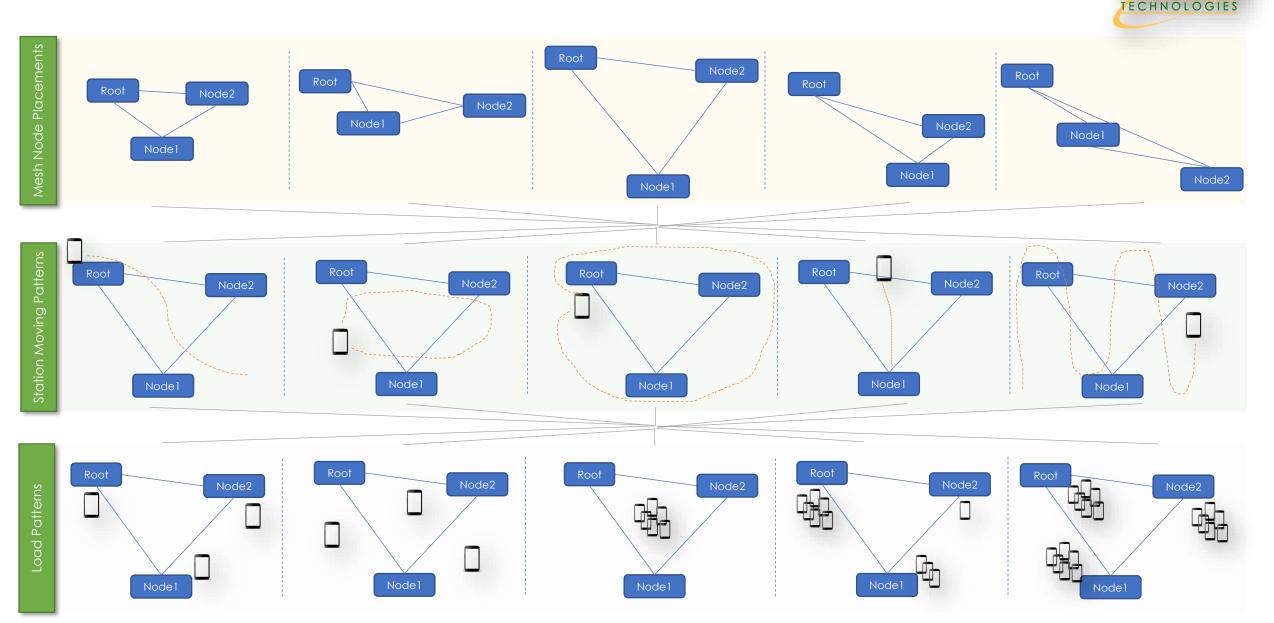
DFS Web-UI has been designed to execute a wide range of test cases based on various country standards with just a single click, ensuring a user-friendly experience.


etection Probability Test		Desired Detection(%): 60	Trials: 30
Clear USA FCC Europe ETSI Japan MIC Korea KCC	oshift ©Centre (arious country standards	_	mention the number of trails and d detections to run the test. Type FCC0 FCC1 FCC2 FCC3 FCC4


Sample WebGUI results:

Results								INFO:root: stop_sniffer INFO:paramiko.transport:Connected (version 2.0, client OpenSSH_8.8) INFO:paramiko.transport:Authentication (password) successful! INFO:root:pcap file name./pcap/dfs_csa_FCC0_Trial_1_channe156_2023-05-25-11-16.pcap
▶ fcc_test_	12							INFO:root:csa framepresent
10.000.000								INFO:root:csa frame is present INFO:root:radar detected
korea								INF0:root:csa frame time is May 25, 2023 11:17:02.316676222 IST
▶ testing								INFO:root:yes INFO:root:csa timeMay 25, 2023 11:17:02
b 5000								INFO:root:calculate detection time
► FCC0								INFO:root:detection time 0:00:04 INFO:root:detection time 4
► ETSI_dfs	_testing							INF0:root:{'FCC0': {'Trial_1': {'Burst': '1', 'Pulses': '18', 'Width': '1', 'PRI(US)': '1428', 'Detected': 'YES', 'Frequency(KHz)': '52
► fcc_dfs_t	test							'Trial_7': None, 'Trial_8': None, 'Trial_9': None, 'Trial_10': None, 'Trial_11': None, 'Trial_12': None, 'Trial_13': None, 'Trial_14': None, 'Trial_22': None, 'Trial_23': None, 'Trial_24': None, 'Trial_25': None, 'Trial_26': None, 'Trial_27': None, 'Trial_28': None, 'Trial_25': None, 'Trial_26': None, 'Trial_27': None, 'Trial_28': None, 'Trial_25': None, 'Trial_26': None, 'Trial_27': None, 'Trial_28': None, 'Trial_26': None, 'Trial_26': None, 'Trial_27': None, 'Trial_28': None, 'Trial_25': None, 'Trial_26': None, 'Trial_27': None, 'Trial_28': None, 'Trial_28': None, 'Trial_26': None, 'Trial_26': None, 'Trial_27': None, 'Trial_28': N
▶ Japan			Re	esults su	immo	۱۲۷		INFO:root:result data{'FCC0': {'Trial_1': {'Burst': '1', 'Pulses': '18', 'Width': '1', 'PRI(US)': '1428', 'Detected': 'YES', 'Frequency
▼ FCC_rand	dam			50115 50		i y		'Detected': None, 'Frequency(KHz)': None, 'Detection Time(sec)': None}, 'Trial_3': None, 'Trial_4': None, 'Trial_5': None, 'Trial_6': N 'Trial_14': None, 'Trial_15': None, 'Trial_16': None, 'Trial_17': None, 'Trial_18': None, 'Trial_19': None, 'Trial_20': None, 'Trial_21
▼ FCC_rand	dom				1			None, 'Trial_29': None, 'Trial_30': None}}
	-				k i i			INFO:root:starting sniffer INFO:py-scripts.lf sniff radio:channel: 56 frequency: 5280
▼ USA	<i>(</i>				/			INFO:root:generate radar INFO:root:Current date and time :
* USA	1							INFO:root:time stamp of radar sendMay 25, 2023 11:17:15
▼ FC0	CO							INFO:paramiko.transport:Connected (version 2.0, client OpenSSH_8.8)
.	Trial_1							INFO:paramiko.transport:Authentication (publickey) failed. INFO:paramiko.transport:Authentication (publickey) failed.
10	The let	Pulse Width				Detection	Frequency	INFO:paramiko.transport:Authentication (password) successful!
	Detected	(µs)	PRI (µs)	Num Pulses	Num Bursts	Time(sec)	(KHz)	INFO:root:lanforge [sudo] password for lanforge:
	YES	1	1428	18	1	4	5282000	starting
	Trial_2							gr-osmosdr 0.2.0.0 (0.2.0) gnuradio 3.10.1.0 built-in sink types: uhd hackrf soapy redpitaya file
	Detected	Pulse Width (µs)	PRI (µs)	Num Pulses	Num Bursts	Detection Time(sec)	Frequency (KHz)	[0;32m[INFO] [UHD] E[0;39mlinux; GNU C++ version 12.0.1 20220129 (Red Hat 12.0.1-0); Boost_107600; UHD_4.1.0.5 Using HackRF One with firmware 2023.01.1 UUUUstarted
	YES	1	1428	18	1	5	5287000	
								stopping

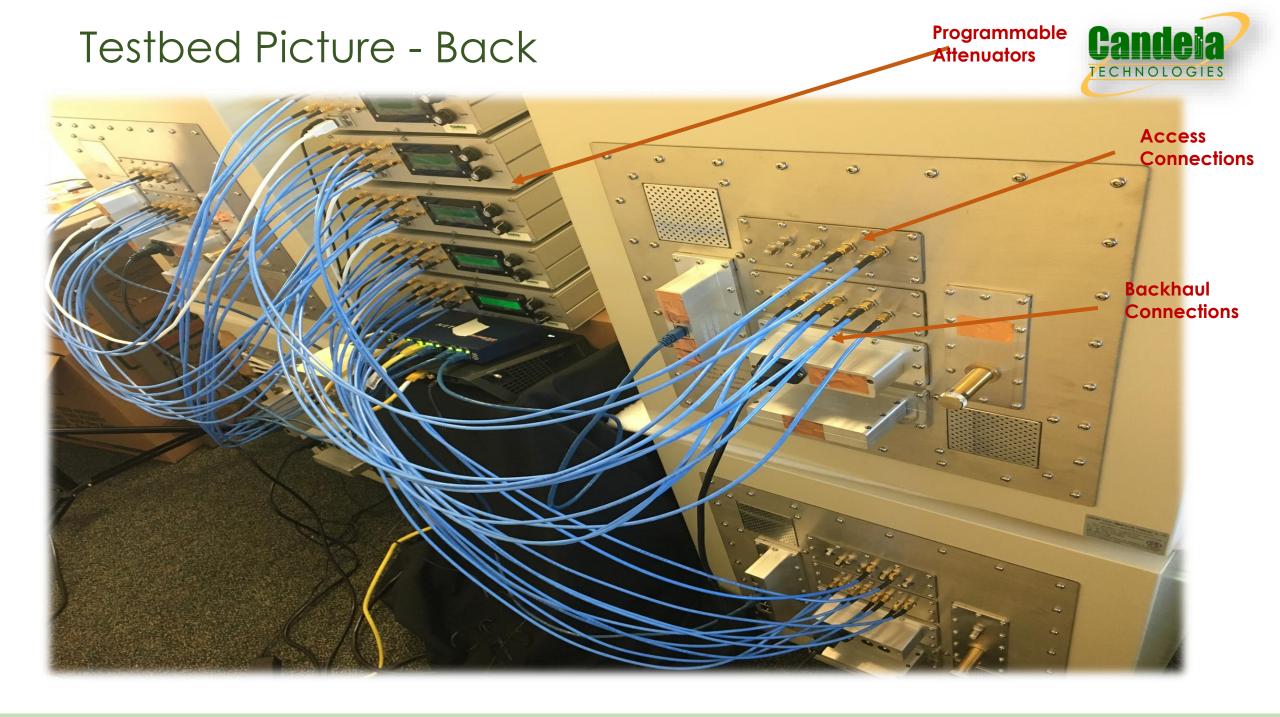

Mesh Test Solution


| 189

3 Node Testbed Example

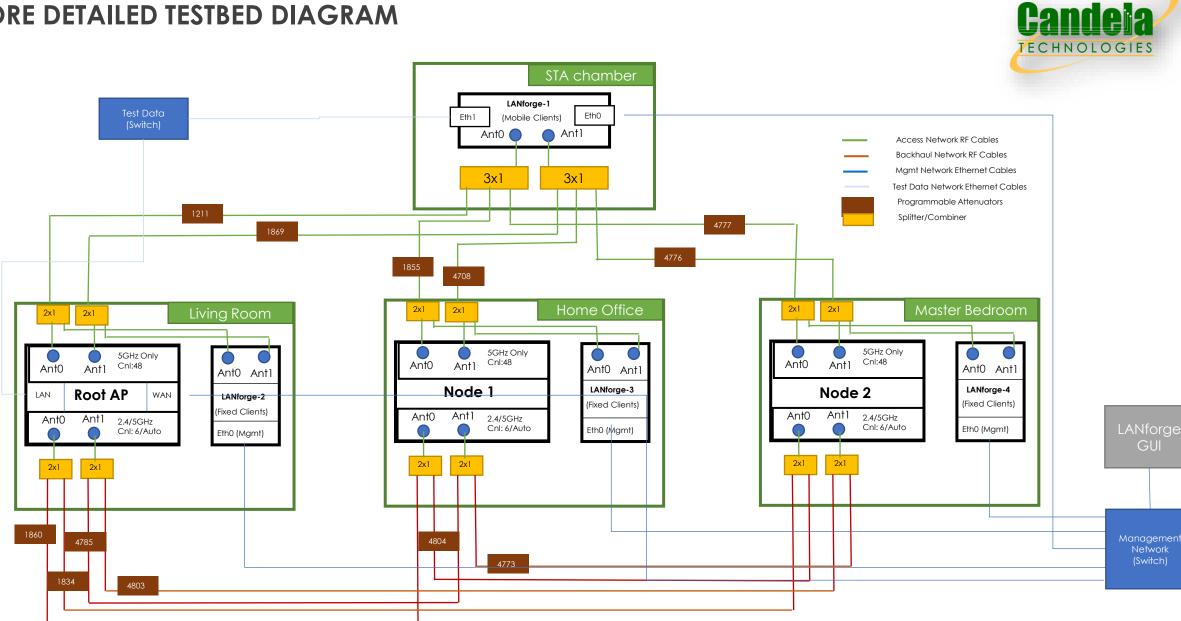
Candela

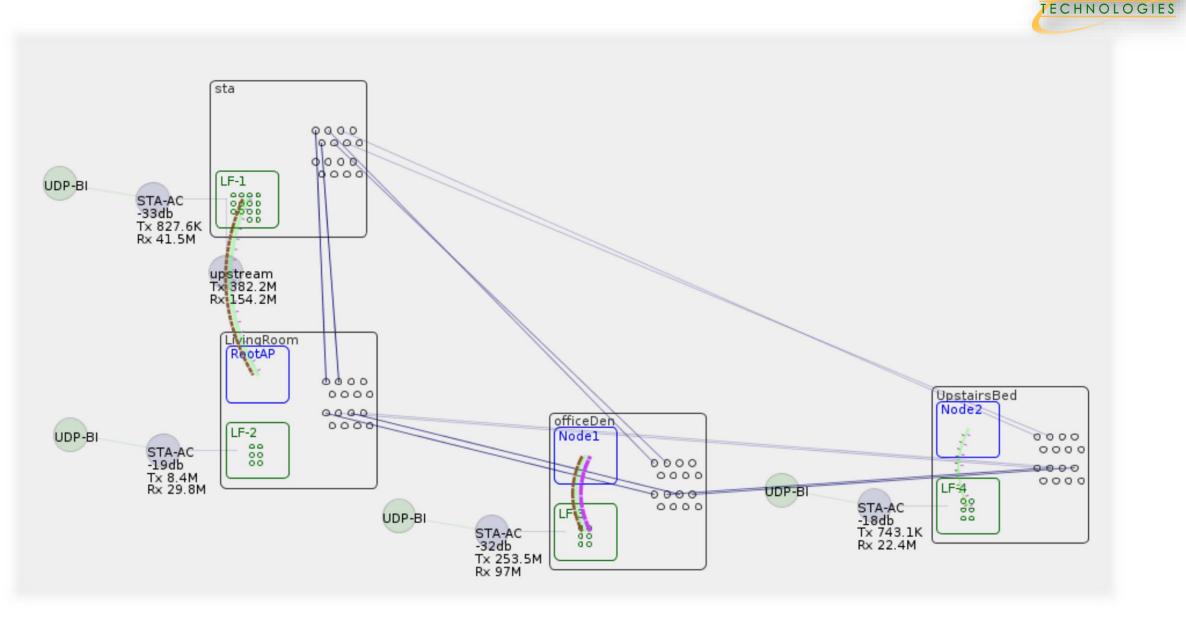
Test Automation Variables



Candela

Testbed Picture - Front



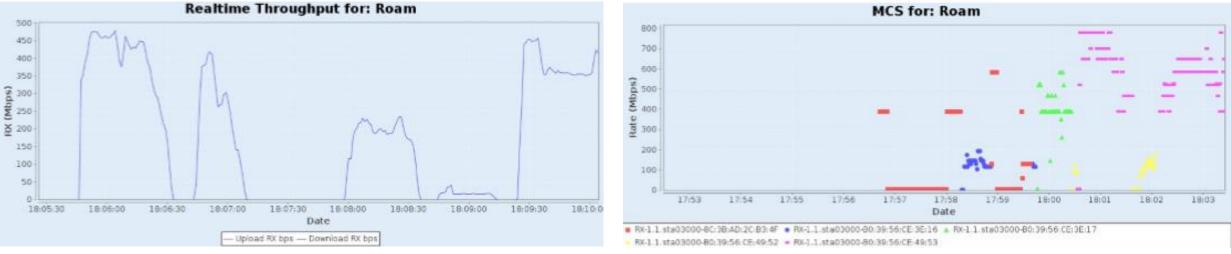


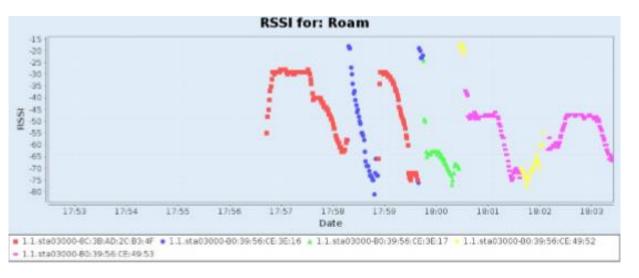
MORE DETAILED TESTBED DIAGRAM

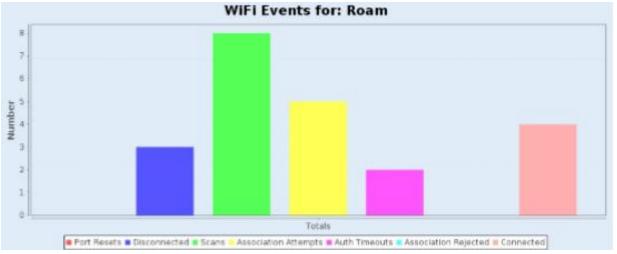
LANforge Chamber View

Candela

Mesh Automated Test GUI Settings


			Mesh Automat	ed	Test			(v) (n) (x)
Settings Advance	d Configuration Report (onfic	uration					
	1.1.1 eth1							
Upstream Port:		-						
Selected DUT 2G:	TR398-DUT NETGEAR68	-	Selected DUT 5G:		TR398-DUT NETGEAR68	-		
AP Root Chamber	Node 1 Chamber		Node 2 Chamber		STA Chamber			
TR-398 🗨	<custom></custom>	-	<custom></custom>	-	<custom></custom>	-		
STA Count	STA Count		STA Count		STA Count			
1 💌	1	-	1	-	1	-		
2.4Ghz Radios	2.4Ghz Radios		2.4Ghz Radios		2.4Ghz Radios			
-		-		-		-		
		-		-		-		
~		-		-		-		
5Ghz Radios	5Ghz Radios		5Ghz Radios		5Ghz Radios			
-		-		-		-		
-		-		-		-		
	[-		-		-		
			Decem Deth		L		Coloret Territor	Traffic Combination
	STA Chamber Position	_	Roam Path					Traffic Combination
Current Position ABC	Current Position Random	-	Orbit Near Orbit Middle	_	Traffic Type		Calibrate Throughput	
A-BC	Close Root AP		Orbit Far		UDP		Roam	
AB-C	Close Node 1		Random Near		TCP			
A-B-C	Close Node 2		Random Middle					Add STA Traffic
AB-C	Medium Root AP		Random Far					STA
A-BC	Medium Node 1		South-East					Root
ABC	Medium Node 2							NI
BAC	Far Root AP							N2
B-AC	Far Node 1							Root+N1
BA-C	Far Node 2							Root+N2
B-A-C								N1+N2
BA-C					Traffic Direction			Root+N1+N2
B-AC					Download			
BAC					Upload			
Random					Both			
	1				2			
			<u>S</u> ta	rt	Another Iteration	۱	Pause	Cancel


Candela

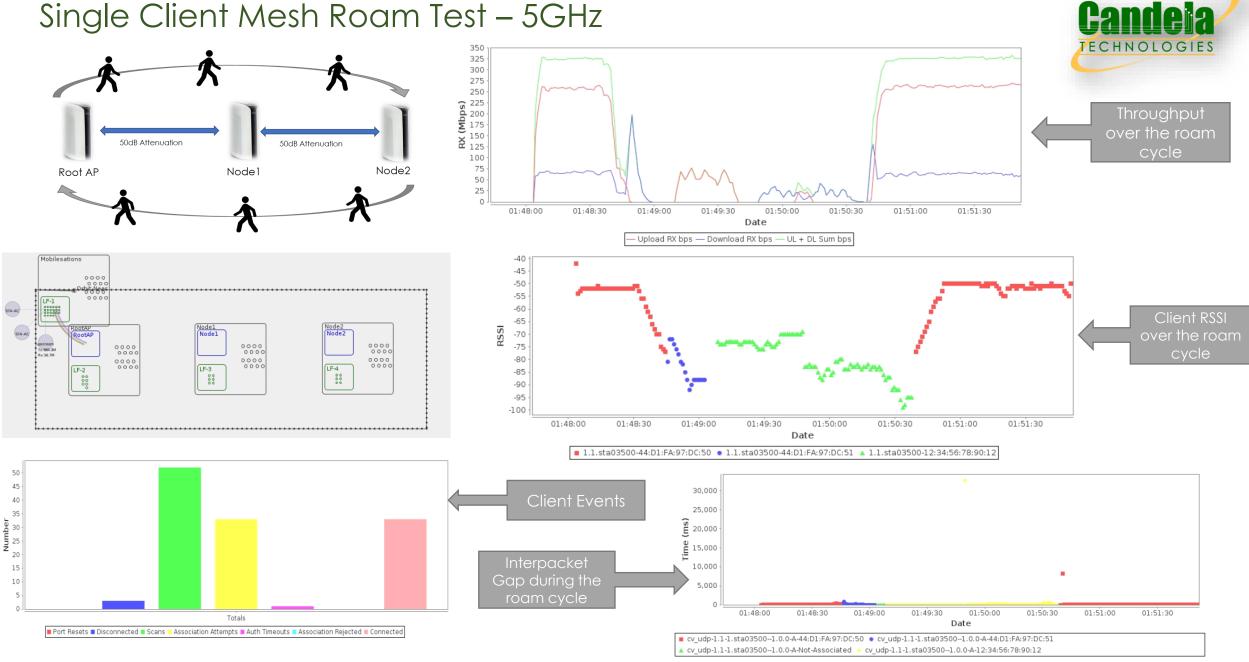

TECHNOLOGIES

Mesh Roam Test Results

Testbed Building Blocks

✓ RF enclosures

- ✓Programmable Attenuators
- ✓ RF & Ethernet Cables
- ✓ Splitters/Combiners
- ✓LANforge Hardware for Station Emulation
- ✓LANforge-MESH Test Application Software

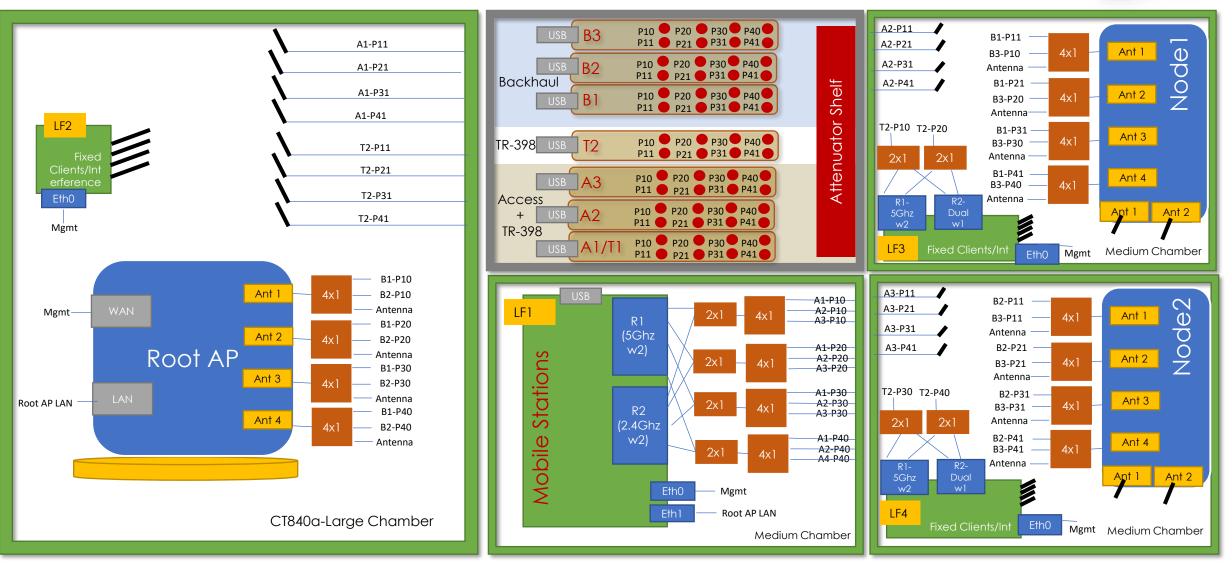


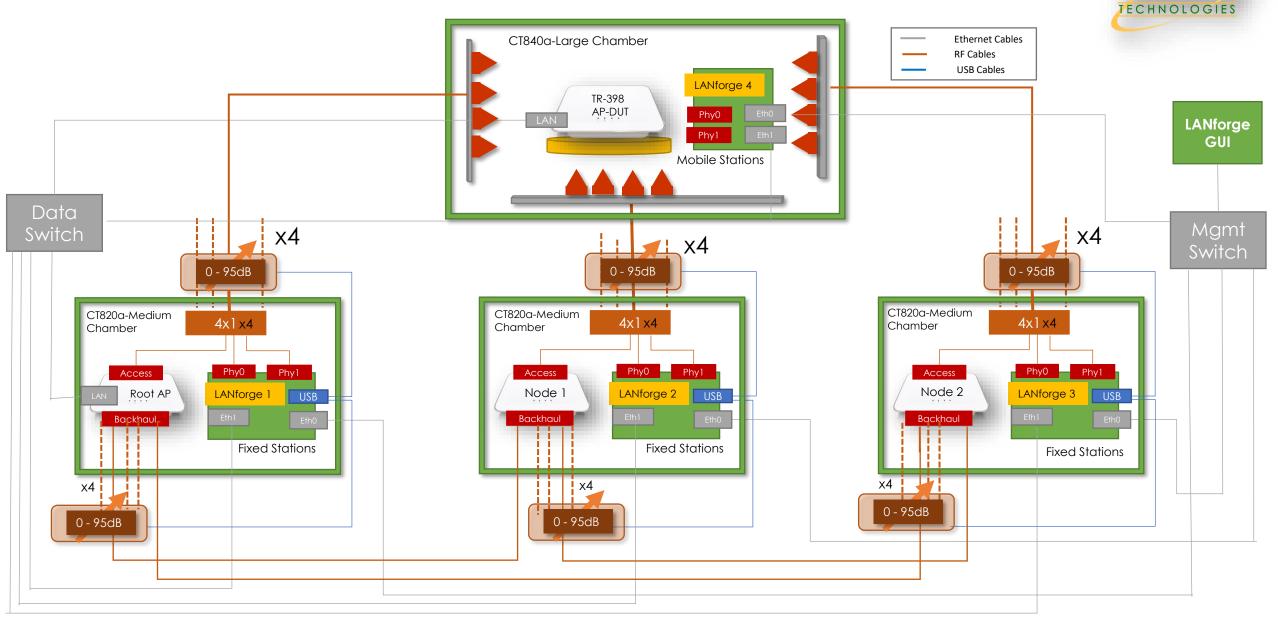
Key Tests

- ✓ Measure maximum upstream and downstream throughput that can be achieved per each hop in the mesh.
- ✓ Repeat test 1 on different channels, Channel Bandwidths, MIMO types.
- ✓ Measure the maximum number of stations each node in the mesh can handle.
- ✓ Measure the connection times and number of connection drops for the stations for each node in the mesh over time.
- ✓ Repeat 1,2,3 and 4 with different distance settings between the nodes in the mesh.
- ✓ Measure the maximum possible distance between the nodes in the mesh where they can all still maintain connectivity.
- ✓ Test how the mesh backhaul can rate adapt and find the best possible channel in a noisy environment.
- ✓ Force a disconnect on a specific link on the mesh and measure time taken to find the next best path in the mesh.
- ✓ Create different levels of co-channel and adjacent channel interference and measure overall performance.
- ✓ Run performance test with different mixes of voice, video and data traffic and measure quality of experience.
- ✓ Repeat tests 1 through 10 with different security types (Open, WPA-PSK, WPA-Enterprise)
- ✓ Test load balancing and band steering capabilities of the nodes in the mesh by creating different amounts of stations and traffic loads on different nodes in the mesh.
- \checkmark Test handoff delays for stations handing off been various nodes in the mesh.
- ✓ Measure roaming performance with different security methods and fast roaming methods and 802.11k/v/r
- ✓ Measure performance over distance for stations connecting to each mesh node.

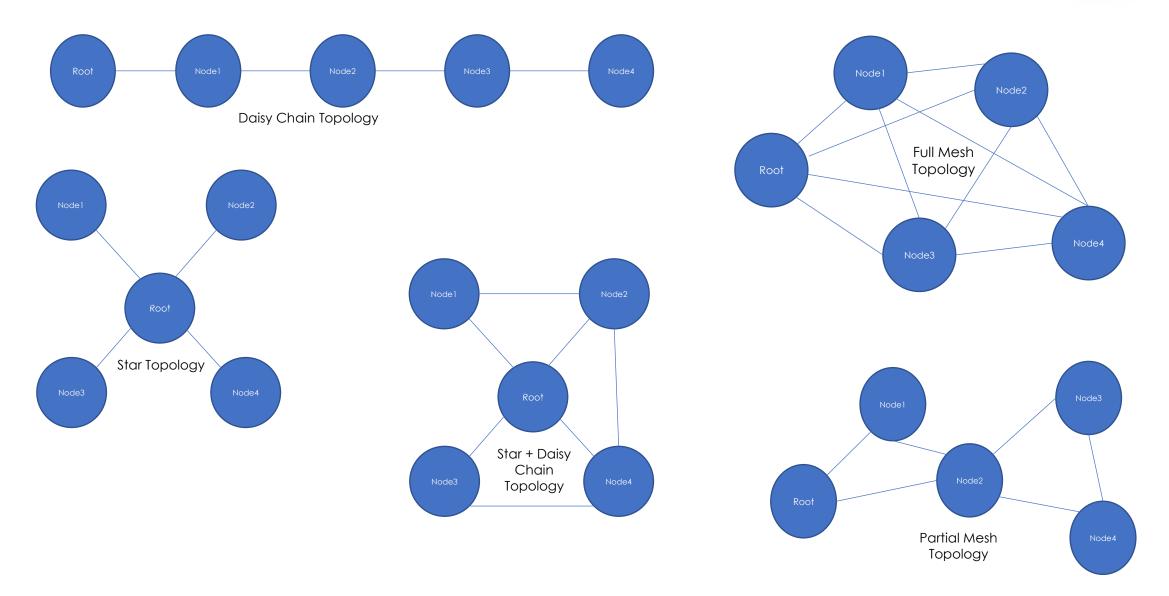
Single Client Mesh Roam Test – 5GHz

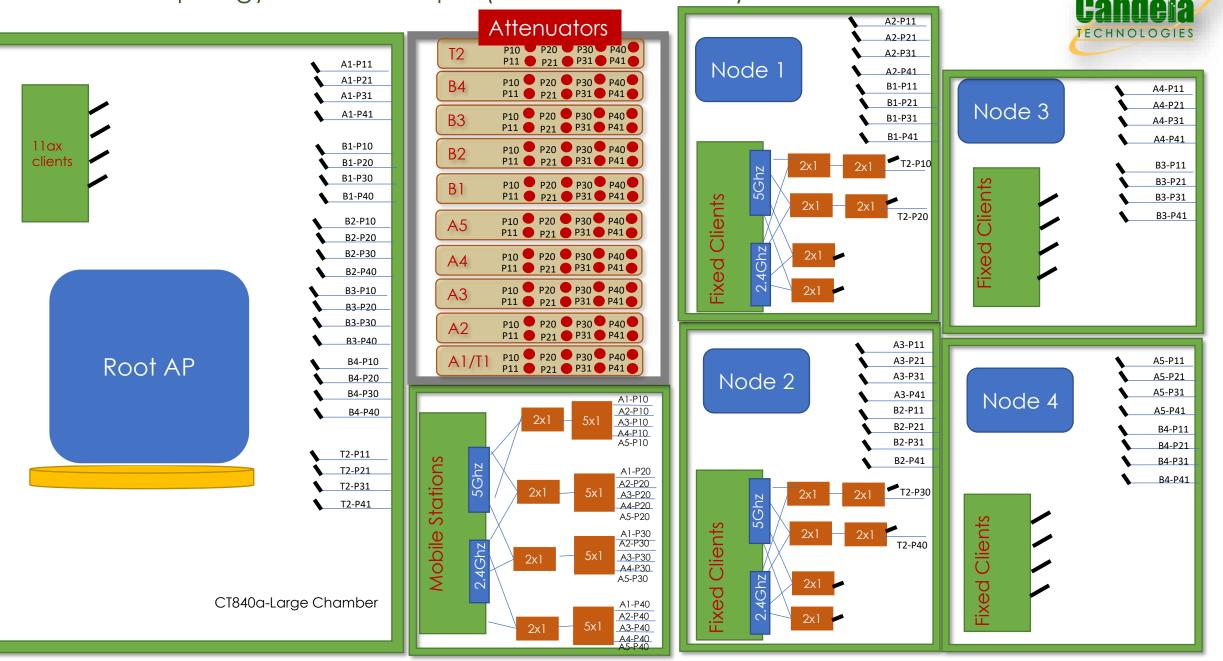
Stacked Chamber Configuration Example (Mesh + TR-398)




TR-398 + 3-Node Mesh Tested (Cabled)

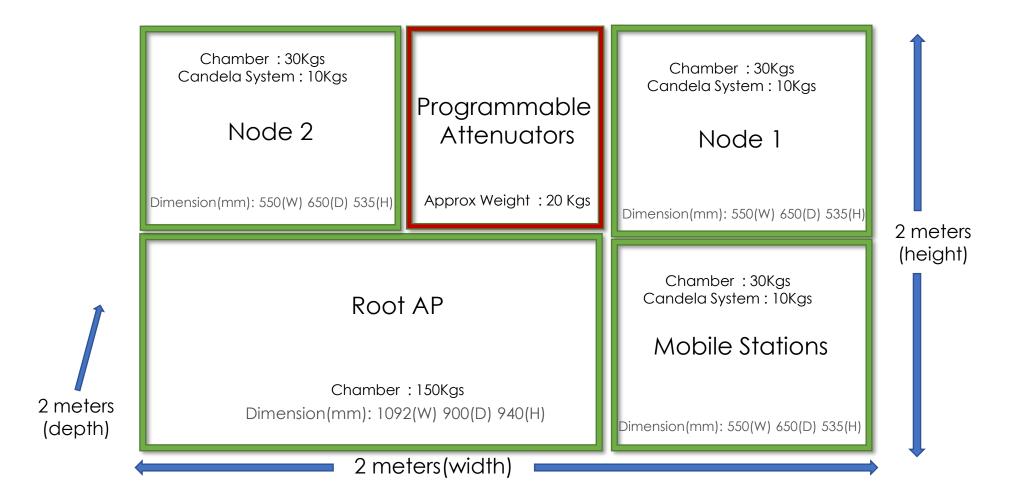
Every Mesh system is different. In this example the APs are dual-band with 4 antennas on Root AP and 6 Antennas on Extenders


TR-398 + 3-Node Mesh Tested


Candela

Root + 4 Satellites Topology Examples

TR-398 + Star Topology Tested Example (Root AP + 4-Nodes)


TR-398 + 3-Node Mesh + 11ax Testbed

TR-398 + 3-Node Mesh + 11ax Testbed

Total Testbed Approximate Weight : ~350 Kgs Approx space required : 2 meters (width) x 2 meters (depth) x 2 meters (height) No special power requirements.

Tests that can be Covered

✓ Full Automated TR-398 – 30 hours

- ✓ 6.1.1 Receiver Sensitivity Test
- ✓ 6.2.1 Maximum Connection Test
- 6.2.2 Maximum Throughput Test
- ✓ 6.2.3 Airtime Fairness Test
- ✓ 6.3.1 Range Versus Rate Test
- ✓ 6.3.2 Spatial consistency test
- ✓ 6.4.1 Multiple STAs Performance Test
- ✓ 6.4.2 Multiple Association/Disassociation Stability Test
- ✓ 6.4.3 Downlink MU-MIMO Performance Test
- ✓ 6.5.1 Long Term Stability Test
- ✓ 6.5.2 AP Coexistence Test

✓ Fully Automated Mesh Tests – 100s of hours

- ✓ Mesh Throughput per hop
- ✓ Mesh Roaming
- Performance with various combinations of AP node placements, load pattern etc..
- ✓ Failover test scenarios

✓ 802.11ax Testing

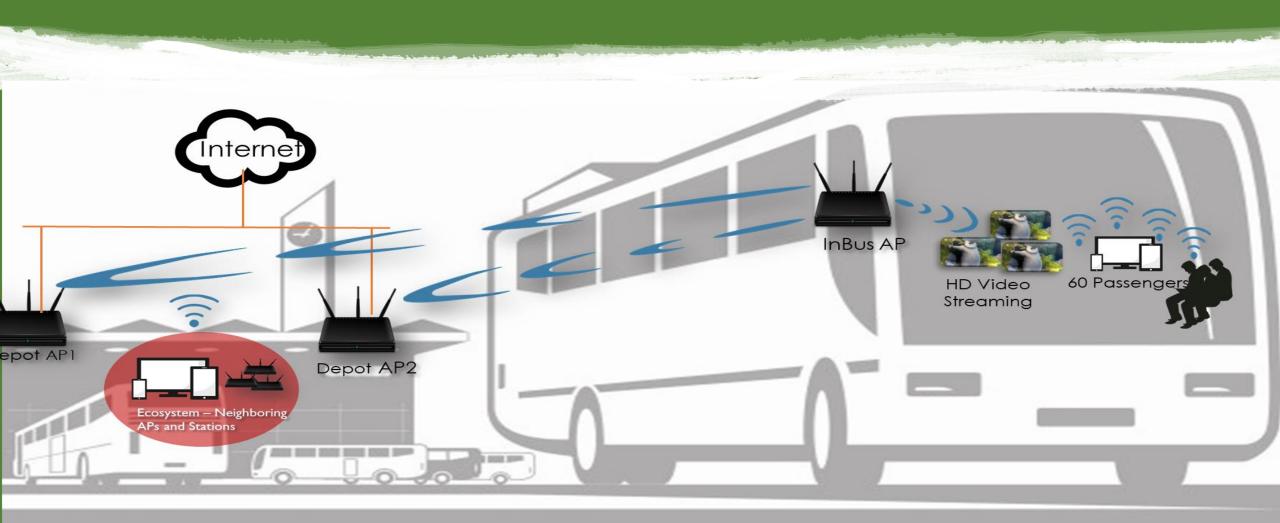
- ✓ Functional + Performance
- Throughput, latency, mixed mode client performance
- ✓ OFDMA, Mu-MIMO testing

✓ User Scenario Test Automation – 100s of hours

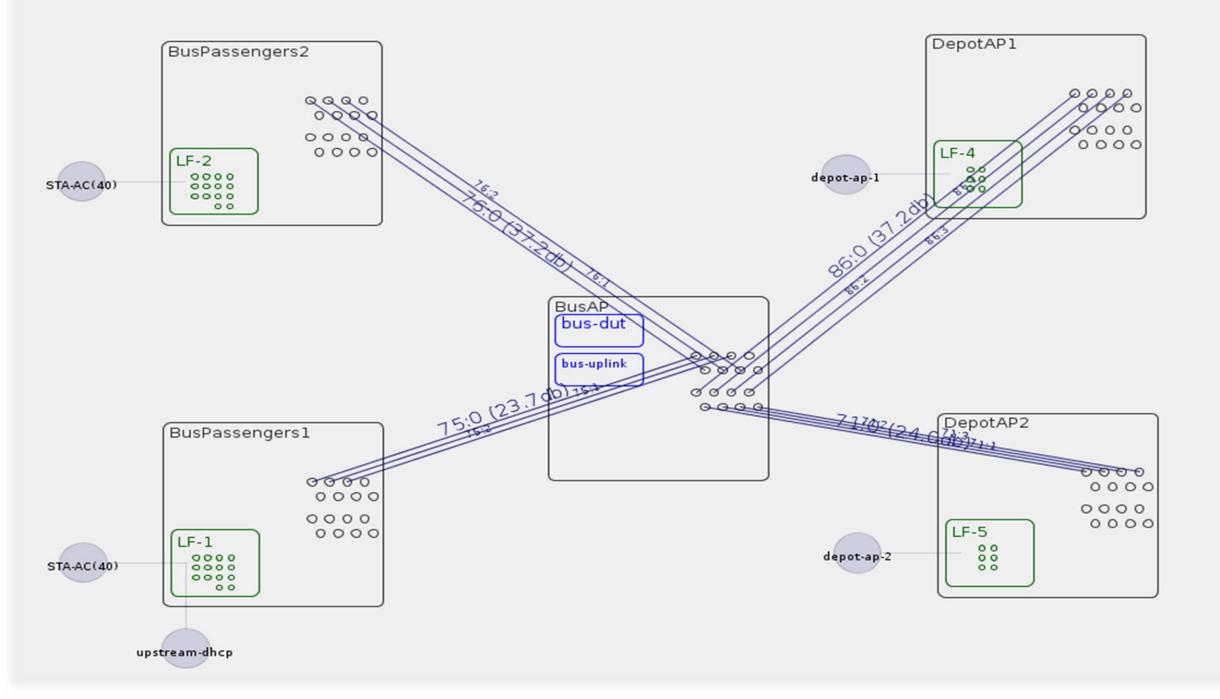
- ✓ Connection Stability test
- ✓ Multiple traffic stress test
- ✓ Stress test with active call sessions
- ✓ Connection stability with MBSSID mode
- ✓ Client Initiated roaming
- ✓ Random connect/disconnect test
- \checkmark Video, voice and data traffic stress test
- ✓ Random connect/disconnect of clients of a radio

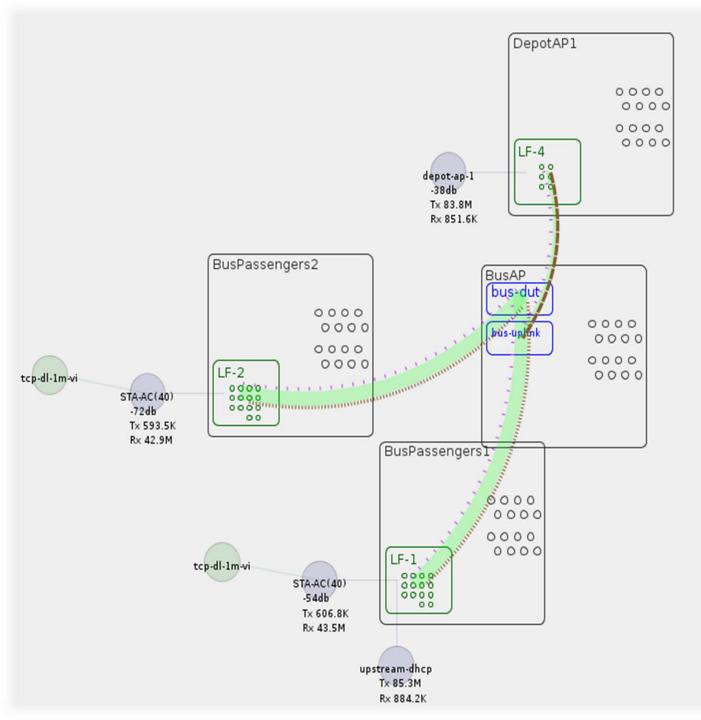
✓ Fully Automated Candela Tests – 100s of hours

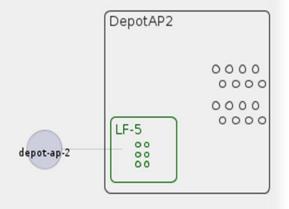
- ✓ WiFi Client Capacity Test
- ✓ Dataplane Performance Test
- ✓ Rate vs Range vs Antenna Orientation Test
- ✓ Client Reset Test
- ✓ Roaming Test
- ✓ Band Steering Test
- ✓ QoS Performance Test

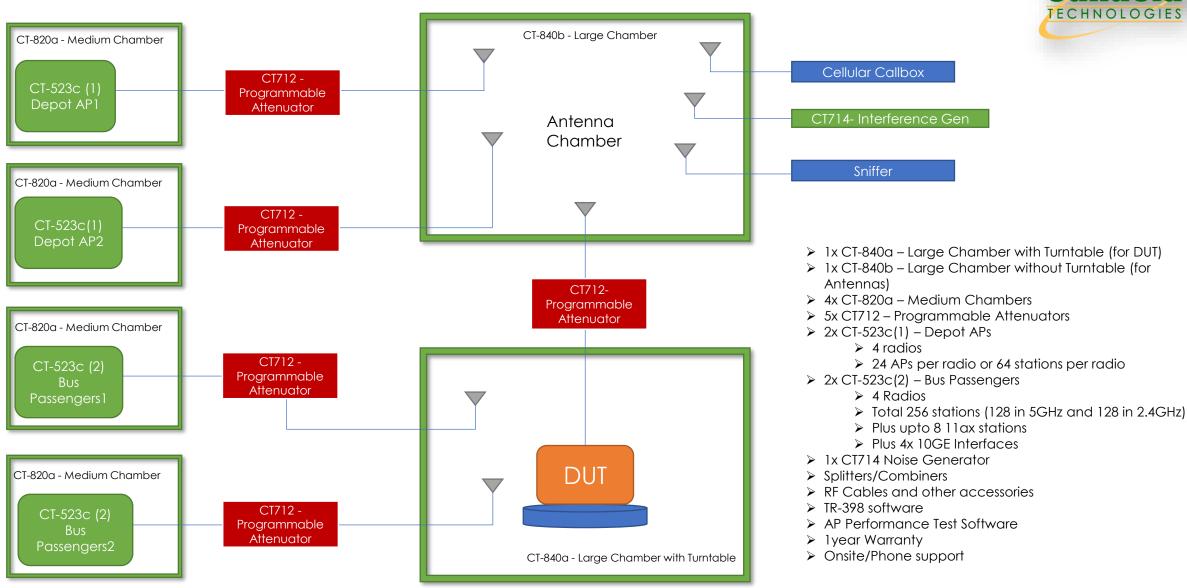

✓ Feature Testing

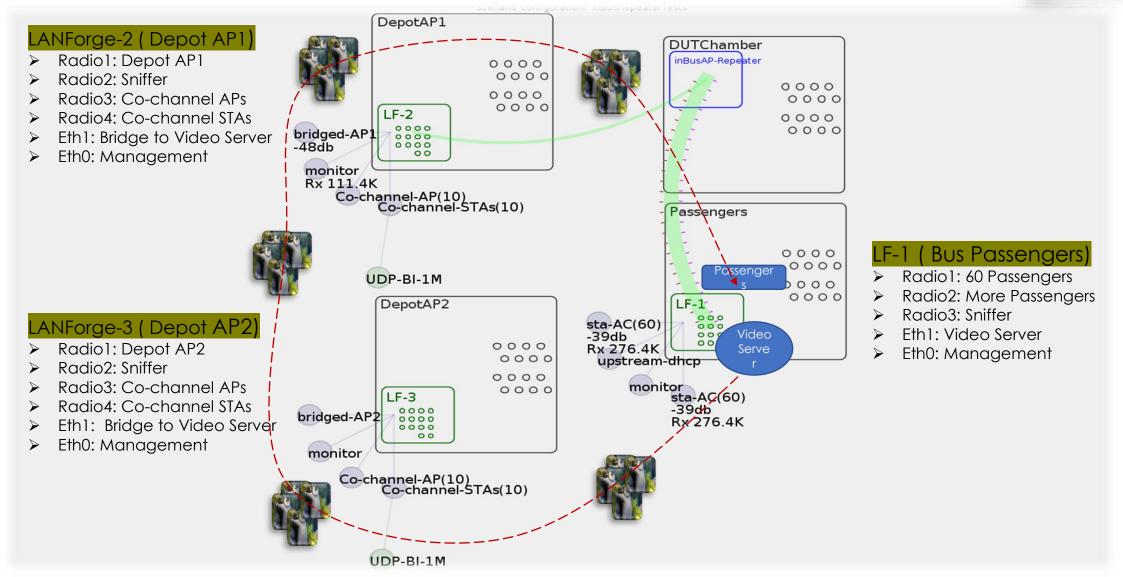
- ✓ Hotspot 2.0 / EAP-SIM/EAP-AKA
- ✓ Captive Portal Login
- ✓ EIRP (AP Tx power, Reg Domain Testing)
- ✓ Speedtest.Net testing


✓ Other Test Scenarios


- ✓ Gaming Test Scenarios
- ✓ Testing WiFi client devices
- ✓ Video performance Testing Video streaming
- ✓ Application Performance with WAN emulation

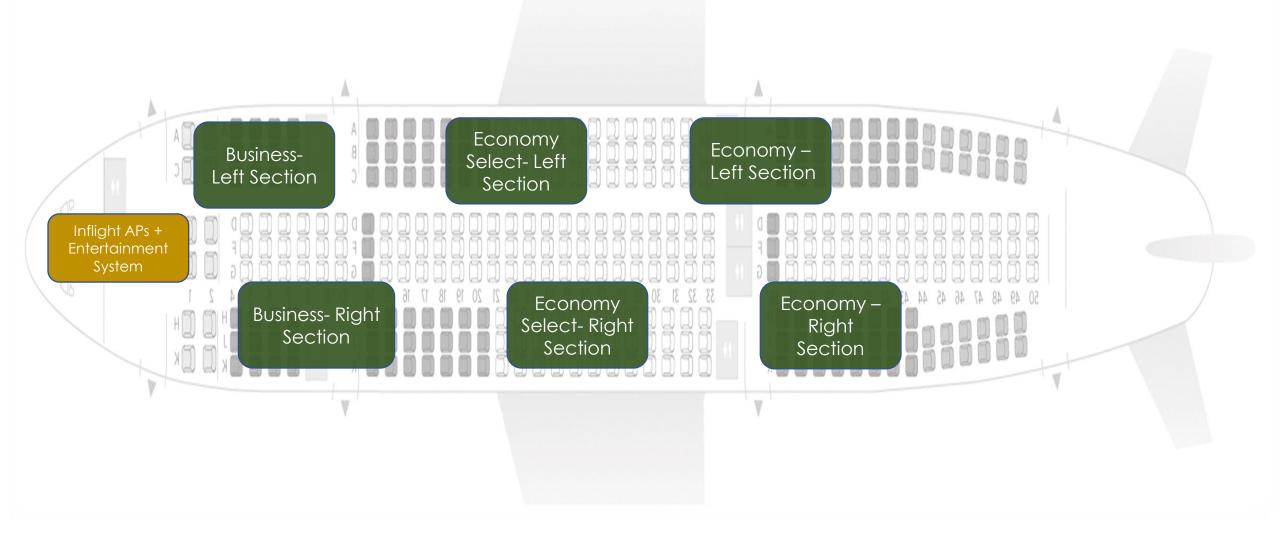

Transportation Test Scenario



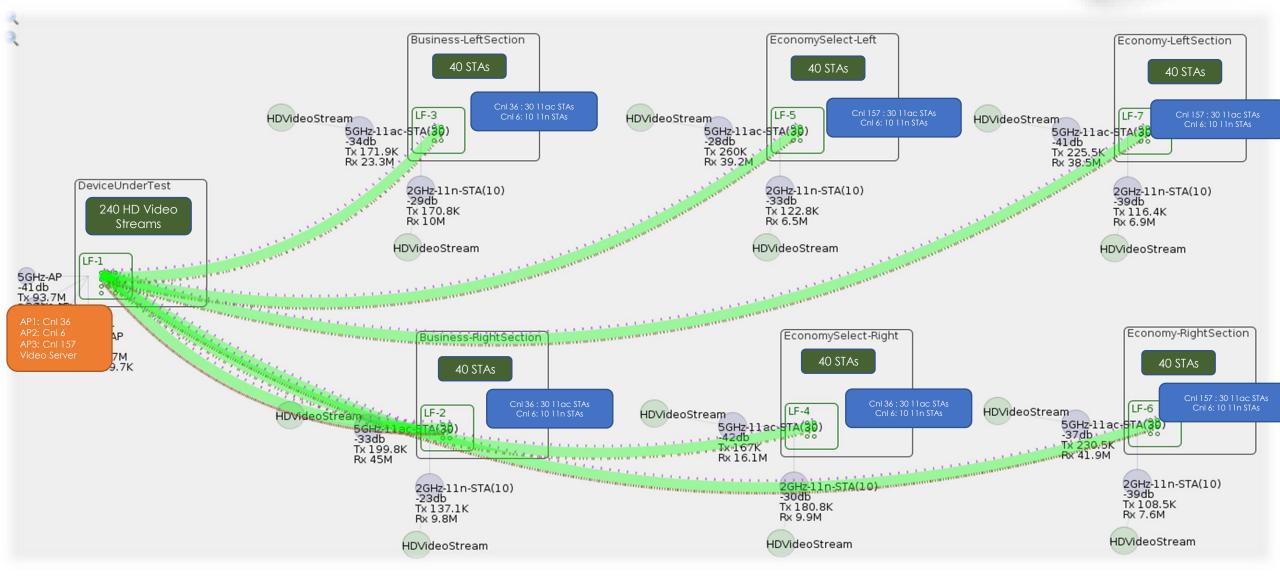

WiFi Transportation Testbed

Candeia TECHNOLOGIES

TEST CONFIG IN THE LANforge GUI



Large Public Venue Test Scenario


Example: Inflight Connectivity Scenario

TEST CONFIG IN THE LANFORGE GUI

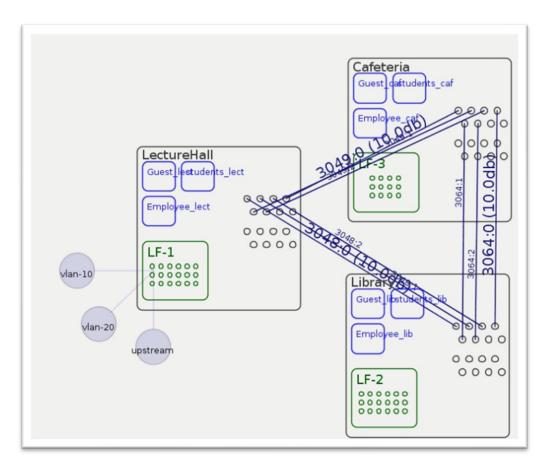
Campus Network Testing

Campus Scenario

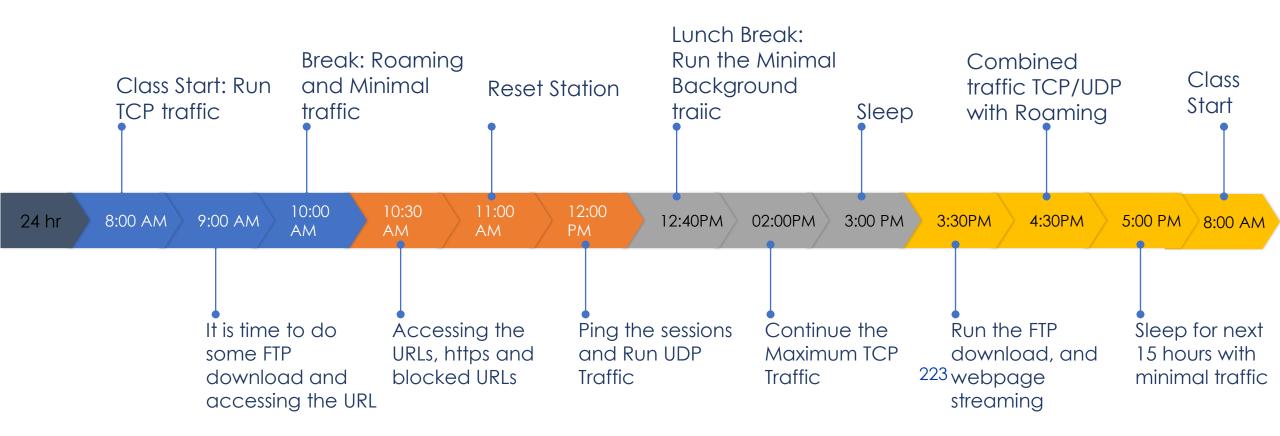
In most of the Campuses the Lecture Hall, Library and Cafeteria are the areas where large number of people uses WiFi network

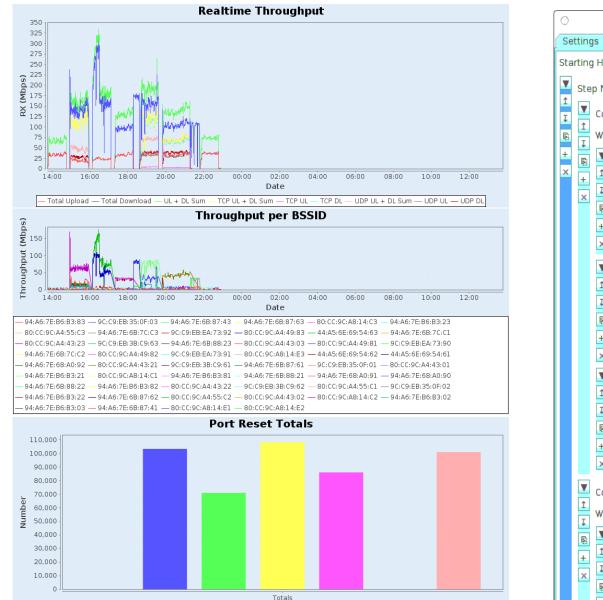
Lecture Hall

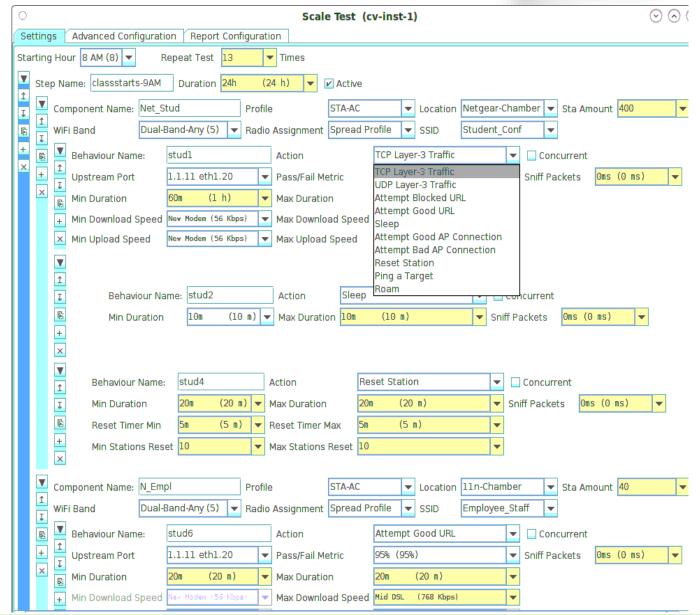
Cafeteria


Library

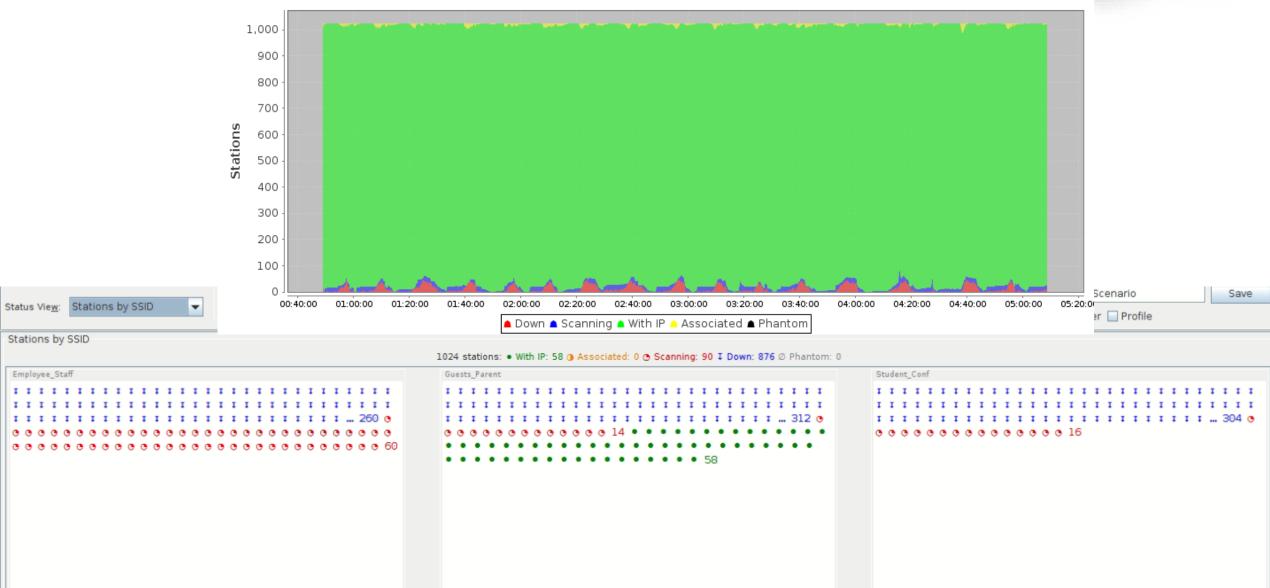
Campus Scale Scenario in LAB!!


3 Chambers 3 LANforge Units 15 Access Point 1024 Virtual Clients


The 24 hour timeline



The Scale reports and configurations


Port Resets Disconnected Scans Association Attempts Auth Timeouts Association Rejected Connected

The 1024 Clients Visualization

Total Stations

MDU/LPV Client Testbed Requirements

- $\checkmark\,$ Emulate lots of WiFi Stations
 - ✓ Mix of 11ax, 11ac and 11n stations
- $\checkmark\,$ Test lots of APs representing an entire campus.
 - ✓ APs across different channels, SSIDs, security types etc..
- \checkmark Test with 1000s of real work traffic streams.
- $\checkmark\,$ Recreate various real work load scenarios in the lab.
 - ✓ Small/Medium size apt building
 - ✓ University Campus
 - ✓ Small and Medium Enterprise
 - ✓ Shopping Mall
 - ✓ Small/medium/Large Hotel
- ✓ Create various types of roaming/mobility patterns.
- ✓ Create groups of APs to test for load balancing
- ✓ Create application layer traffic to test DPI, device profiling, traffic shaping/policing functions on the AP.
- $\checkmark\,$ Test the controller dashboard
- $\checkmark\,$ Test location based analytics
- \checkmark Automate 1000s of test cases and DUT configurations.

Example: University Campus Test Profile

Candela

Day-in-the-Life of an University WiFi Network

- ≥ 08:00am 12:00pm
 - ✓ 2000 devices connect to 50 APs across 25 classrooms.
 - ✓ 1000 students start browsing the internet for class research
 - ✓ 500 students watch online lectures
 - \checkmark 500 university staff browse internet , place VOIP calls

≻ 12:00pm – 03:00pm

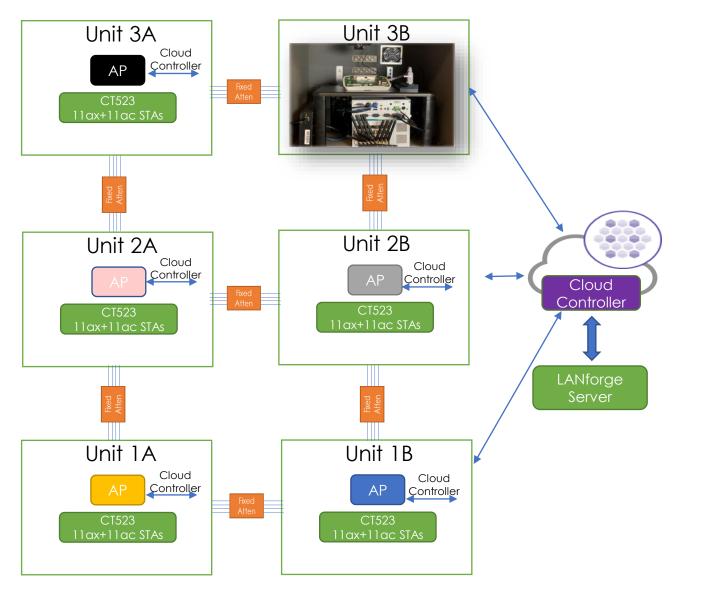
- ✓ 1000 students move from classrooms to cafeterias and dorms causing lots of roams.
- ✓ Students use their personal devices like smartphones and tablets of various kinds.
- ✓ 200 devices of various kinds (POS terminals, scanners etc..) operate in the cafeterias.
- ≻ 03:00pm 06:00pm
 - ✓ 500 students congregate in the indoor basket ball courts, watch real-time game scores and replays.
 - \checkmark 200 students meet in the library and do online research for class projects.

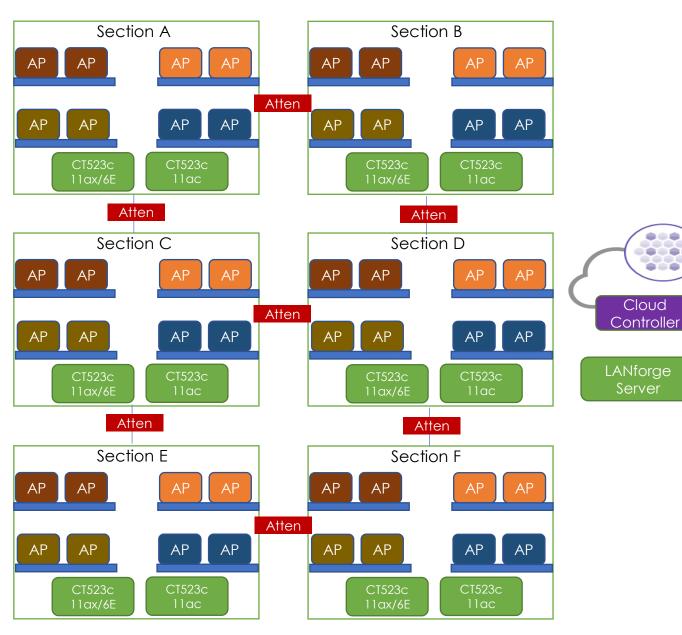
≻ 06:00pm – 09:00pm

- ✓ 1000 members are in the school theater participating in the school play and actively sharing details on social media.
- \checkmark 500 students participating in live voting and surveys for student body elections.
- \checkmark 500 students and staff watching soccer game and tweeting.

Key Performance Indicators

- $\checkmark\,$ Client Connection Times
- \checkmark Connection Reliability / Uptime
- $\checkmark\,$ Performance over Distance
- ✓ Upload/Download Speeds
- ✓ Roaming Delays
- ✓ Network Latency
- $\checkmark\,$ File Download Times
- ✓ Voice Quality
- $\checkmark\,$ Video buffering and stalls
- ✓ Video streaming Quality
- \checkmark Consistent quality over time.
- \checkmark Policy Conformance.


Small MDU Testbed


- ✓ 6 unit MDU scenario.
- ✓ All units have TIP APs connected to cloud controller.
- ✓ Create several 11ac, 11ax stations per AP.
- ✓ Test with voice, video, data traffic
- \checkmark Day in the life test scenarios
- ✓ Test Interference scenarios
- ✓ Community WiFi test scenarios

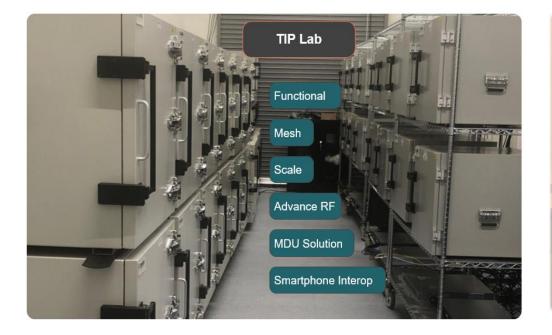
Testbed BOM

- ✓ Hardware
 - ✓ CT-523c-8ax-ac2-dual-10GE 6 units
 - ✓ CT820a Medium Chambers 6 units
 - ✓ RF Cables and Antennas
- ✓ Software
 - ✓ SW1001m Traffic Stream Licenses
 - ✓ SW1001sta virtual station licenses
- ✓ Support/Warranty
 - ✓ 1-year hardware and software support

Large Public Venue Testbed

- Large Public Venue Testing Scenario with several APs. \checkmark
- Testbed divided into 6 sections, represents the various physical \checkmark sections in a large public venue.
- \checkmark All units have TIP APs connected to cloud controller.
- Create 1000s of 802.11ac, 802.11n and 802.11ax clients. \checkmark
- Test with voice, video, data traffic \checkmark
- Roaming /Load Balancing / Band Steering \checkmark
- Day in the life test scenarios \checkmark
- Location Analytics Testing \checkmark
- Device Profiling, User/Role based policy Management Testing \checkmark
- Mis-behaving Client Behavior/ Rouge AP Testing \checkmark

Testbed BOM


✓ Hardware

Cloud

- CT-523c-8ax 6 units \checkmark
- CT523c-3ac-db-2n 6 units
- CT830a Large Chamber 6 units
- **RF** Cables and Antennas
- ✓ Software
 - SW1001m Traffic Stream Licenses \checkmark
 - SW1001sta virtual station licenses
- ✓ Support/Warranty
 - ✓ 1-year hardware and software support

Community Labs using Candela Test Systems

Basic Lab

Advanced Lab

WiFi 6E Lab

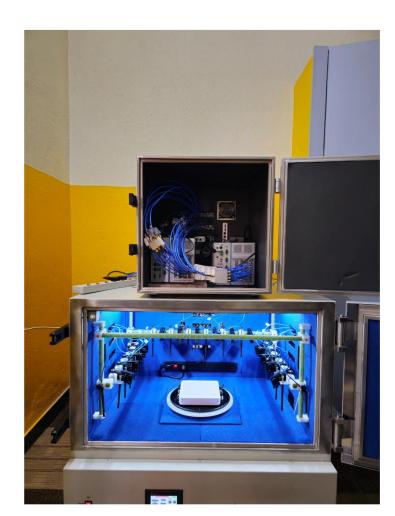
Inter-Op Lab

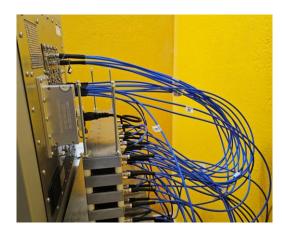
Mesh Lab

COMMUNITY LAB SETUP IN CALIFORNIA

_

Lots of Lab Testbeds


New OpenWiFi Community Lab


- Located in Bangalore, India
- Address: New polytechnic building, Acharya Institute Dr Sarvepalli Radhakrishnan Rd, Soladevanahalli, Karnataka 560107.
- Hosted by Candela Technologies India Pvt Ltd
- Full OpenWiFi lab testing services offered from this location.

Setting Up The TIP Testbeds in Candela India

Testcases Summary

Testbed Type	Objective	Test Cases
Basic Testbeds	Run single AP functional/Performance Testing	 Client capacity/connection Data plane throughput Dual band performance Airtime fairness
Advanced Testbeds	Full set of RF level and protocol level test cases on a single AP.	 Receiver sensitivity Maximum connection / throughput Airtime fairness, rate vs range Spatial consistency Multi STA performance Downlink Mu-MIMO performance AP co-existence
Mesh Testbeds	Full set of RF level and protocol level test cases on Mesh APs (Root + 2 Node configuration).	 Throughput per hop, client scale Roaming, fail over scenarios Performance over distance Spatial consistency Mesh Node Patterns
MDU Testbeds	Full set of RF level and protocol level test cases on a cluster of standalone APs in a high density/crowded environment deployments.	 Client scale Large scale roaming Large venue load patters Traffic shaping/policy Device profiling/analytics Load balancing/band steering
WiFi 6E Testbeds	6GHz channels testing on WiFi 6E APs.	 6 GHz RF performance 6 GHz functional test cases Triband Performance 2.4/5GHz performance and functional tests on 6E APs

Basic Testbeds

Wiring Diagrams

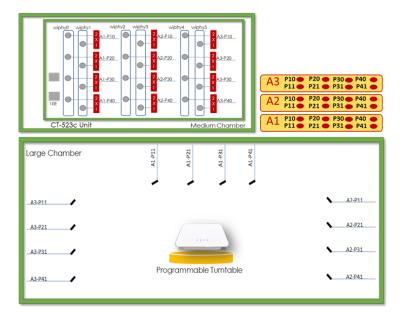
CT820a Medium Chamber								
CT-523c Unit								
wiphy0 wiphy1 wiphy2 wiphy3 wiphy4 wiphy5 wiphy6 wiphy7	AP under Test							

Bill of Materials


- ✓ Hardware
 - ✓ 4x4 MIMO 11ac Wave2 Single Band 5GHz radio 2 units (64 clients per radio)
 - ✓ 4x4 MIMO 11ac Wave2 Single Band 2.4GHz radio 2 units (64 clients per radio)
 - ✓ 2x2 MIMO 11ax dual band radio 4 units (1 client per radio)
 - ✓ RF Enclosures
 - ✓ CT820a Medium Chamber 1 unit
 - ✓ RF Cables
 - ✓ RF Antennas
- ✓ Software
 - ✓ SW1001m 1GE 1000 Traffic Stream Licenses
 - ✓ SW1100 10GE port
- ✓ Support/Warranty
 - ✓ 1-year hardware and software support

Basic Testbeds - Tests Covered

Test Types	Category	Testcase Summary
Dataplane Throughput Test	Performance	Verify the Performance of the AP by sending and receiving packets with different packet sizes.
Dual Band Test	Performance	Verify the performance of the AP by spreading the clients across multiple radios
Multi Station Throughput vs Pkt Sizes	Performance	Verify the Performance of the AP by sending and receiving packets with different packet sizes across different number of clients connected
Wifi Capacity	Performance	Verify the capacity of AP in maintaining concurrent number of clients which can take specific intended load.
Rate Limiting	Functional	Verify that the Client connected on an SSID is rate limited according to the configuration specified
Rate Limiting with Radius	Functional	Verify that the Client connected on an SSID is rate limited according to the configuration specified in radius for the specific user.
Multiple VLAN's	Functional	Verify the connectivity and Datapath for the clients connected across different Vlans
Multi Association Disassociation Test	Performance	Verify the impact on throughput for certain clients when another set of clients joins and leaves the BSS.
Basic Client Connectivity	Functional	Verify that the client can associate and establish Datapath under different configurations and types.
FTP Test	Scale	Verify how many concurrent clients can simultaneously do an Upload and Download test in given time

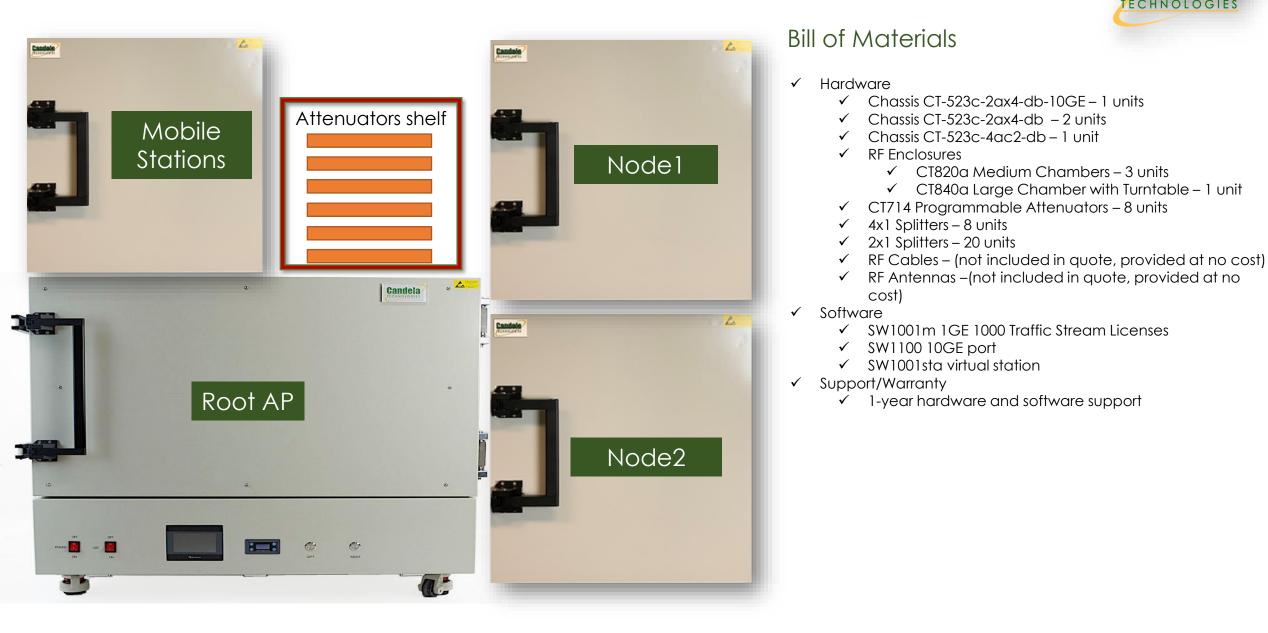

Advanced Testbeds (11ac)

Bill of Materials

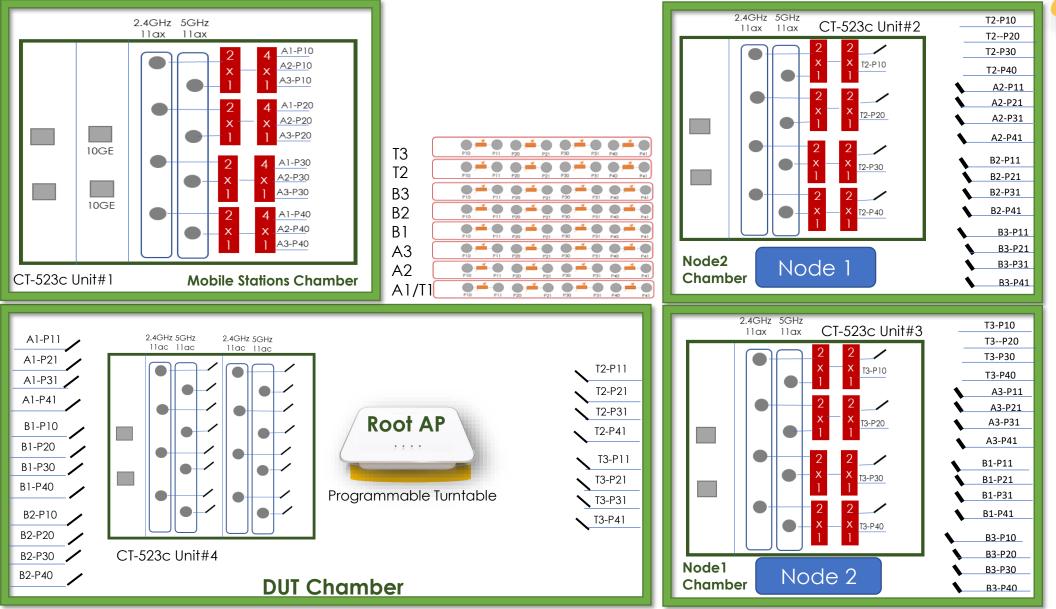
✓ Hardware

- ✓ 4x4 MIMO 11ac Wave2 Single Band 5GHz radio 3 units (64 clients per radio)
- ✓ 4x4 MIMO 11ac Wave2 Single Band 2.4GHz radio 3 units (64 clients per radio)
- ✓ RF Enclosures
 - ✓ CT820a Medium Chamber 1 unit
 - ✓ CT840a Large Chamber with Turntable 1 unit
- ✓ CT714 Programmable Attenuators 3 units
- ✓ 2x1 Splitters 12 units
- ✓ RF Cables (not included in quote, provided at no cost)
- ✓ RF Antennas –(not included in quote, provided at no cost)
- ✓ Software
 - ✓ SW1001m 1GE 1000 Traffic Stream Licenses
 - ✓ SW1100 10GE port
 - ✓ SW1001sta virtual station
- \checkmark Support/Warranty
 - ✓ 1-year hardware and software support

Tests Covered


All Test case from Basic Testbed plus

Test Types	Category	Testcase Summary
Rate vs Range	Performance	Verify the Performance by varying the Distance between AP and client
Spatial Consistency	Performance	Verify the Performance of the AP by changing Orientation and Distance between AP and Station.
Multi Station Performance - Different Distance	Performance	Verify the performance of the AP by spreading the clients at different distances
Rate vs Orientation	Performance	Verify the performance by changing the orientation of AP
Airtime Fairness	Performance	Verify the airtime distribution based on performance in multi station environment with different wifi capability clients.
RX - Sensitivity	Performance	Verify Radio receiver performance to check with different MCS configurations


Advanced Testbed + 11ax + 2-Node Mesh Testbed Diagram

Advanced Testbed + 11ax + 2 Node Mesh Wiring Diagram

Tests Covered

Candela

✓ Automated TR-398 Issue2

- ✓ 6.1.1 Receiver Sensitivity Test
- ✓ 6.2.1 Maximum Connection Test
- ✓ 6.2.2 Maximum Throughput Test
- ✓ 6.2.3 Airtime Fairness Test
- ✓ 6.2.4 Dual-band Throughput Test
- ✓ 6.2.5 Bidirectional Throughput Test
- ✓ 6.3.1 Range Versus Rate Test
- ✓ 6.3.2 Spatial consistency test
- ✓ 6.3.3 802.11ax Peak Performance Test
- ✓ 6.4.1 Multiple STAs Performance Test
- ✓ 6.4.2 Multiple Association/Disassociation Stability Test
- ✓ 6.4.3 Downlink MU-MIMO Performance Test
- ✓ 6.5.1 Long Term Stability Test
- ✓ 6.5.2 AP Coexistence Test
- ✓ 6.5.3 Automatic Channel Selection Test

✓ Fully Automated Mesh Tests

- ✓ Mesh Throughput per hop
- ✓ Mesh Roaming
- Performance with various combinations of AP node placements, load pattern etc..
- ✓ Failover test scenarios

✓ 802.11ax Testing

- ✓ Functional + Performance
- Throughput, latency, mixed mode client performance
- ✓ OFDMA, Mu-MIMO testing

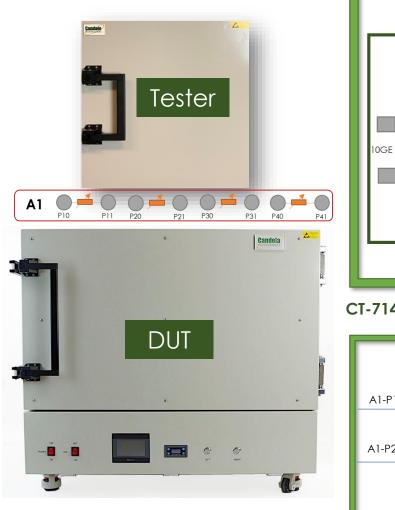
✓ User Scenario Test Automation

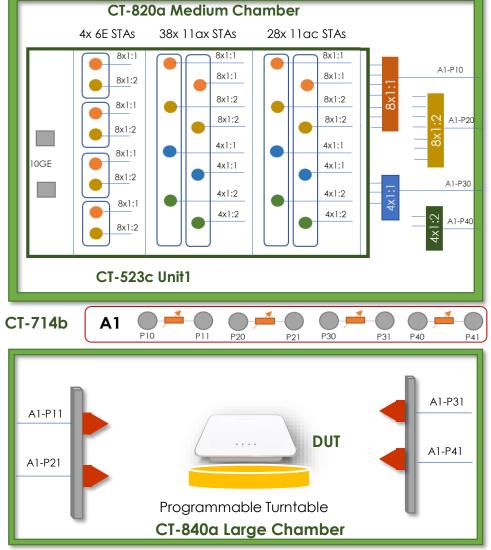
- ✓ Connection Stability test
- ✓ Multiple traffic stress test
- ✓ Stress test with active call sessions
- ✓ Connection stability with MBSSID mode
- ✓ Client Initiated roaming
- ✓ Random connect/disconnect test
- \checkmark Video, voice and data traffic stress test
- ✓ Random connect/disconnect of clients of a radio

✓ Fully Automated Candela Tests

- ✓ WiFi Client Capacity Test
- ✓ Dataplane Performance Test
- ✓ Rate vs Range vs Antenna Orientation Test
- ✓ Client Reset Test
- ✓ Roaming Test
- ✓ Band Steering Test
- ✓ QoS Performance Test

✓ Feature Testing (need additional scripting)


- ✓ Hotspot 2.0 / EAP-SIM/EAP-AKA
- ✓ Captive Portal Login
- ✓ EIRP (AP Tx power, Reg Domain Testing)
- ✓ Speedtest.Net testing


✓ Other Test Scenarios(need additional scripting)

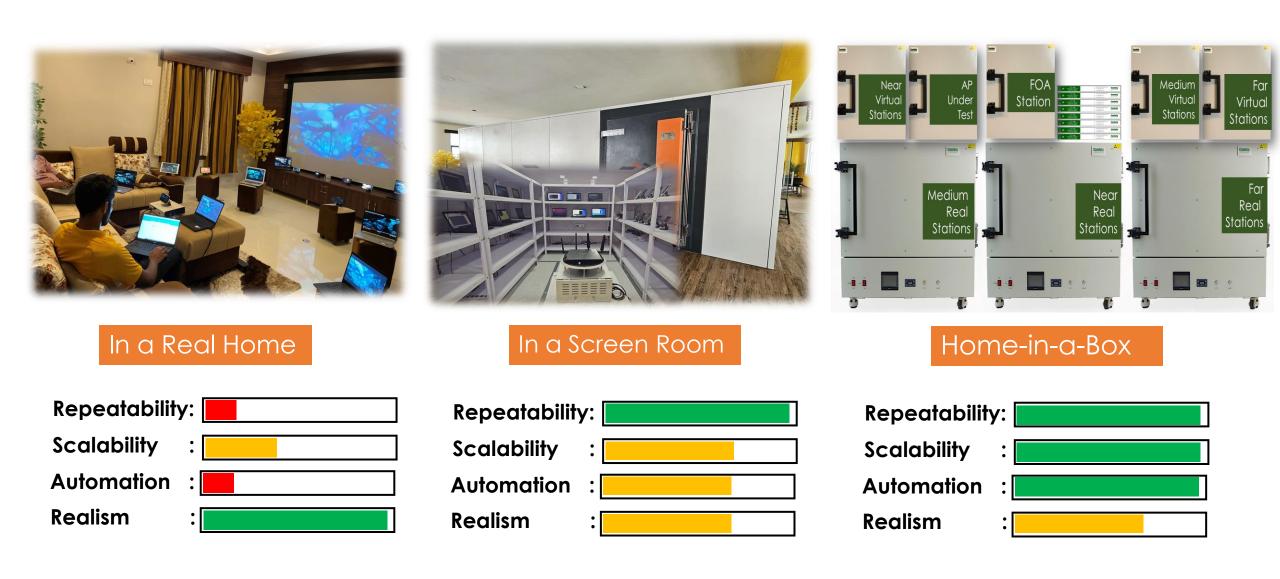
- ✓ Gaming Test Scenarios
- ✓ Testing WiFi client devices
- ✓ Video performance Testing Video streaming

WiFi 6E Testbed Setup Diagram

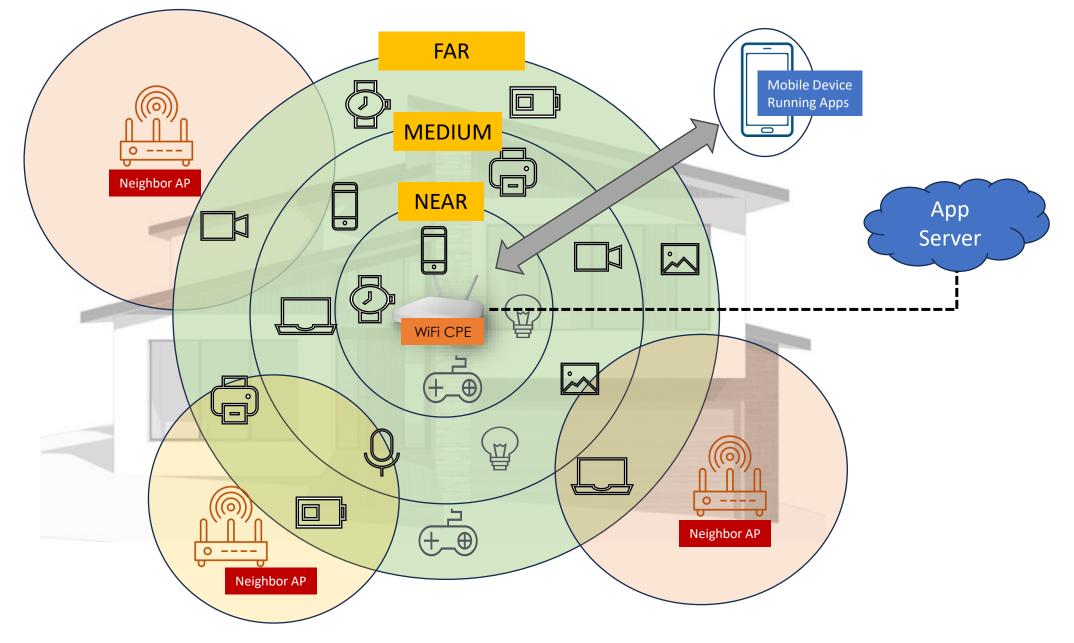
Hardware BOM

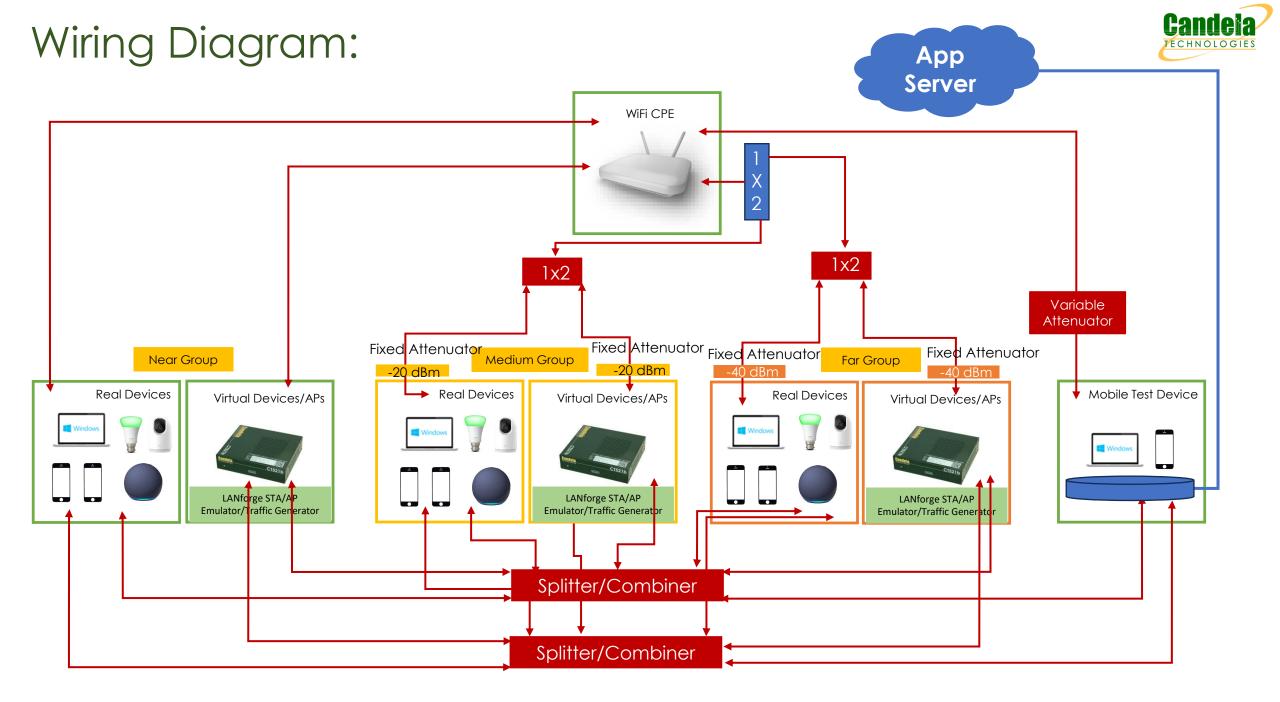
- ✓ Chassis : CT-523c-4axe-2ac4-db-2ac2-db-10GE
 - ✓ Intel AX210 6GHz Clients 4 nos
 - ✓ MTK dual-band 11ax clients 38 nos
 - ✓ QCA 11ac Wave2 clients 128 nos
 - ✓ 10GE Traffic generator
- CT-820a (Medium Chamber) 1 unit
- CT-840a(large Chamber with turntable) 1 unit
- CT714b (Programmable Attenuator) 1 unit
- ✓ 8x1 Splitter 2 units
- 4x1 Splitter 2 units
- ✓ RF cables and Antennas

Tests

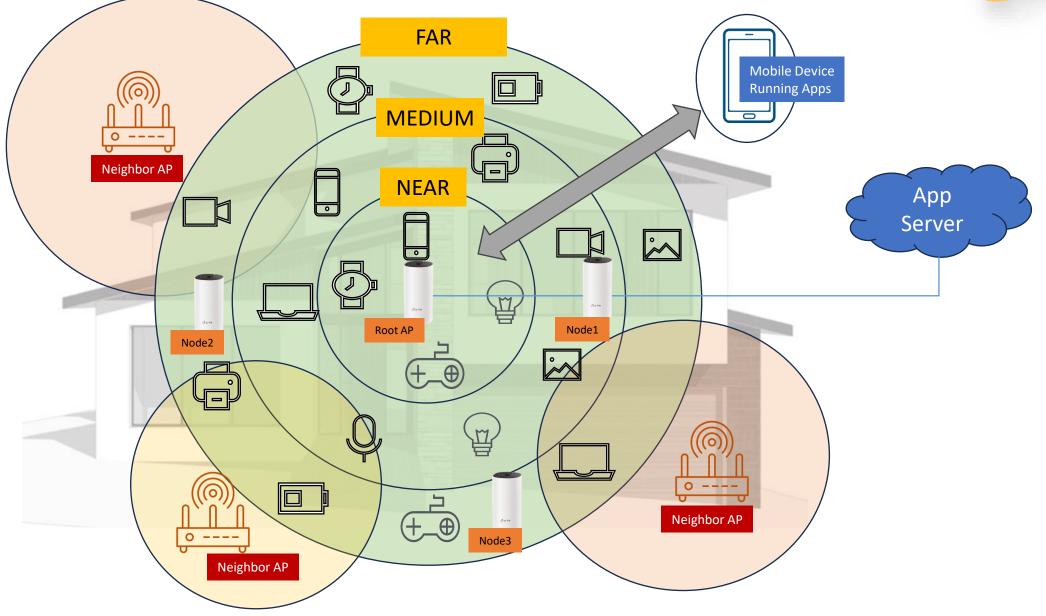

- ✓ Throughput benchmark for all 6GHz channels
- ✓ Throughput over Distance
- Throughput over Antenna Orientation
- ✓ Tx Power Measurement/Compliance in 6GHz
- ✓ Receiver sensitivity test on all 6GHz channels
- Tri-band Performance (2.4/5/6GHz loaded at same time)

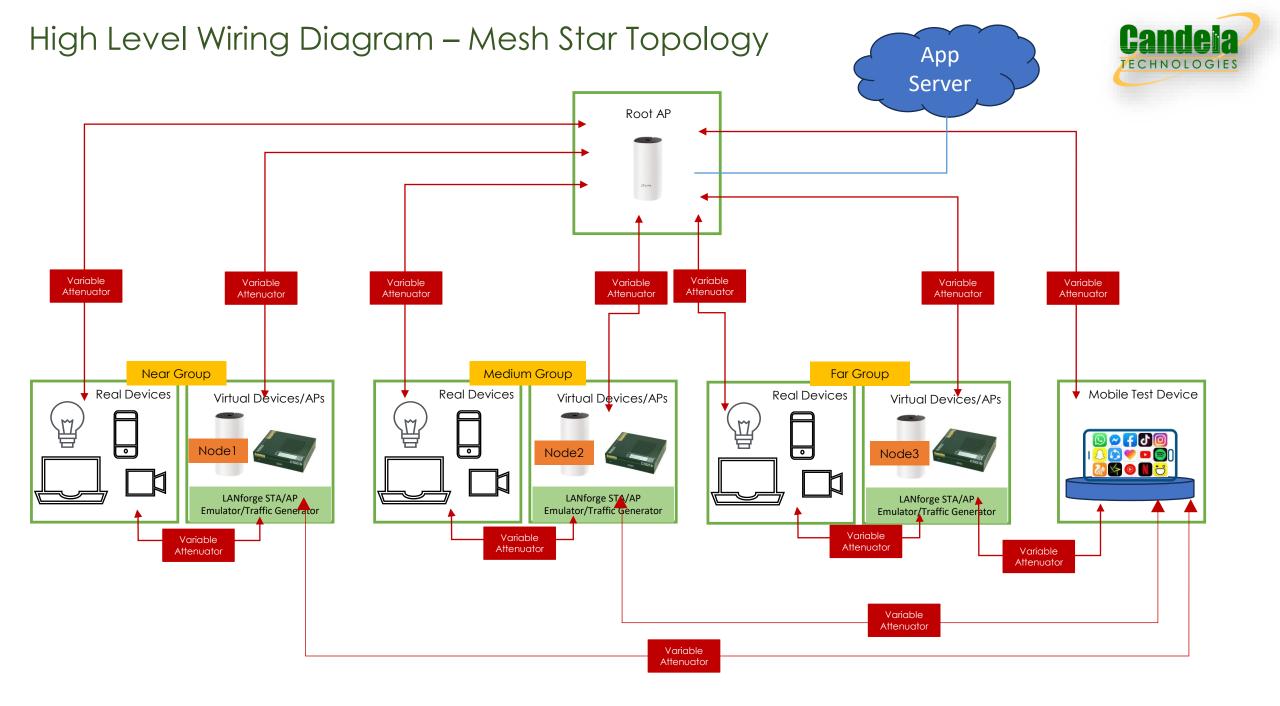
Home in a Box Testing


The 3-approaches of Testing:

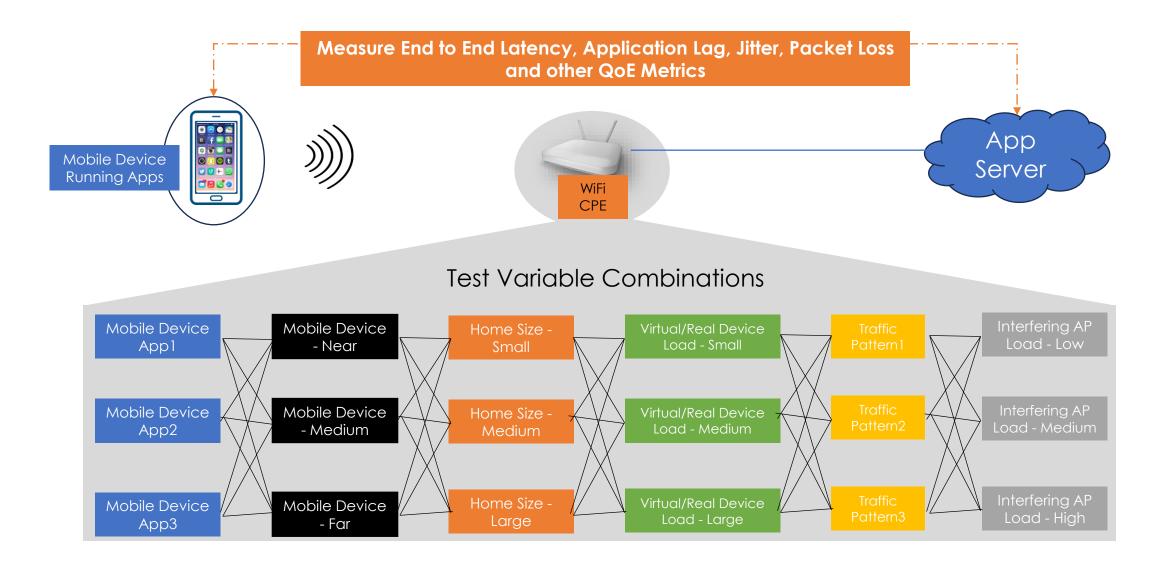


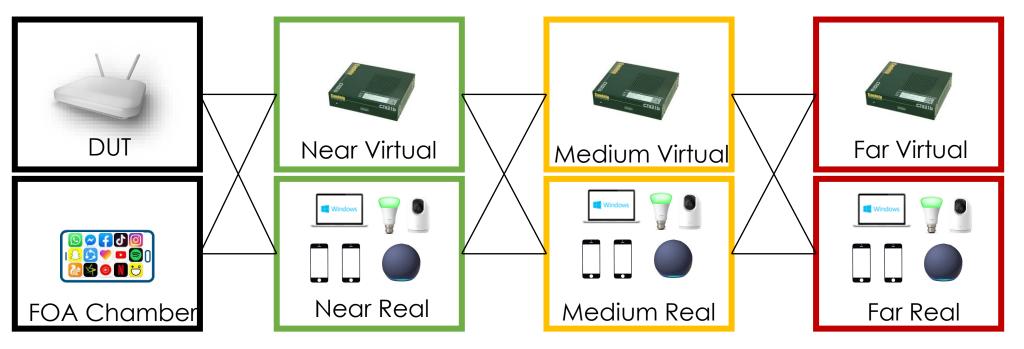
Home in a Box Testbed Topology – Single CPE:





Home-in-a-Box Testbed Topology – Mesh




Possible Test patterns in Home in box Lab:

Test Implementation:

- We will run various kinds of Real world traffics like Video streaming and File download and create interference in the channel, at various distances like Near, Medium and Far and record the channel utilization.
- Now when the channel is occupied, we will run real time applications like YouTube, Facebook etc., and record the parameters like Network Latency, packet loss, Buffers and so on.
- Based on our requirement we can move the Client which is running the application and check the performance at different distances.
- Along with that we can also run various patterns of traffics in the interfering clients such that their activity in the network will be increased.

Traffic Patterns of Interfering Clients:

	STA Type	Radio Type	Application	Upload (Mbps)	Download (Mbps)	Total
	Laptop	abgn-AX 2x2	Zoom call [1080p]	2.5	3	5.5
Traffic Dattorn 1	Smart Phone	abgn-AC 1x1	YouTube Streaming[4k]	0.76	20	20.76
Traffic Pattern1	Smart Phone	abgn-AC 1x1	Online Gaming	5	25	30
	Alexa echo	abgn-AC 2x2	Internet Music	0.76	1.5	2.26
	Smart Bulb	abgn-AC 1x1	Turn on/off	0.0096	0.384	0.3936
Total Load				9.0296	49.884	58.9136
	STA Type	Radio Type	Application	Upload (Mbps)	Download (Mbps)	Total
	Smart Phone	abgn-AC 1x1	Amazon prime	2	5	7
Traffia Dattara	Laptop	abgn-AX 2x2	File Download	1	10	11
Traffic Pattern2	Smart Camera	abgn-AC 1x1	Live Recording	0.76	2	2.76
	Alexa	abgn-AC 2x2	Internet Music	0.76	1.5	2.26
	Smart Phone	abgn-AC 1x1	Skype Call	0.128	4	4.128
Total Load				4.648	22.5	27.148
	STA Type	Radio Type	Application	Upload (Mbps)	Download (Mbps)	Total
	Smart TV	abgn-AX 2x2	Netflix	1	15	16
Traffic Pattern3	Oculus	abgn-AX 2x2	VR Streaming	5	15	20
	Smart Phone	abgn-AC 1x1	WhatsApp Video call	1	2.5	3.5
	Alexa	abgn-AC 2x2	Internet Music	0.76	1.5	2.26
	Smart plug	abgn-AC 1x1	Turn on/off	0.0096	0.384	0.3936
Total Load				7.7696	34.384	42.1536

Test Results and observations:

	Bo	ackground Loo	d	FC	DA Client Setti	ings			Test	Results		
AP QoS Settings	Near	Medium	Far	Distance	Mode	Арр	Latency	Frames Dropped	Connection Speed	Buffer Health	Video Resolution	FPS
QOS-ON	None	None	None	Near	2x2 11ac	FB Messenger						
QOS-OFF	None	None	None	Near	2x2 11ac	FB Messenger						
QOS-ON	None	None	None	Medium	2x2 11ac	FB Messenger						
QOS-OFF	None	None	None	Medium	2x2 11ac	FB Messenger						
QOS-ON	None	None	None	Far	2x2 11ac	FB Messenger						
QOS-OFF	None	None	None	Far	2x2 11ac	FB Messenger						
QOS-ON	Traffic Pattern1	None	None	Near	2x2 11ac	FB Messenger						
QOS-OFF	Traffic Pattern1	None	None	Near	2x2 11ac	FB Messenger						
QOS-ON	Traffic Pattern1	None	None	Medium	2x2 11ac	FB Messenger						
QOS-OFF	Traffic Pattern1	None	None	Medium	2x2 11ac	FB Messenger						
QOS-ON	Traffic Pattern1	None	None	Far	2x2 11ac	FB Messenger						
QOS-OFF	Traffic Pattern1	None	None	Far	2x2 11ac	FB Messenger						
QOS-ON	None	Traffic Pattern1	None	Near	2x2 11ac	FB Messenger						
QOS-OFF	None	Traffic Pattern1	None	Near	2x2 11ac	FB Messenger						
QOS-ON	None	Traffic Pattern1	None	Medium	2x2 11ac	FB Messenger						
QOS-OFF	None	Traffic Pattern1	None	Medium	2x2 11ac	FB Messenger						
QOS-ON	None	Traffic Pattern1	None	Far	2x2 11ac	FB Messenger						
QOS-OFF	None	Traffic Pattern1	None	Far	2x2 11ac	FB Messenger						
QOS-ON	None	None	Traffic Pattern1	Near	2x2 11ac	FB Messenger						
QOS-OFF	None	None	Traffic Pattern1	Near	2x2 11ac	FB Messenger						
QOS-ON	None	None	Traffic Pattern1	Medium	2x2 11ac	FB Messenger						
QOS-OFF	None	None	Traffic Pattern1	Medium	2x2 11ac	FB Messenger						
QOS-ON	None	None	Traffic Pattern1	Far	2x2 11ac	FB Messenger						
QOS-OFF	None	None	Traffic Pattern1	Far	2x2 11ac	FB Messenger						

Test Results and observations:

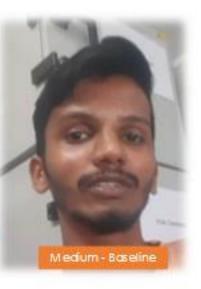
	В	ackground Loa	d	FC	DA Client Settir	ngs	Test Results						
AP QoS Settings	Near	Medium	Far	Distance	Mode	Арр	Latency	Frames Dropped	Connection Speed	Buffer Health	Video Resolution	FPS	
QOS-ON	Traffic Pattern1	Traffic Pattern1	None	Near	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1	Traffic Pattern1	None	Near	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1	Traffic Pattern1	None	Medium	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1	Traffic Pattern1	None	Medium	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1	Traffic Pattern1	None	Far	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1	Traffic Pattern1	None	Far	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1		Traffic Pattern1	Near	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1		Traffic Pattern1	Near	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1		Traffic Pattern1	Medium	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1		Traffic Pattern1	Medium	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1		Traffic Pattern1	Far	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1		Traffic Pattern1	Far	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1	Traffic Pattern1	Traffic Pattern1	Near	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1	Traffic Pattern1	Traffic Pattern1	Near	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1	Traffic Pattern1	Traffic Pattern1	Medium	2x2 11ac	FB Messenger							
QOS-OFF	Traffic Pattern1	Traffic Pattern1	Traffic Pattern1	Medium	2x2 11ac	FB Messenger							
QOS-ON	Traffic Pattern1	Traffic Pattern1	Traffic Pattern1	Far	2x2 11ac	FB Messenger							

Test Results for YouTube Live streaming :

	AP QoS	Tr	affic Pattern	S		FOA Cli	ent Setting:	5				Test Results			
Test Cases	Settings	Near	Medium	Far	Distance	Mode	Арр	Connected Band	Packet Drop	Latency [s]	Connection Speed [kbps]	Buffer Health [s]	Network Activity [kb]	Video Resolution	FPS
	QOS-ON	None	None	None	Near	2x2 11ac	YouTube	5 GHz	0 out of 1876	26.95	28645	9.55	565	2160 [4K]	30
Baseline	QOS-ON	None	None	None	Medium	2x2 11ac	YouTube	5 GHz	0 out of 1812	28.59	22313	9.79	394	1440 [HD]	30
	QOS-ON	None	None	None	Far	2x2 11ac	YouTube	2.4 GHz	0 out of 2150	29.96	4418	13.61	85	1080p	30
	QOS-ON	Pattern1	None	None	Near	2x2 11ac	YouTube	5 GHz	0 out of 1880	16.43	23054	7.54	48	1440 [HD]	30
Load Pattern1	QOS-ON	Pattern1	None	None	Medium	2x2 11ac	YouTube	5 GHz	0 out of 1864	27.76	26251	17.8	80	2160 [4K]	30
	QOS-ON	Pattern1	None	None	Far	2x2 11ac	YouTube	2.4 GHz	0 out of 1857	29.43	5959	18.22	0	1080p	30
	QOS-ON	None	Pattern1	None	Near	2x2 11ac	YouTube	5 GHz	0 out of 1896	24.48	39597	16.95	35	2160 [4K]	30
Load Pattern2	QOS-ON	None	Pattern1	None	Medium	2x2 11ac	YouTube	5 GHz	81 out of 1857	42.09	6574	0.06	0	1080p	30
	QOS-ON	None	Pattern1	None	Far	2x2 11ac	YouTube	2.4 GHz	0 out of 1846	25.28	17748	18.72	0	1440 [HD]	30
	QOS-ON	None	None	Pattern1	Near	2x2 11ac	YouTube	5 GHz	0 out of 2203	28.14	24899	16.66	455	2160 [4K]	30
Load Pattern3	QOS-ON	None	None	Pattern1	Medium	2x2 11ac	YouTube	5 GHz	0 out of 1867	23.84	14993	3.08	0	1440 [HD]	30
	QOS-ON	None	None	Pattern1	Far	2x2 11ac	YouTube	2.4 GHz	0 out of 2164	34	170	0	4	240p	30
	QOS-ON	Pattern1	Pattern1	None	Near	2x2 11ac	YouTube	5GHz	0 out of 2238	25.29	9445	15.64	184	1440 [HD]	30
Load Pattern4	QOS-ON	Pattern1	Pattern1	None	Medium	2x2 11ac	YouTube	5 GHz	0 out of 1856	28.25	689	18.41	39	360p	30
	QOS-ON	Pattern1	Pattern1	None	Far	2x2 11ac	YouTube	2.4 GHz	0 out of 1962	22.03	319	14.78	0	240p	30
	QOS-ON	Pattern1	Pattern1	Pattern1	Near	2x2 11ac	YouTube	5 GHz	0 out of 2471	23.44	6586	12.69	0	1080p	30
Load Pattern5	QOS-ON	Pattern1	Pattern1	Pattern1	Medium	2x2 11ac	YouTube	5 GHz	0 out of 2465	30.24	689	18.62	0	360p	30
	QOS-ON	Pattern1	Pattern1	Pattern1	Far	2x2 11ac	YouTube	2.4 GHz	0 out of 2086	28.16	319	12.21	0	240p	30

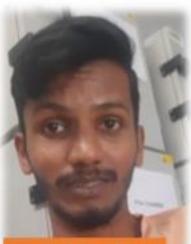
Testbed Images

DUT CHAMBER



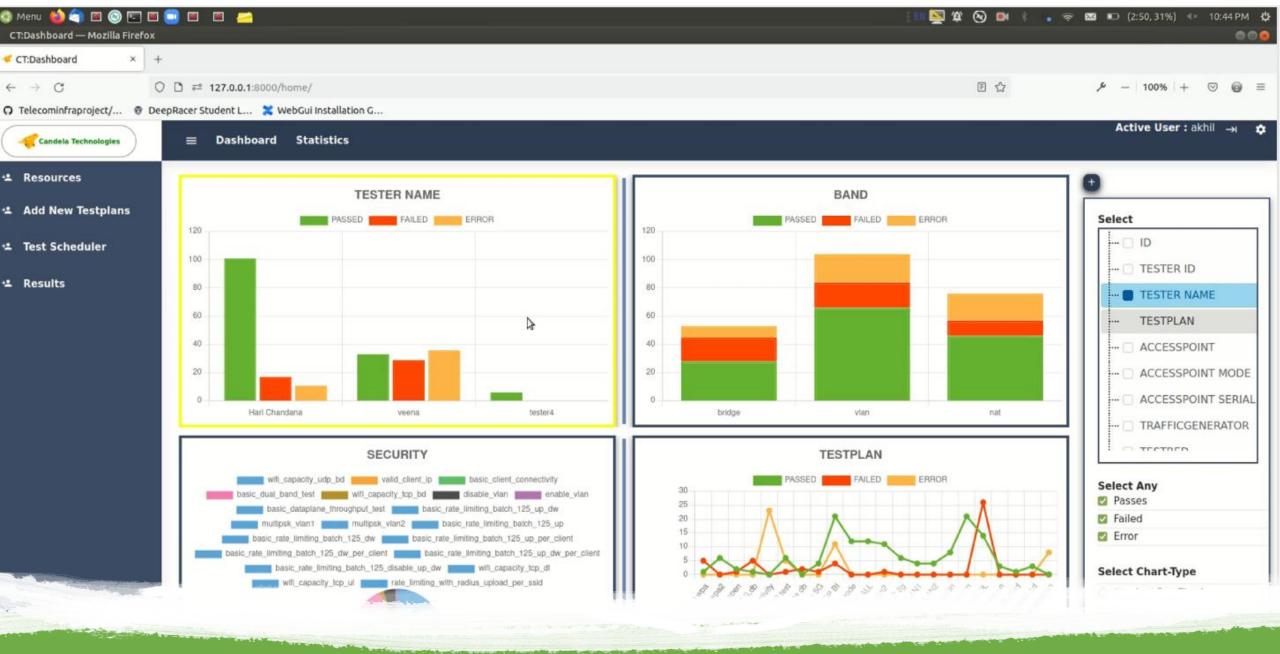
FOA CHAMBER

Subjective Measurements of QoE of Real Video calling and OTT apps in various test conditions

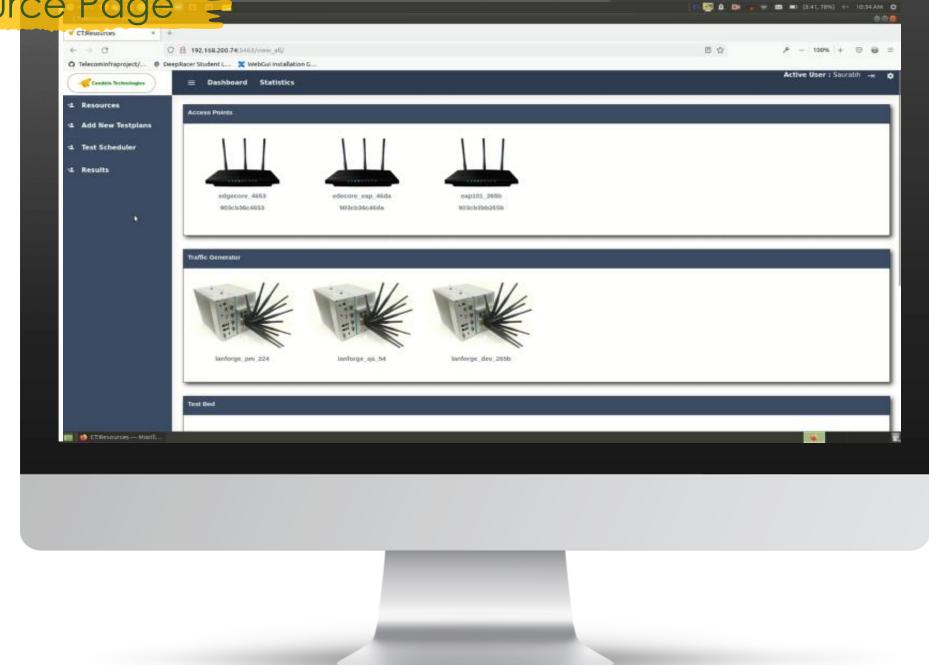


Near - with Background and GoS

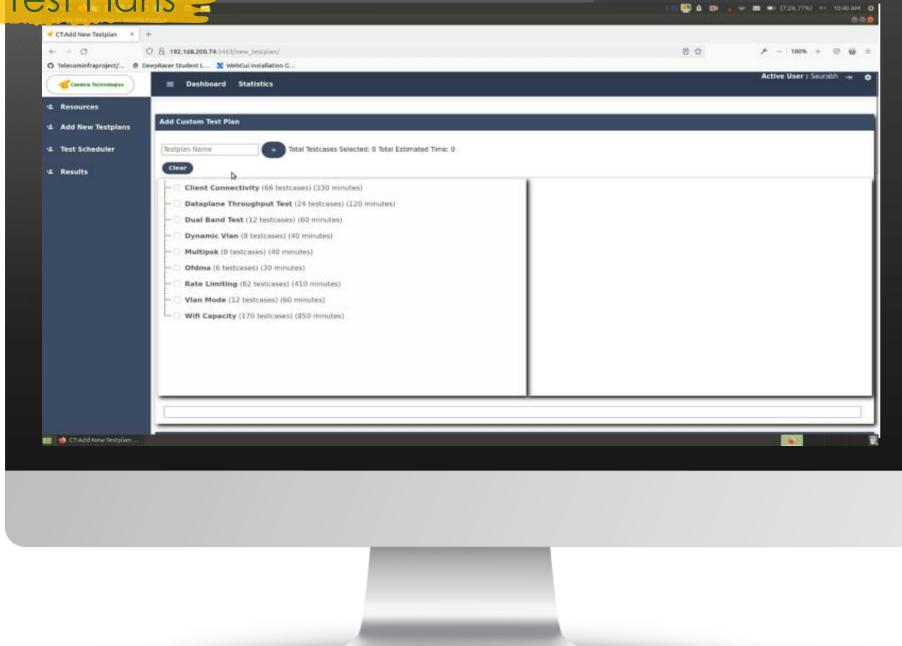
Background and GoS


Background and GoS

Far - with Background


Far - with Background and No Gos

LANforge WebGUI


Resource Page

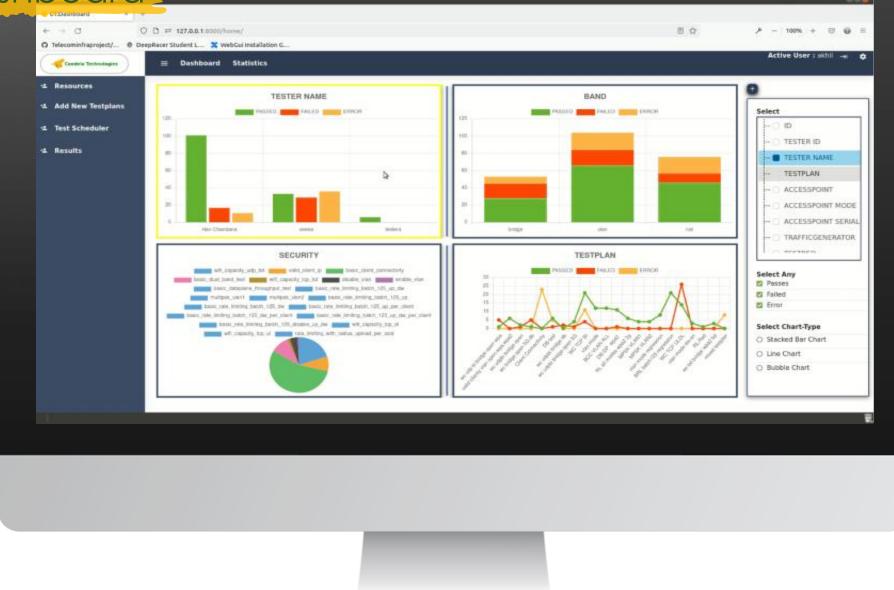
Create Test Plans

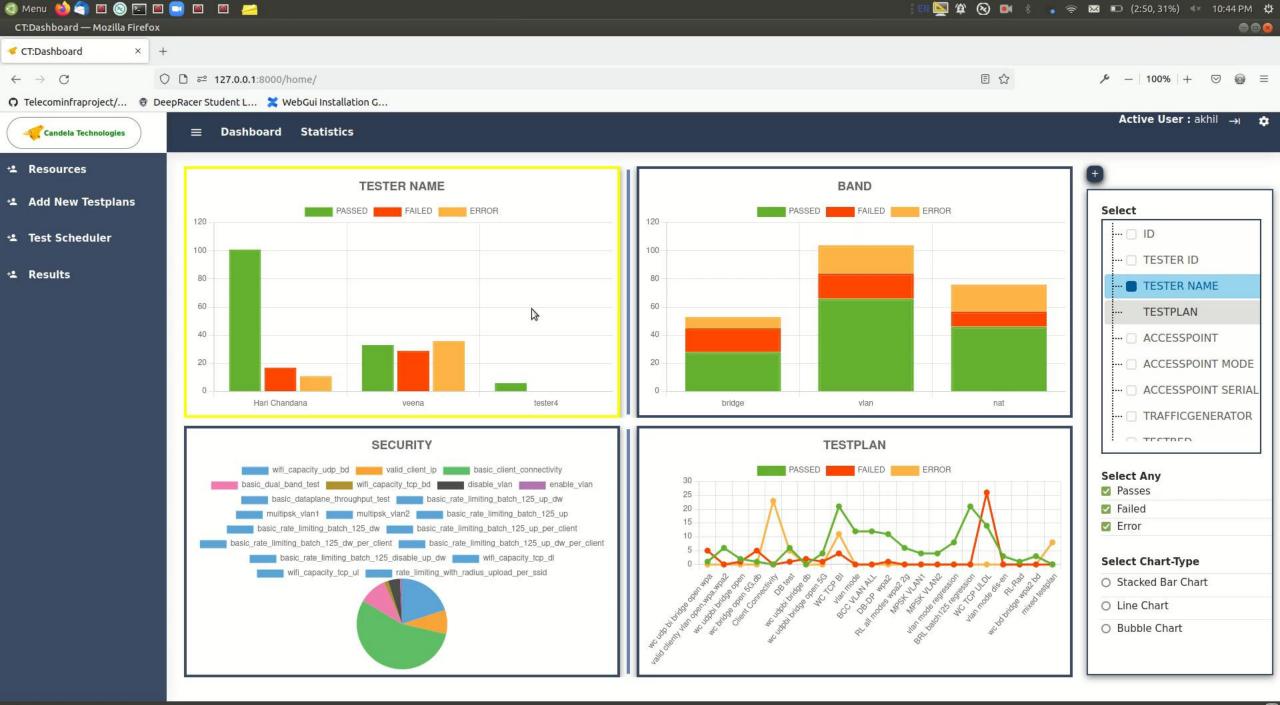
Menu () CT:Add New Testplan — Mozilla Fir		📰 🔯 🏚 💽 🍃 📼 🖘 🖘 📼 (7:24, 77%) 🕸 10:40 AM 🔱
✓ CT:Add New Testplan × +		
$\leftarrow \rightarrow $ C O	8 192.168.200.74:5463/new_testplan/	E ☆
O Telecominfraproject/	oRacer Student L 🛛 🗮 WebGui Installation G	Astrono Hanna Councila
Candela Technologies	■ Dashboard Statistics	Active User : Saurabh →ı 🌣
* Resources		
ᆇ Add New Testplans	Add Custom Test Plan	
⁺≗ Test Scheduler	Testplan Name + Total Testcases Selected: 0 Total Estimated Time: 0	
+≗ Results	Clear	
	··· Client Connectivity (66 testcases) (330 minutes)	
	·· Dataplane Throughput Test (24 testcases) (120 minutes)	
	··· Dual Band Test (12 testcases) (60 minutes)	
	··· Dynamic Vlan (8 testcases) (40 minutes)	
	··· 🗌 Multipsk (8 testcases) (40 minutes)	
	··· 🗌 Ofdma (6 testcases) (30 minutes)	
	··· 🗌 Rate Limiting (82 testcases) (410 minutes)	
	··· 🗌 Vlan Mode (12 testcases) (60 minutes)	
	Wifi Capacity (170 testcases) (850 minutes)	

-

Test Scheduler

Resources			listics										Active User : Saur	
Add New Testplans	Add Run													
Test Scheduler	Testplate	ь.		tied)	Scholujo	(Linesea)		-)	Add Run			
Results •	Scheduler													
	Status	Results					Selected-Testcases	Passed	Falled	Error	Duration(sec)	Testplan	Testbed	Time
	Aborted	1	25		0	Į.	1/3438	0	0	0	0	wc udpul bridge wpa2db	webGul_pm_224	2022-08-
	Completed		8		a	E.	1/3438	1	0	0	1518	wc bd bridge wpa2 bd	webGul_pm_224	2022-08-
	Completed	1	a		0	Į.	3/3438	3	0	0	2211	RL all modes wpa2 2g	webGul_pm_224	2022-08-
	Completed	1	z		0	Į.	2/3438	0	2	0	823	wc bridge open 5G,db	webGui_pm_224	2022-08-
				_										
	Runtime logs													
📩 CTTest Scheduler — M														


🚳 Menu 🍅 켴 🖻 🛞 🔄 🖻 🌘	🖸 🖻 📓 🚄											🔄 🛤 🔄 😫 🖬 🗯 🖘	🖂 🔲 (0:44, 16%) 🖣	M) 4:15 PM 🔱
CT:Test Scheduler — Mozilla Firefo	x													•••
<pre> CT:Test Scheduler × + </pre>														
$\leftarrow \rightarrow G$ O	8 192.168.200.74	4:5463/test	_scheduler	/								۲ ۲	• - 100% +	⊻ @ ≡
O Telecominfraproject/ 😨 Dee	pRacer Student L	X WebGui	i Installatio	n G										
Candela Technologies	≡ Dashbo	ard Sta	atistics										Active User : Saur	abh →ı ‡¢
* Resources	Add Run													
🔩 Add New Testplans														
▲ Test Scheduler →	Testplan	£	• Te	stbed		\cdot	Schedule	Firmwa	re	•	Add Run			
			-	_	_	_		_	_	_				
≗ Results >	Scheduler													
	Scheduler													
	Status	Results	5				Selected-Testcases	Passed	Failed	Error	Duration(sec)	Testplan	Testbed	Time
	Aborted		4		a	HTML	1/3438	0	0	0	0	wc udpul bridge wpa2db	webGui_pm_224	2022-08-2
	Completed		A.		a	HTML	1/3438	1	0	0	1518	wc bd bridge wpa2 bd	webGui_pm_224	2022-08-2
	Completed		4		a	HTML	3/3438	3	0	0	2211	RL all modes wpa2 2g	webGui_pm_224	2022-08-2
	Completed		عر ا		0	HTML	2/3438	0	2	0	823	wc bridge open 5G,db	webGui_pm_224	2022-08-2
	Runtime logs													


۵.

Results Dashboard

I III 🤓 📽 🕤 📾 I 😱 🛩 📾 🐑 (2:50,31%) 🕂 30:44.PM 🚱

2	Tost Statistics	
	Test Statistics	

🕐 Meno 🍓 🧻 🗖 🕲 🕅 📰 CTStatistics — Mazilla Firefox							😳 # 🖬 🛇 🛤			
CT:Statistics × +										
+ + 0 0	8 192.168.7	200.74:5463/statistics/					\$	*	- 100%	+ 0 1
Telecominfraproject/ @ Dee	enRacer Student	L								
Candella Technologies	= Dast	shboard Statistics						- Arci	tive User : S	Saurabh -
L Resources			la	6						
	Clear Fil	(illers)								
Add New Testplans	ID - TE	STER ID + TESTER NAME +	+ TESTPLAN +	ACCESSPOINT +	- ACCESSPOINT MODE	- ACCESSPOINT SERIAL	- TRAFFIC PASSE	ED - FAILED	+ ERROR	+ RESUL
Tool Colorfular				· · · · · · · · · · · · · · · · · · ·		S				
Test Scheduler	156 2	Hari Chandana	we udp hi bridge open wpa	edgecore_4653	with6	903cb36c4653	landorye 1 🗙	4	×	failed
Results	156 2	Hart Chandana	we uslp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge 🛛 🗙	-	×	failed
Results	156 2	Hari Chandana	we udp hi bridge open wpa	edgecore_4653	wt86	903cb36c4653	lanforge 1 🛹	×	×	passed
	156 2	Hari Chandana	we udp hi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_I 🗙	~	×	failed
	156 2	Hari Chandana	we udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_1 🗙	4	×	failed
	150 2	Hart Chandana	we udp hi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	-	×	failed
	157 2	Hari Chandana	valid clienty vian open,wpa,wpa2	/ edgecore_4653	with6	903cb36c4653	lanforge_1 🗸	×	×	passed
	157 2	Hari Chandana	valid clienty vian open.wpa.wpa2	/ edgecore_4653	wif66	903cb36c4653	lanforge 1 🛩	×	×	passed
	157 2	Hari Chandana	valid clienty vian open,wpa,wpa2	/ edgecore_4653	wifi6	903cb36c4653	lanforge_1 🛩	×	×	passed
	157 2	Hari Chandana	valid clienty vian open,wpa,wpa2	/ edgecore_4653	wiffs	903cb36c4653	lanforge_1 🗸	×	×	passed
	157 2	Hari Chandana	valid clienty vian open,wpa,wpa2	/ edgecore_4653	wtfile	903cb36c4653	lanforge_1 ~	×	×	passed
	157 2	Hari Chandane	valid clienty vian open,wpa,wpa2	/ edgecore_4653	wift6	903cb36c4653	lanlorge_1 🗸	×	×	passed
	159 2	Hari Chandana	we udphi bridge open	edgecore_4653	wt56	903cb36c4653	lanforge 🛛 🗙	~	×	failed
	159 2	Hari Chandana	wc udphi bridge open	edgecore_4653	w186	903cb36c4653	lanforge 1 🖌	×	×	passed
	159 2	Hari Chandana	we udphi bridge open	edgecore_4653	wtfi6	903cb36c4653	lanforge 1 🛩	×	×	passed
	160 2	Hari Chandana	we bridge open 5G.db	edecore_eap_46da	wiff6	903cb36c46da	lanforge_4 🗙	~	×	failed
	160 2	Hari Chandana	we bridge open 5G,db	edecore_eap_46da	wifi6	903cb36c46da	lanforge_t 🖌	×	×	passed
	161 5	Ventua	Client Connectivity	edgecore_4653	will6	903cb36c4653	lantorge_1 ×	×	4	error
	161 5.	veeta	Client Connectivity	edgecore_4653	wifi6	903cb36c4653	lanforge 🛛 🗙	×	2	error
	161 5	versa	Client Connectivity	edgecore_4653	wiff6	903cb36c4653	lanforge 1 🗙	×	4	error
	161 5	versa	Client Connectivity	edgecore 4653	wtfi6	903cb36c4653	lanforge 🛛 🗙	×	3	error
	161 5	veena	Client Connectivity	edgecore 4653	wiffi6	903cb36c4653	lanforge 1 ×	×	5	error

📰 🔕 CEStatistics — Morila

🔇 Menu 🍅 🤄 🖻 🛞 🖭 🕅 🎑	3						EN	💆 छे 🗔	🛛 🛤 🐞		(1:00, 13%)	●)) 4:33 PM
CT:Statistics — Mozilla Firefox												00
CT:Statistics ×												
$\leftrightarrow \rightarrow G$ O	8 192.	168.200.74:5463,	/statistics/						3	۶	- 100% -	+ 🛛 🎯 🗄
🗘 Telecominfraproject/ 😨 Deep	Racer Stu	udent L 🔀 We	ebGui Installation G									
Candela Technologies	≡	Dashboard	Statistics							Acti	ve User : Sa	aurabh →I I
* Resources				A								
	Cle	ear Filters										
+ Add New Testplans	ID 🔺	TESTER ID	TESTER NAME	TESTPLAN	ACCESSPOINT A	ACCESSPOINT MODE	ACCESSPOINT SERIAL	▲ TRAFFIC	PASSED 🔺	FAILED 🔺	ERROR 4	RESULT 🔺
	l v		~	×	×	~		~				
* Test Scheduler	156	2	Hari Chandana	wc udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	~	×	failed
A Deculto	156	2	Hari Chandana	wc udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	~	×	failed
+ Results	156	2	Hari Chandana	wc udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	156	2	Hari Chandana	wc udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	~	×	failed
	156	2	Hari Chandana	wc udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	~	×	failed
	156	2	Hari Chandana	wc udp bi bridge open wpa	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	~	×	failed
	157	2	Hari Chandana	valid clienty vlan open,wpa,wpa2	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	157	2	Hari Chandana	valid clienty vlan open,wpa,wpa2	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	157	2	Hari Chandana	valid clienty vlan open,wpa,wpa2	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	157	2	Hari Chandana	valid clienty vlan open,wpa,wpa2	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	157	2	Hari Chandana	valid clienty vlan open,wpa,wpa2	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	157	2	Hari Chandana	valid clienty vlan open,wpa,wpa2	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	159	2	Hari Chandana	wc udpbi bridge open	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	~	×	failed
	159	2	Hari Chandana	wc udpbi bridge open	edgecore_4653	wifi6	903cb36c4653	lanforge_	~	×	×	passed
	159	2	Hari Chandana	wc udpbi bridge open	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	×	×	passed
	160	2	Hari Chandana	wc bridge open 5G,db	edecore_eap_46da	wifi6	903cb36c46da	lanforge_	×	~	×	failed
	160	2	Hari Chandana	wc bridge open 5G,db	edecore_eap_46da	wifi6	903cb36c46da	lanforge_	~	×	×	passed
	161	5	veena	Client Connectivity	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	×	~	error
	161	5	veena	Client Connectivity	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	×	~	error
	161	5	veena	Client Connectivity	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	×	~	error
	161	5	veena	Client Connectivity	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	×	~	error
	161	5	veena	Client Connectivity	edgecore_4653	wifi6	903cb36c4653	lanforge_	×	×	~	error
	1.01	5		Oli-at Coursectivity	-de 4053		003-b2C-4CE2	1				

•

Candela India Test House

Test House – 3500 Sqft Apartment

- Brick and Mortar construction
- Tile flooring.
- 10 feet ceilings.
- Standard wooden doors, wooden cupboards and cabinets.
- 4- Bed, 4-Bath, Living, Dining, Kitchen and Media Rooms.
- Independent building with very little or no external WiFi or RF interference
- Fully equipped home with all furniture and furnishings
- Lots of WiFi Devices of various types (Laptops, Smartphones, Tablets, TVs, Cameras, IoT Devices etc...)

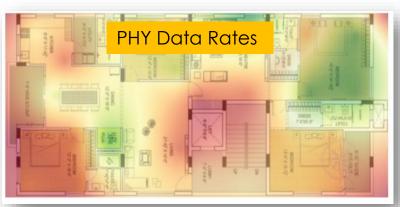
Single AP/Router

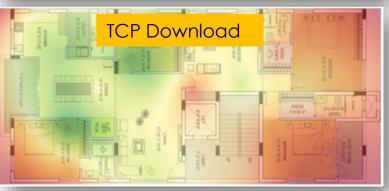
Full Performance Analysis of a Single WiFi Access Point in the Test House

Full Mesh Systems

Test Full in home WiFi Mesh System for Coverage, Capacity and Mobility

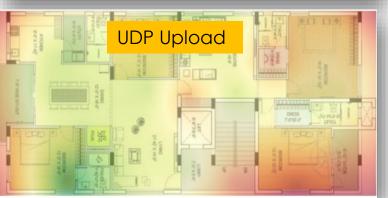
Computing Devices


Test the latest WiFi Laptops, Smartphone and Tablets

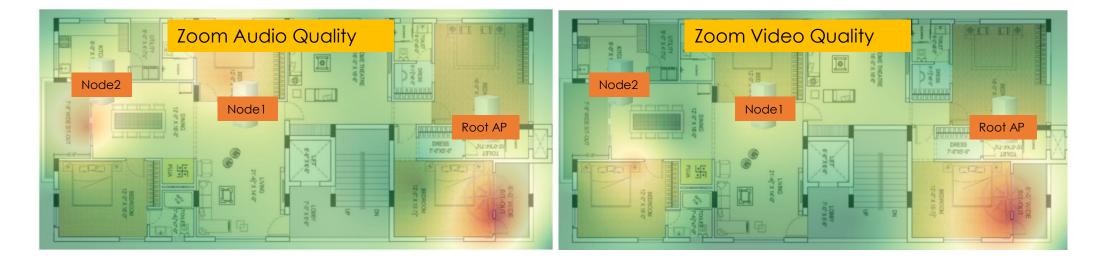

Smart Home Devices

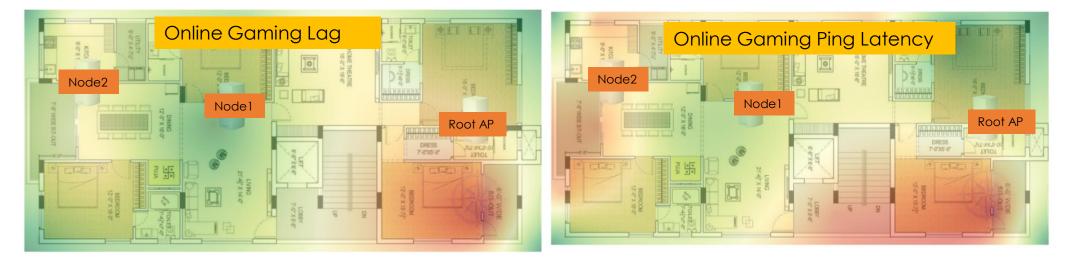
All Smart Home devices including Consumer Electronics and Home Automation/Security Devices

Coverage/User Experience Heatmaps



Signal Quality





User Experience Heatmaps

	Signal Strength	PHY Rates	Channel Selection	UDP Downstream	UDP Upstream	TCP Downstream	TCP Upstream	Latency
Living Room	PASS	FAIL	FAIL	FAIL	PASS	FAIL	FAIL	FAIL
Dining Room	FAIL	PASS	PASS	PASS	PASS	PASS	PASS	PASS
Kitchen	FAIL	FAIL	PASS	FAIL	PASS	FAIL	PASS	PASS
Guest Bedroom1	PASS	FAIL	FAIL	PASS	FAIL	PASS	PASS	PASS
Guest Bedroom2	PASS	PASS	FAIL	PASS	FAIL	PASS	FAIL	FAIL
Media Room	PASS	FAIL	PASS	PASS	FAIL	PASS	FAIL	FAIL
Kids Bedroom	FAIL	FAIL	PASS	PASS	PASS	FAIL	PASS	PASS
Master Bedroom	PASS	PASS	FAIL	FAIL	FAIL	PASS	FAIL	FAIL

Example Candela WiFi Coverage Score: 82/100

Signal Strength : 95/100 Range : 72/100 Upstream Throughput : 60/100 Downstream Throughput : 75/100 Band Selection : 45/100

	Avg Signal Strength	Avg UDP Downstream	Avg UDP Upstream	Avg TCP Downstream	Avg TCP Upstream	Avg Latency
Living Room	-35 dBm	10 Mbps	66 Mbps	10 Mbps	10 Mbps	450 ms
Dining Room	-62 dBm	56 Mbps	59 Mbps	96 Mbps	56 Mbps	32 ms
Kitchen	-75 dBm	12 Mbps	32 Mbps	12 Mbps	12 Mbps	64 ms
Guest Bedroom1	-43 dBm	93 Mbps	13 Mbps	93 Mbps	93 Mbps	92 ms
Guest Bedroom2	-46 dBm	67 Mbps	17 Mbps	74 Mbps	67 Mbps	364 ms
Media Room	-32 dBm	97 Mbps	7 Mbps	67 Mbps	97 Mbps	523 ms
Kids Bedroom	-74 dBm	85 Mbps	85 Mbps	15 Mbps	85 Mbps	45 ms
Master Bedroom	-49 dBm	5 Mbps	5 Mbps	85 Mbps	5 Mbps	423 ms

Test Tools:

- Laptops, Smartphones, Tablets, Other Virtual Clients.
- iPerf/LANforge software

Test Steps (Objective Scoring):

- AP under test is placed in specific location in the house.
- All the real client devices are placed at specific areas in the house at short, mid and far range distances.
- Candela LANforge units are also placed in specific areas to create more client load.
- Iperf traffic is run on all real clients.
- Performance measurements are made with increasing number of clients and increasing amount of traffic load.

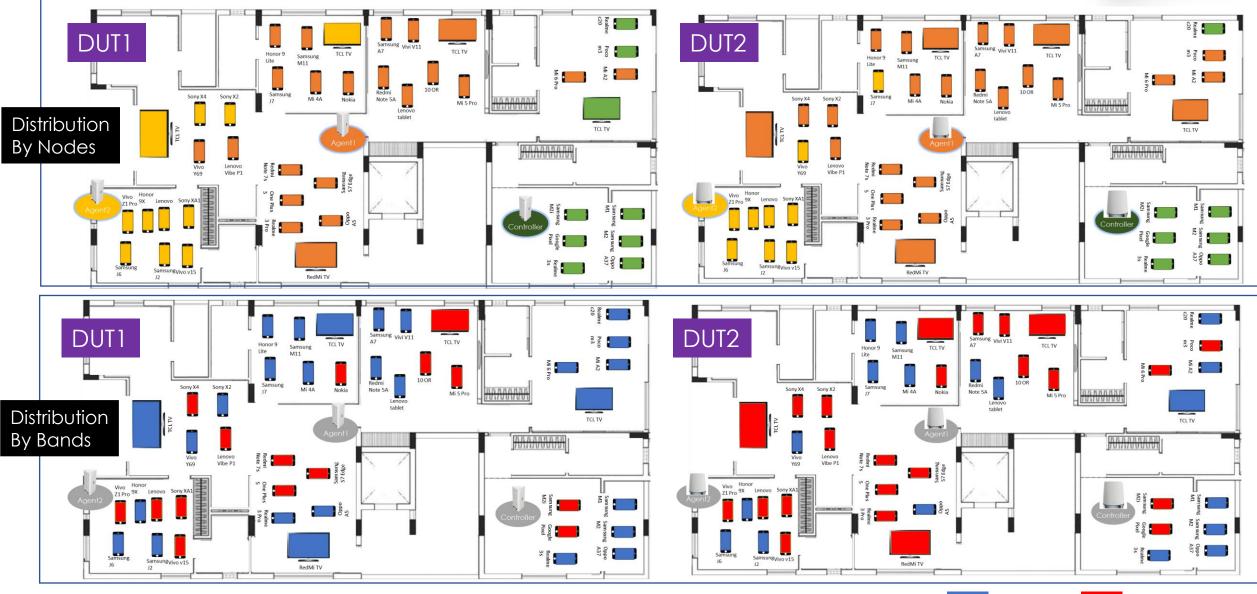
Test Steps (Subjective Scoring):

- Tests are performed with real wireless TVs and real video streaming on the various client devices.
- Real voice calls are placed for voice quality testing.
- Test engineers observe video and audio quality over a period of time and provide subjective scoring based on their user experience.
- Test are run with different amount of background loads and interference

Key Measurements:

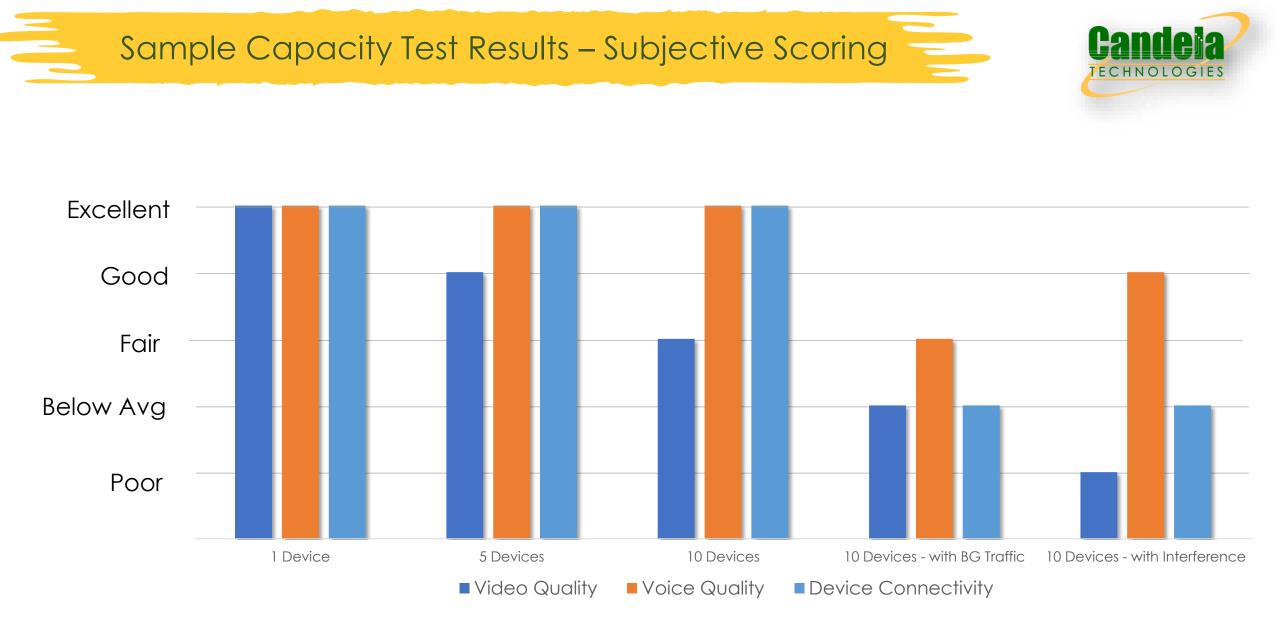
- Throughput measurements are made for various high density, low density and high load and low load scenarios.
- Client connection times are measured
- And load balancing efficiency is also measured across all the radios.
- Video and Voice Quality subjective scoring

Sample Capacity Test Results – Objective Measurements


		Low	Load (1 Mb	ps/client)	High Load (5Mbps/client)				
	Distance	Low Density	Medium Density	High Density	Low Density	Medium Density	High Density		
Living Room	Near	1	5	8	1	5	8		
Dining Room	Medium		2	4		2	4		
Kitchen	Far		2	4		2	4		
Guest Bedroom1	Far	1	2	4	1	2	4		
Guest Bedroom2	Medium	1	2	4	1	2	4		
Media Room	Near		4	8		4	8		
Kids Bedroom	Medium	1	1	4	1	1	4		
Master Bedroom	Medium	1	2	4	1	2	4		
Total Clients		5	20	40	5	20	40		
Total Load (Mbps)		5	20	40	25	120	200		

Fxamp	le Canc	lela WiFi	Capacity	Score [®]	82/100
LAUNP			Cupucity		

Client Connection Time : 95/100 Range : 72/100 Low Load Performance: 60/100 High Load Performance: 75/100 Load Balancing: 45/100


	D : 1	Low Load (1 Mbps/client)		High Load (5Mbps/client)			
	Distance	Low Density	Medium Density	High Density	Low Density	Medium Density	High Density
Living Room	Near	PASS	FAIL	FAIL	FAIL	PASS	FAIL
Dining Room	Medium	FAIL	PASS	PASS	PASS	PASS	PASS
Kitchen	Far	FAIL	FAIL	PASS	FAIL	PASS	FAIL
Guest Bedroom1	Far	PASS	FAIL	FAIL	PASS	FAIL	PASS
Guest Bedroom2	Medium	PASS	PASS	FAIL	PASS	FAIL	PASS
Media Room	Near	PASS	FAIL	PASS	PASS	FAIL	PASS
Kids Bedroom	Medium	FAIL	FAIL	PASS	PASS	PASS	FAIL
Master Bedroom	Medium	PASS	PASS	FAIL	FAIL	FAIL	PASS

2.4GHz

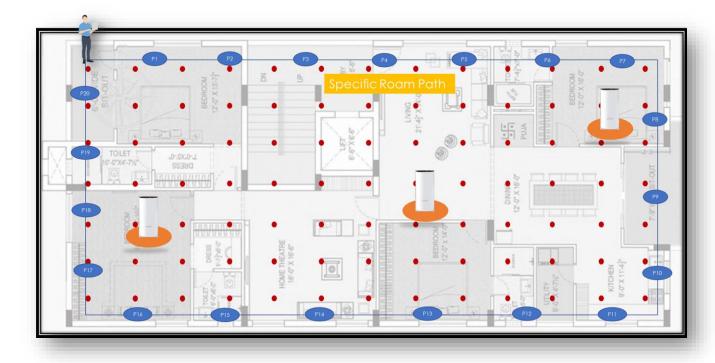
5GHz

Test House – Mobility Testing

Test Tools:

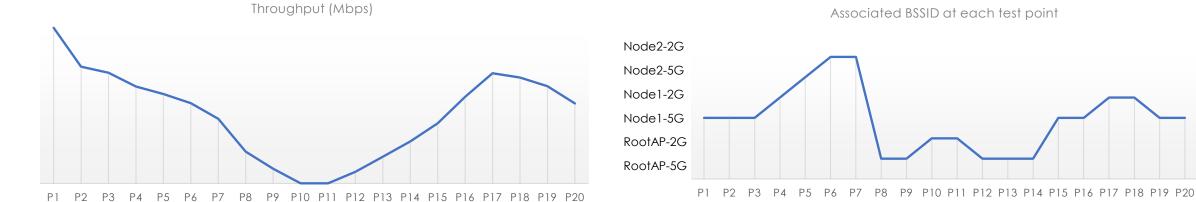
- Test Laptop/Smartphone.
- iPerf/LANforge software

Test Steps (Objective Scoring):

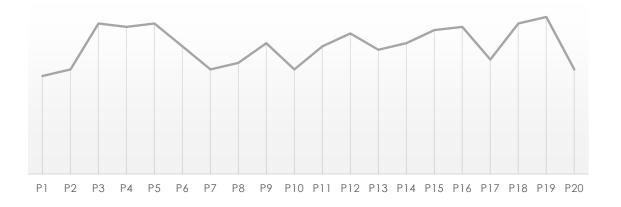

- This tests applies on to Residential Mesh systems
- The test path is clearly marked in the house
- The test moves along the test path and makes measurements at various test points.
- The result are plotted and presented.

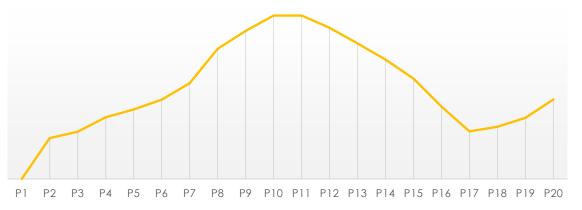
Key Measurements:

- Throughput/latency/jitter at various points on the mobility path.
- Roam pattern, selected AP and Band at each point on the mobility path.
- Any service interruption noticed due to client disconnection.


Sample Candela WiFi Mobility Score: 82/100

Throughput : 95/100 Client Connection : 72/100 AP Selection: 60/100





Associated BSSID at each test point

Jitter (msecs)

Packet Loss (%)

Test House – Interoperability Testing

Test Tools:

- Interoperability test device
- iPerf/LANforge software

Test Steps (Objective Scoring):

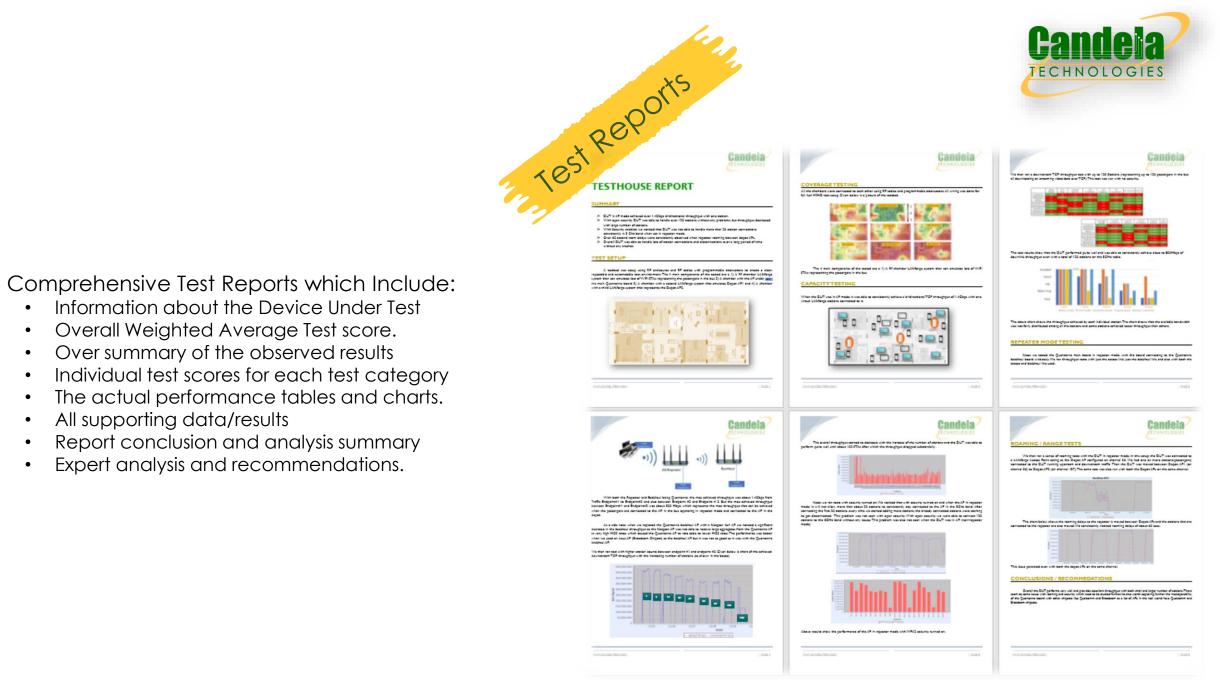
- Do basic coverage testing with the single device at 5 different marked points in the house.
- Do throughput testing at one specific location in the house and measure Upstream/Downstream performance.
- Check for basic client connectivity with all security types.

Nighthawk AX12 WiFi 6 Router

iPhone12

Vs

Device	Signal Strength	Throughput	Client Connection	
iPhone 12	PASS	FAIL	FAIL	
Oppo A37fw	FAIL	PASS	PASS	
Vivo Y95	FAIL	FAIL	PASS	
Oppo F15	PASS	FAIL	FAIL	
Samsung A50	PASS	PASS	FAIL	
Redmi K20Pro	PASS	FAIL	PASS	
Redmi Note 3	FAIL	FAIL	PASS	
Vivo V9 Youth	PASS	PASS	FAIL	


Key Measurements:

- Throughput
- Client connection times
- coverage

Sample Candela WiFi Interoperability Score: 82/100

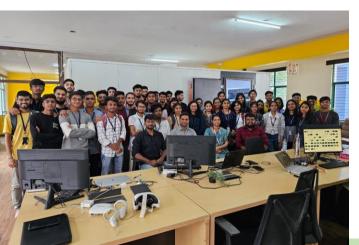
Throughput : 95/100 Client Connection : 72/100 Coverage: 60/100

Candela India Office

and an and and an

HILE.

1



TECHNOLOGIE

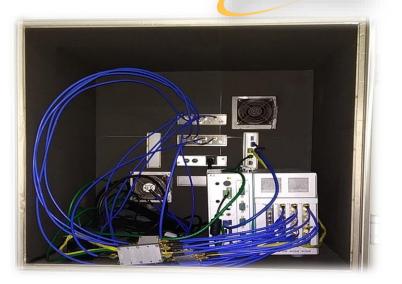
Wireless INnovation lab Industry Lab in College Campus. Industry /Academia collaboration. Student Internships and Job Opportunities.

CAWIN

Candela Acharya

ACHARYA

Wireless Networking Center of Excellence


Candela India Lab Setups

Testbed Images

Candela

TECHNOLOGIES

Candela India Lab Setups

APs Tested in our India Lab

AP Performance - Test as a Service

Candela

- > Tests will be run in Candela test lab. All test engagements provide a detailed executive report with result summary and details.
- > Candela will provide all test equipment, an expert test engineer and customer to provide the DUT and DUT config

Sample Comparison Results Summary

Num	Tests	Vendor A Access Point	Vendor B Access Point	Vendor C Access Point		
1	Throughput – 5GHz	Excellent	Good	Average		
2	Throughput – 2.4GHz	Excellent	Good	Good		
3	Client Capacity – 5GHz	Excellent	Good	Average		
4	Client Capacity – 2.4GHz	Excellent	Good	Average		
5	Rate vs Range – 5GHz	Excellent	Good	Average		
6	Rate vs Range – 2.4GHz	Good	Average	Good		
7	Dual Band Throughput	Excellent	Poor	Poor		
8	Airtime Fairness – 5GHz	Excellent	Not Functional	Not Functional		
9	Airtime Fairness – 2.4GHz	Excellent	Not Functional	Not Functional		
10	Roaming Performance	Excellent	Poor	Average		
11	Spatial Consistency -5GHz	Excellent	Poor	Poor		
12	Spatial Consistency -2.4GHz	Excellent	Average	Average		
13	Mu-MIMO Performance	Excellent	Not Functional	Not Functional		
14	QoS Performance	Excellent	Average	Poor		
15	Client Connection Rate	Average	Excellent	Poor		
16	Near/Far Clients Performance – 5GHz	Excellent	Average	Average		
17	Near/Far Clients Performance – 2.4GHz	Average	Poor	Good		
18	Long Term Stability	Average	Poor	Average		

Access Point Testcases

Category	Sub-Category	Test Cases developed for
	Firmware	Upgrades/Downgrades, AP boots/reboots, System resources
	Configuration & Communication	AP provisioning, ZTP, setting up networks/channels/profiles/APs, cloud connectivity, DHCP/Radius and other services, Alarms
Command and Control	Operation Modes	Bridge/vlan/router modes,
	Physical & Virtual Interfaces	Basic functions of LAN/WAN/WLAN physical interfaces, indicators/LEDs, virtual interfaces (SSIDs/VLANs etc)
	GUI/APIs	GUI settings (Read/Write) , API calls (Push/Pull)
	BSS Capabilities	Basic/Extended Capabilities, Security, QoS, RRM, DFS, 802.11a/b/g/n/ac/ax/k/v/r/i/u/w settings, reg domains etc
	Connectivity & Security	Basic connectivity with all WPA/2/3 Personal/Enterprise, All EAP method, Passpoint. Captive Portal, WPS etc
Functional Testing	Radio Resource Management	Load Balancing, Band Steering, Auto Channel Selection, DFS
resing	Smart WiFi	Role/User/Device/Network based policies, Traffic Shaping, Int Detection/Mitigation, DPI, threat detection, Location Services
	QoS & Mobility & Power Save	WMM, Fast Roaming, Open Roaming, Network assisted handoff, Legacy/WMM/MIMO Power Save
	Throughput Benchmark	Throughout for STA Modes/MIMO types/STA counts/BW settings/Traffic Types/Direction/Packet Sizes etc
	Multiband Performance	Single/Dual/Tri band performance
Performance Testing	Mobility Performance	Rate vs Range, Rate vs Antenna Orientation, Roaming Delay, Roaming performance with different security types
resing	Radio Performance	Receiver Sensitivity, Transmitter Quality, Reg Domain TX power testing.
	Application Performance	VOIP Performance, Youtube/OTT Video Streaming, HTTP/FTP Performance, Social Media Apps performance
Stress and	Day in Life Test	Mix of Stations/APs/SSIDs/Security Types/User Policies/Traffic/Device Load Patterns over time in a 10 hour day
Endurance	48-hour Stress Test	Full system load across all interfaces with maximum stations/traffic run for 48 hours
Testing	Load Patterns #1,#2, #3	Various real world load patterns run over long durations.
	Single AP SOHO	TR-398 or similar test plan for comprehensive single SOHO AP testing, Qualification/Badge Program
	SOHO Mesh	Throughput Per Hop, Mesh Failover, Roaming, Load Balancing, Qualification/Badge Program
Use Case Testing	Med-Enterprise Network	Medium Size Enterprise Network Use cases, Qualification/Badge Program
	Multi Dweller Unit (MDU)	MDU Test plan with clear PASS/FAIL results , Qualification/Badge Program
	Campus Network/LPV	Campus Network/Large Public Venue Test Plan/Operator Network, Qualification/Badge Program

802.11ac Access Point Test Plan - Overnight

Basic Client Connectivity

 Connect and Disconnect 20 clients each on 2.4Ghz and 5Ghz radios using Open, WPA-PSK, WPA-Enterprise methods, measure connecting times and connection drops.

Benchmark Throughput

 Run full line rate traffic with single client in 4x4 MIMO 80Mhz mode in 5GHz and 3x3 MIMO 40 Mhz in 2.4GHz. Measure and Benchmark maximum throughput.

Full System Performance

 Load all radios and ethnet interfaces simultaneously with full line rate traffic and measure the maxium achieved system throughput

Roaming Performance

 Create lots of clients and connect them to the AP and then cause lots of roams across various security types and measure romaing performance

Reciever Sensitivity

 Fix the MCS rates on the client and send traffic with same MCS rate but different transmit power values and measure receiver sensitivity at all power level. Run test at all MCS rates

Rate vs Range

 Measure performance over distance for various traffic types both Upstream and Downstream.

Client Capacity

 Run a throughput test with 1,2,5,10,20 and 40 clients. Repeat test on both 2.4GHz and 5GHz bands.

Mu-MIMO

 Create 3 STAs (1x 2x2 MIMO and 2x SISO) and measure the increase in troughput when Mu-MIMO feature is enabled.

Airtime Fairness

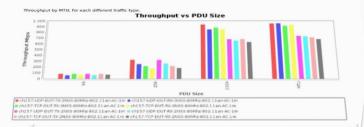
 Connect 1x 802.11ac client and 1x 802.11n client and 1x 802.11a client, run equal amount of traffic on all three clients and see if AP distributes airtime fairly.

QoS Performance

 Create different voice, video and data traffic streams with different DSCP settings and WMM settings and check to make sure the AP provides better throughput to high priority traffic.

DFS Conformance

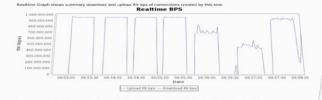
 Generate different types of Radar Pulses and make sure the AP can detect Radar and move to a differen channel and stay off channel.


Lond Duration Stability

 Connect lots of clients and run traffic for a 24 hour period and look for any instability in the AP performance

PDF TEST REPORTS

The Concists WHI data plates that is essigned to conclude an automotive trading of all combinations of statistic types, which can be concluded as automotive trading of all combinations of statistic types. Which can be concluded as a statistic trading of the statistic tra

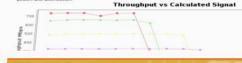


Pps throus

Objective

By their to be applied to the excluse performance to this Accide Poull when hardwaled difference throughout free each trial. Along with throughout other measurements made are client to DHCP times and more. The expected behavior is for the AP to be able to handle sive DHCP times and more. The expected behavior is for the AP to be able to handle serve a spontfraction over all throughout for them as an one attempts are indexing and a spontfraction over all throughout discriment as an one attempts are indexing.

Station connect time is calculated from the initial Authenticate message through the completion of Open or RSN association/authentication.



Objective

In the real-world the Device Device Trait WDT in reciver is expected to benefit stations at many effortent incriminations and an among uniformer stations framework in the station of the station of the station of the station of the station training models and an excellent real-states. The cancel stations are stationare to the station of the station

uphput vs calculated RF Signal for each different traffic type. The signal is calculated based on the configured path-loss, transmit

Objective

The TR-388 W/I Performance ted plan by the Broadband brum provides a comprehensive sed plasts to suasity the performance of W/I access points (AB) insigned the restantiation because drive amount of the performance the performance test plan. The test plan is designed for sensitivity Mu JMMO Performance, Spatial Consistency and Long-term Stability are some of the test areas covered in this test plan. The test plan is designed for sensitivity providers deploying in home W/I AS to qualify the APs in the lab before deployment and for explorement makers to test during the development of the APs in the lab before deployment and for explorement makers to test during the development of the APs in the lab before deployment and for explorement makers to test during the development of the APs in the lab before deployment and for explorement makers to test during the development of the APs in the lab before deployment and for explorement makers to test during the development of the APs in the lab before deployment and for explorement and the explorement of the APs in the lab accessible in the CLI and all selected test). For the summary RASS/RLI, results followed more detailed results for each test.

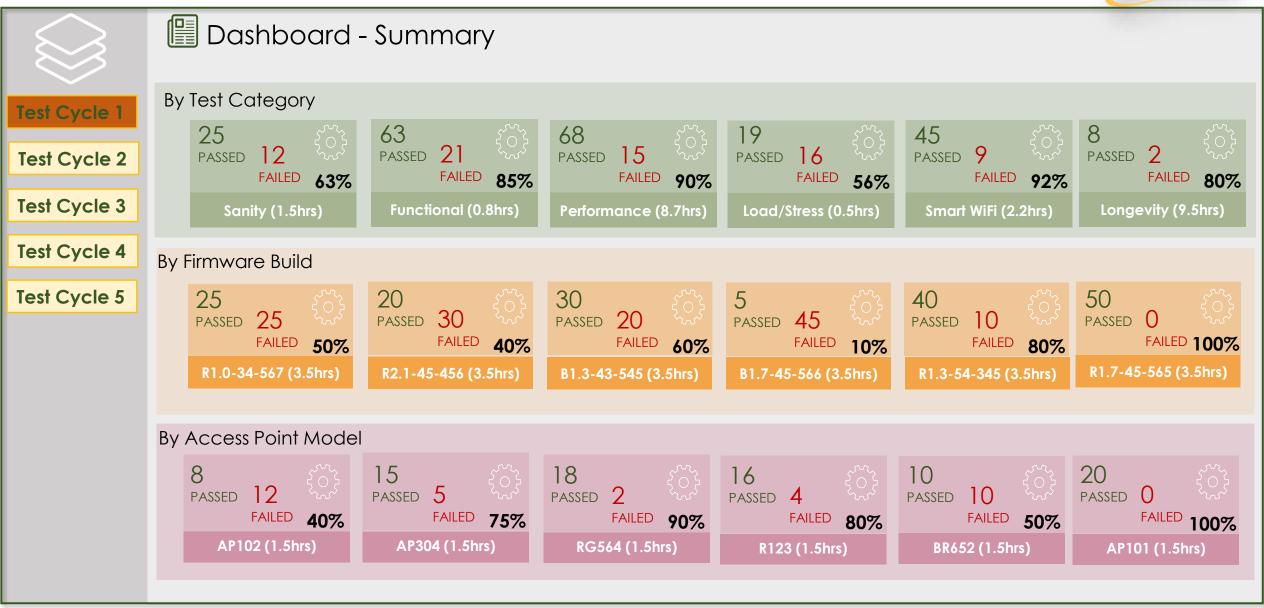
Add your notes below:

Setup is similar to what is described here: https://www.candelatech.iss/lf tr200 testing.php

Summary Results

Test	Result	Candela	Elapsed	
6.1.1 Receiver Sensitivity Test	2.4Ghz PAS SGhz PASS	S 100	2.165 h	2.4Ghz passed 16 / 16 Pass-Avg: 11.1 5Ghz passed 16 / 16 Pass-Avg: 4.4
6.2.1 Maximum Connection Test (32-STA	SGDZ FAIL			Throughput: 2.4Ghz UL 104.24% DL 104.33% Throughput: 5Ghz UL 96.26% DL 104.19% Passed PER: 128 / 128
6.2.2 Maximum TCP Throughput Test	2.4Ghz FAIL 5Ghz PASS	62	16.047 m	Throughput 2.4Ghz UL 0% DL 0% Throughput 5Ghz UL 124.57% DL 124.78%
6.2.3 Airtime Fairness Test	2.4Ghz FAIL 5Ghz FAIL		9.299 m	2.4Ghz passed 3 / 7 Candela is not convinced these pass/fail metrics are very helpful.
6.3.1 Range Versus Rate Test	2.4Gbz FAIL SGbz PASS	93	27.978 m	SGhz UL 13 / 13 DL 13 / 13 2.4Ghz UL 17 / 18 DL 17 / 20 2.4Ghz Retried 0 traffic tests.
6.3.2 Spatial Consistency Test	2.4Ghz FAIL		28.733 m	SGAz passed 12 / 12 SGAz retried 1 traffic tests. 2.4GAz passed 11 / 12 2.4GAz retried 1 traffic tests. Rotational Degrees : 45
6.4.1 Multiple STAs Performance Test	2.4Ghz PASS	100	18.053 m	2.4Ghz Passed 6 / 6 SGhz Passed 6 / 6
6.4.2 Multiple Association / Disassociation Stability Test	2.4Ghz PASS 5Ghz PASS	100	100000000000000000000000000000000000000	2.4Ghz Passed 960 / 960 5Ghz Passed 960 / 960
.4.3 Downlink MU-MIMO Performance Test	5Ghz FAIL	115	14.489 m	Passed: 2 / 3 Single Throughput Sum: 1,368.39 Mbps SU-MIMO Throughput Sum: 422.23 Mbps MU-MIMO Throughput Sum: 601.06 Mbps
5.2 AP Coexistence Test	2.4Ghz FAIL SGhz FAIL	50	17.639 m	Passed 4 / 8 NOTE: User has calibrated different Interferer transmit rates. TR-398 specified vs actual inteferer rate settings: 5G-80Mhz: 195 vs 195 5G-40Mhz: 90 vs 90 2.4Ghz-20Mhz: 32 vs
	2.4Ghz FAIL 5Ghz PASS	97 3	20.669 m	2.4Ghz Throughput Avg 187.95 Mbps Passed: 48 / 50 2.4Ghz Packet Error Rate Passed: 0 / 1 SGhz Throughput Avg 887.18 Mbps Passed: 50 / 50 5Ghz Packet Error Rate Passed: 1 / 1

TECHNOLOGIES **WiFi Mobility Report** Candeia Sat Jun 01 08:13:35 PDT 2019 Objective The Candela Roam test uses the forced roam method to create and roam hundreds of WiFi stations between two or more APs same SSID on the same channel or different channels. The user can run theusands of roams user long durations and the test roaming delay for each roam, station connections times, network doon time, packed thos set... The user can not this test using second methods of the same channel and any of the second s 45 Parget Aarga **Roam Percentage per Duration** 12 2 2 2 2 N Boam Time **Station Roam Times** 175.000 125.000 the state of the second 100,000 **Rate vs Range Test** Candela 3 100,000 Sat Jun 01 10:01:31 PDT 2019 75.000 50.000 Test Setup Information 25,000 V5.62.3 AP640 Serial Number 234-23-sd-35 vice Under Test 081 10.02-24-57-26-4 88.60 84 **=**] Objective rms text measures the performance over distance of the Device Under Text. Distance is emulated using programmable attenuat and a throughpit test is not a each distance/RSSI step and plotted on a chart. The test allows the user to plot RSSI curves both upstream and downstream for different types of traffic and different station types. Throughput vs calculated RF Signal for each different traffic type. The signal is calculated based on the configured path-loss, transmit power, and attenuation. Throughput vs Calculated Signal 800 2 50 Signal ● cn157-UDP_DUT_TX_3N55-86Mtz-84.1m ● ch157-UDP_DUT_8X_3N55-86Mtz-84.1m ● ch157.TCP_DUT_TX_3N55-86Mtz-84.1m ch157.TCP OUT RX 3NSS 80MPz 541m = ch157.UDP OUT TX 3NSS 80MPz MTU 1m = ch157.UDP OUT RX 3NSS 80MPz MTU 1m = ch157.TCP OUT TX 3NSS 80MPz MTU 1m + ch157.TCP OUT RX 3NSS 80MPz MTU 1m Realtime Graph shows summary download and upload RX bps of connections created by this test.


Candela

Customized Dashboards

Test Result Summary

Testing OpenWiFi APs on Real College Campuses

8.111

CENIELL REALECT

quality Assura.

Skills

STRATEGY

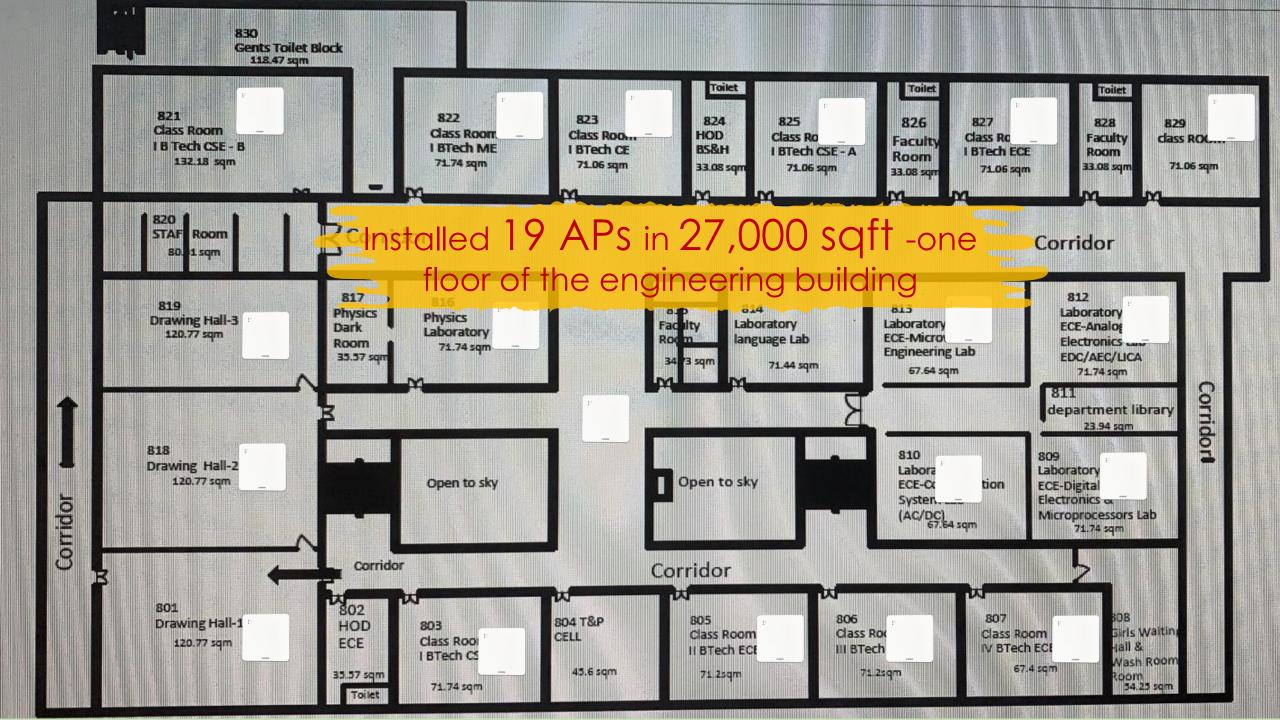
SINCESS

HARDWORK

INNOVATI

TEAMWO

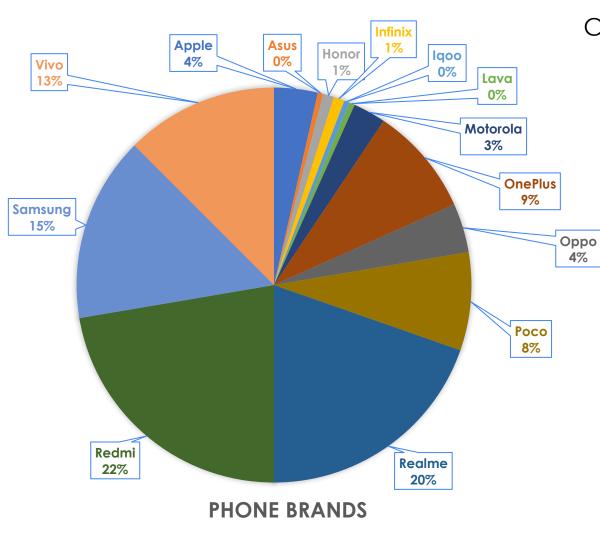
20


HNOLOGIES

NETWORK

TESTING & EMULATION

-1.80


SOL

396 Devices Connected!

All Students connecting to WiFi Network

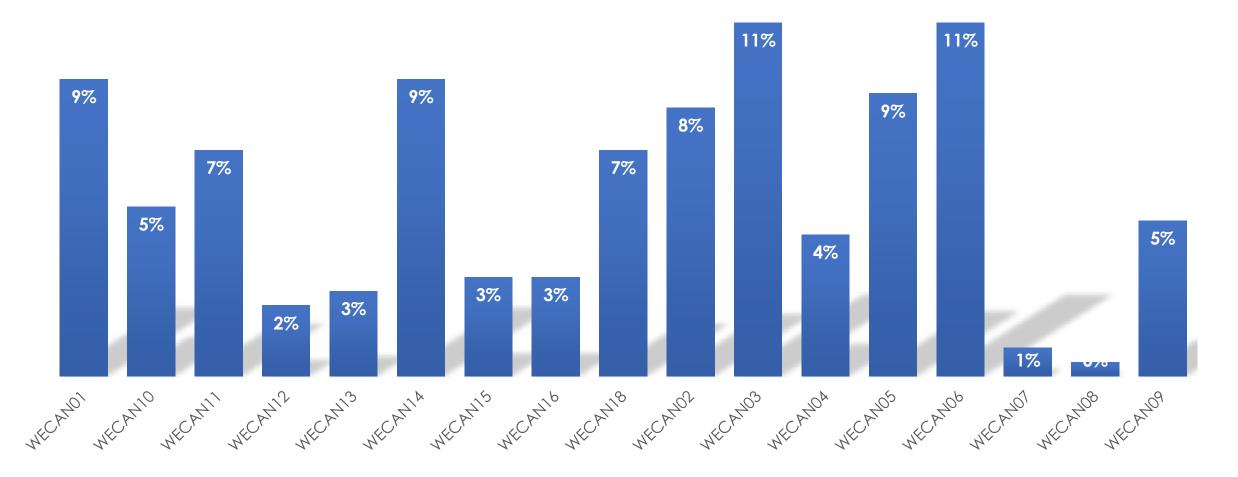
Over 400 Smartphones used the test

Close to 100 Different Phone Models

OnePlus 8 Oppo A3s Redmi Note 9 Pro Samsung J6+ Realme C5 Samsung A30 Realme 2 Pro Vivo X60 Redmi Note 5 Pro Realme Narzo Apple XS Realme 8 Pro Redmi 8 Pro Redmi A3 Samsung M30 Samsung M31 Motorola E4 OnePlus 9R OnePlus 7T Poco XR Redmi K20 pro Samsung J7 Redmi Note 7 Pro Vivo V20 Pro Redmi Note 7S Samsung M21 Vivo V7 Redmi Note 10 Infinix Hot 8 Realme 7 Redmi 6 Pro **OnePlus Nord** Redmi Note 7 Poco M2 Redmi Note 8 Realme 3 Realme 5 Redmi Note 9 Redmi Note 4 Samsung A21 Vivo V15 Pro Redmi Prime Samsung J7 Max Realme X7 Poco M2 Pro Infinix X625D Redmi Note 6 Samsung M12 Realme C12 Realme 6 Pro

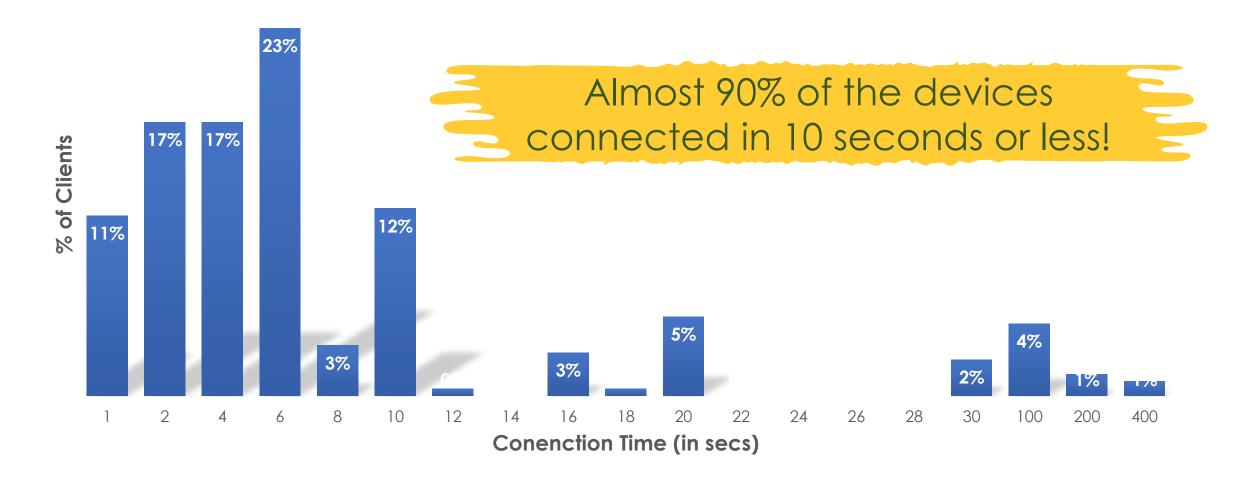
Samsuna A9 Redmi Nore 8 OPPO A31 Apple 6s Samsung M32 Redmi 7 Poco M2pro Motorola Plus Realme 8 Vivo V11 Realme Master Samsung F12 Realme RMX1911 Samsung A70 Realme C3 Poco C3 Vivo S1 Realme 3i Vivo V9 Samsung F41 Redmi Note 5 Samsung S6 Honor 8x Vivo Y20 Apple SE

Samsung A51 Vivo 21e Poco X3 Vivo V19 Redmi 10 Vivo Y21 Poco F1 Samsung F19 Samsung A5 Vivo 71 Pro Samsung M31s Realme XT Redmi 10i laoo 7 Apple 11 Samsung M20 Samsung M10 Realme 5 Pro Realme X2 Redmi K20 Oppo A37 Oppo F19 Pro OnePlus 7 Redmi 5A

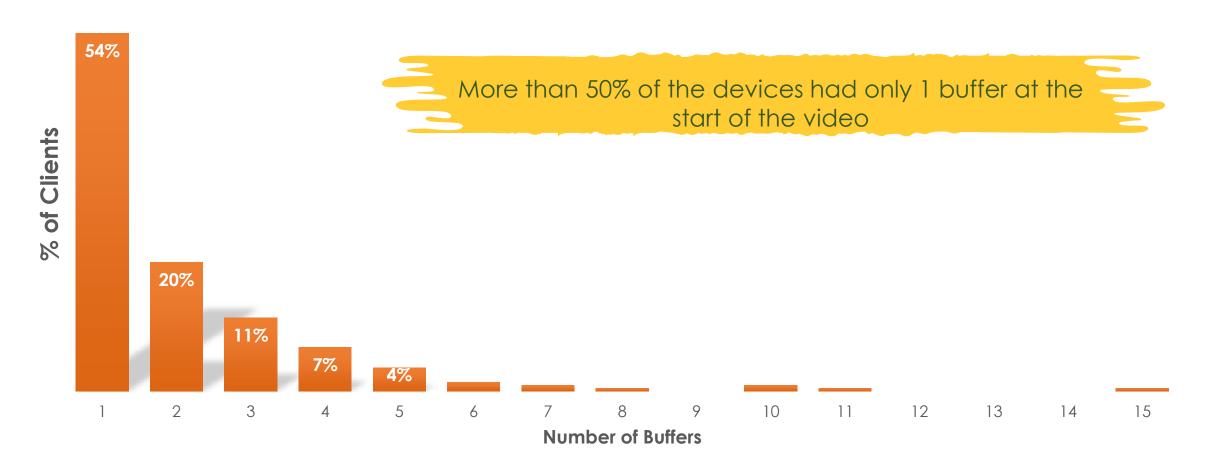

Candela

ECHNOLOGIES

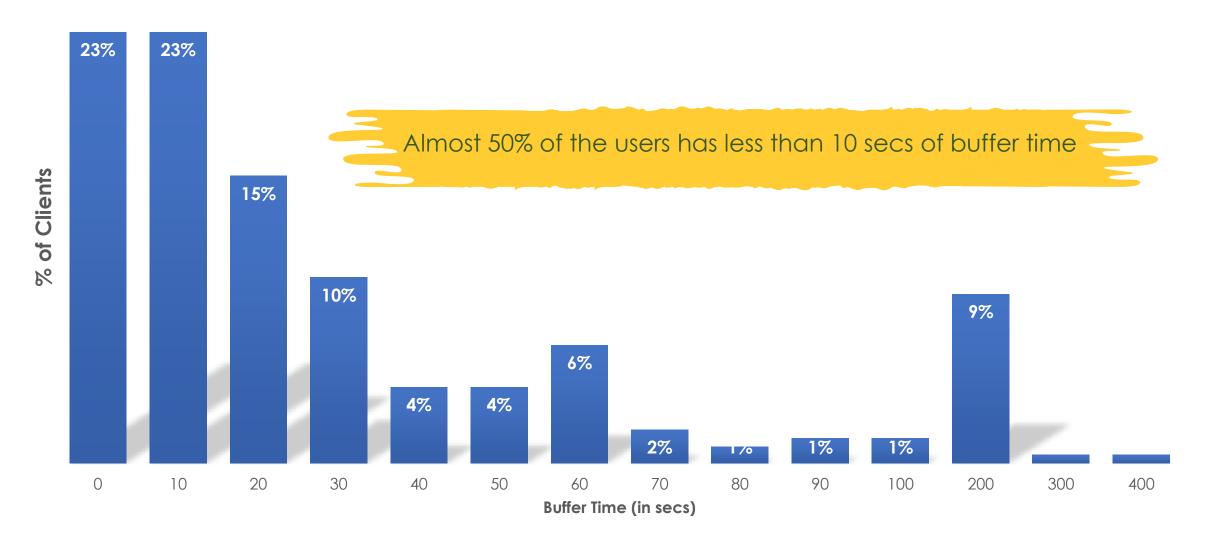
Over 400 devices connected across 17 APs with tests running for about 2 hours. All APs were up 100% of the time with no reboots or crashes



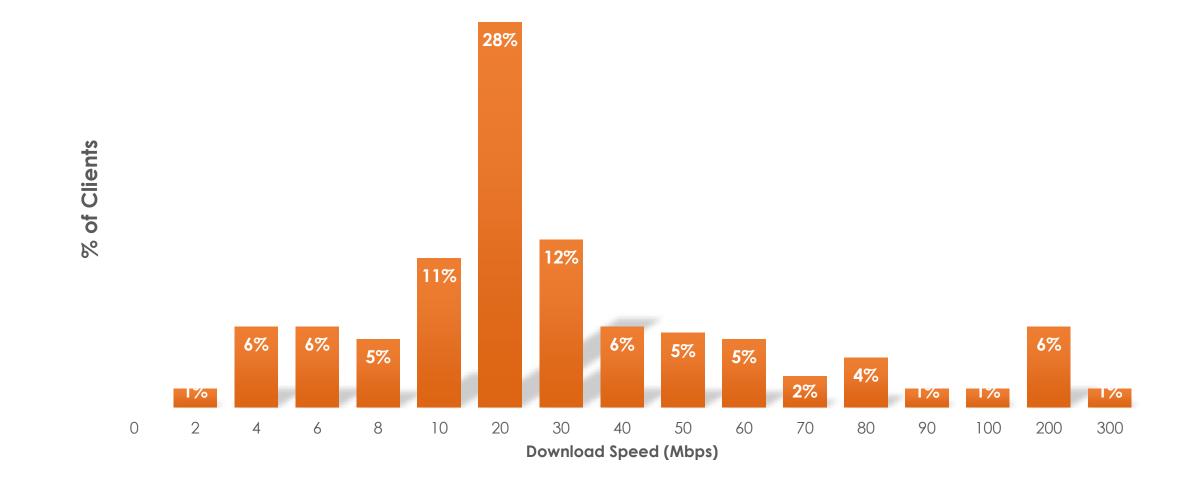
Percentage of Clients on each AP

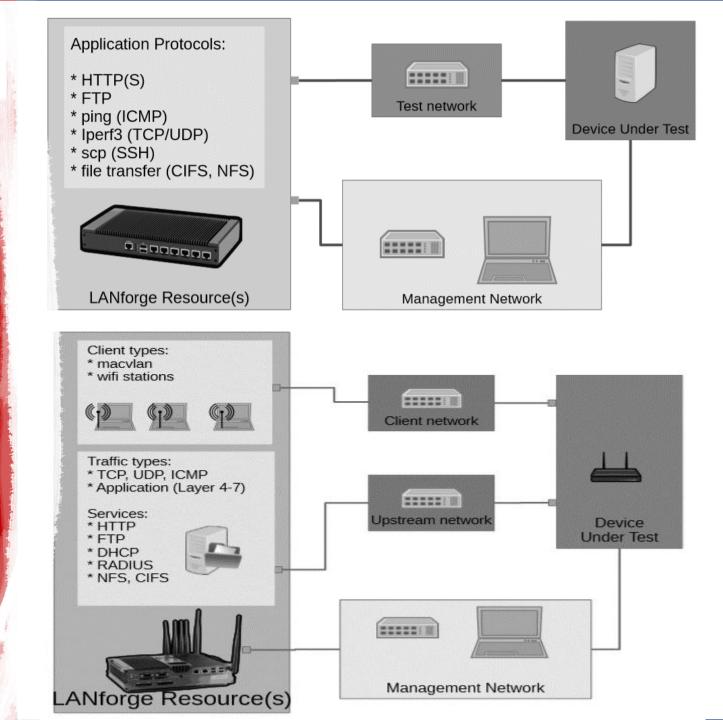


Client Connection Time (in Secs) Distribution



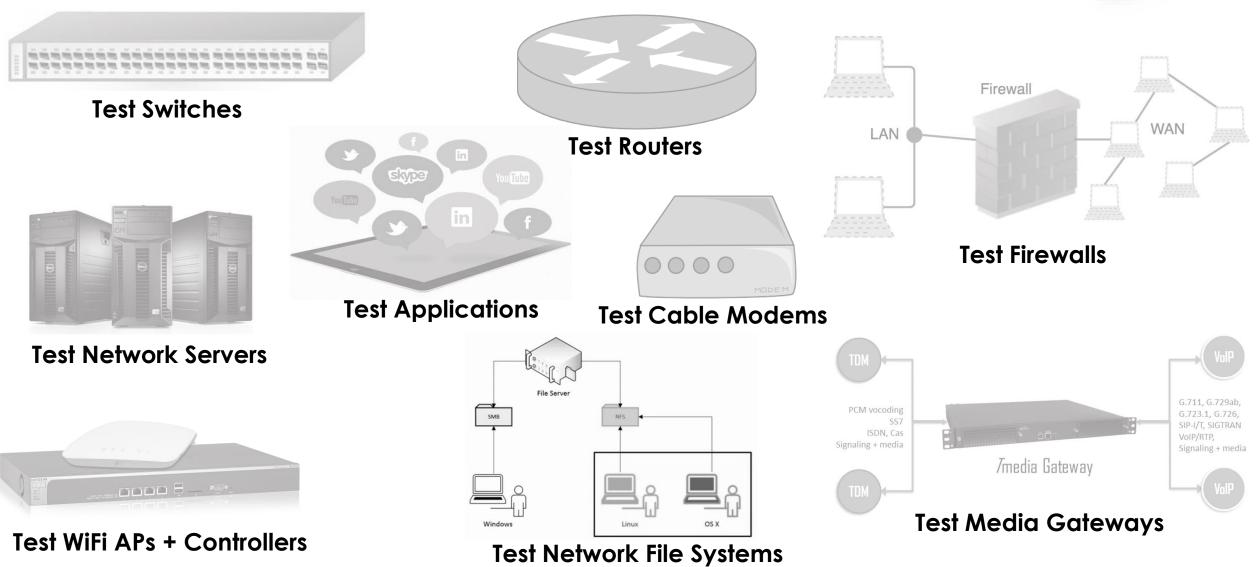
Number of YouTube Buffers Distribution


Buffer Time (in secs) Distribution - 8 min Video



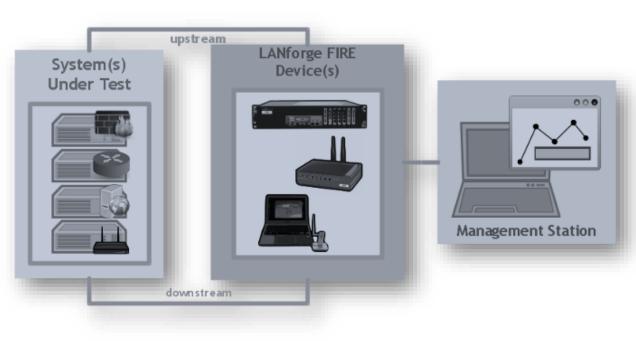
99% of the devices had 4Mbps or better download speed

SpeedTest.net Download (Mbps)



LANforge-FIRE

LANforge – FIRE : What Can You Test?



LANforge – FIRE : Network Traffic Generation

LANforge FIRE generates and receives various network protocols. It is used to create load on a network under test. It reports statistics such as packets sent and received, latency, packet-loss and many other network characteristics. LANforge supports real protocols and stateful TCP connections, so it can generate load against web servers, VOIP gateways, firewalls, load-balancers and many other network components. LANforge can virtualize network adapters and wifi station interfaces. It can also act as a router or group of routers supporting OSPF, RIP, BGP and Multicast (PIM, IGMP). LANforge supports IPv4 and IPv6.

The LANforge system consists of a single manager process, and one or more traffic generator machines (resources). The resources are connected to the manager over a management network. Devices under test are connected to the non-management ports of LANforge systems. If needed, LANforge can also generate traffic on the management network.

The LANforge GUI may run on the LANforge machines or on the customer's PCs. The GUI should connect to the manager machine. Multiple GUIs can be used concurrently.

LANforge – FIRE : Use Cases

- Validate network equipment for throughput, stability and performance, at up to 10Gbps speeds. All supported protocols can be used concurrently for a very realistic traffic mix.
- 24 and 48-port modules especially cost-effective for testing many slower systems, such as DSL, Cable-Modem, and Satellite modems.
- WiFIRE models can emulate up to 1200 WiFi stations per chassis for testing access points and other wireless infrastructure.
- VOIP Call generation can be used to load SIP gateways and other VOIP infrastructure. It can report various statistics, including PESQ quality scores.
- HTTP, HTTPS, FTP and similar load generation can be used to test web servers, load balancers, and related equipment.
- LANforge can support 50,000+ concurrent stateful TCP connections, so it can be used to test firewalls, routers, and other equipment that pays close attention to higher level protocols.

Protocols Supported

≻ Layer 2:

➢ Raw-Ethernet

≻ Layer 3:

> UDP/IP (6 Gbps+ bi-directional, 3 streams, 24k byte PDUs, 1500 MTU, 10G, to self, some drops)

> UDP/IPv6 (6 Gbps+ bi-directional, 3 streams, 24k byte PDUs, 1500 MTU, 10G, to self, some drops)

➤ IGMP Multicast UDP (500+ receivers)

➢ IGMP Multicast UDP over IPv6 (500+ receivers)

> Stateful TCP/IP (9.8Gbps+ on wire, 9.3Gbps goodput, bi-directional with 24K byte writes, 30 streams, 1500 MTU, 10G, to self)

> Stateful TCP/IPv6 (9.8Gbps+ on wire, 9.1Gbps goodput, bi-directional with 24K byte writes, 30 streams, 1500 MTU, 10G, to self)

> Stateful SCTP/IP (850Mbps, bi-directional, 3 streams. No hardware offload exists, CPU bound.)

Stateful SCTP/IPv6 (850Mbps, bi-directional, 3 streams. No hardware offload exists, CPU bound. Requires global-scope IPv6 addresses

≻ Layer 4-7:

≻ FTP

≻ SFTP

> HTTP (9 Gbps+ download, 65,000+/13,000+ Requests per Second, 6,000+ concurrent connections

> HTTPS (1 Gbps+ download), SCP, TFTP (1400+ concurrent connections, ~1Gbps throughput)

≻ TELNET

> DNS (Used and Reported by most Layer 4-7 traffic types)

> VoIP Call Generator (SIP, RTP, RTCP, PESQ/MOS), 1000+ calls per machine.

 \succ Browser based video streaming.

≻ File-IO:

> NFS 17+Gbps (dual 10G NICs, mostly reading), 1000+ virtual clients.

≻ Generic:

➢ Ping

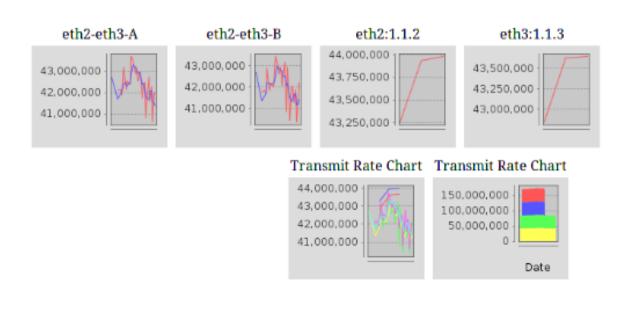
 \geq Speedtest.NET

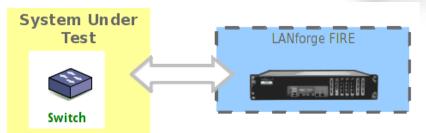
≽iPerf

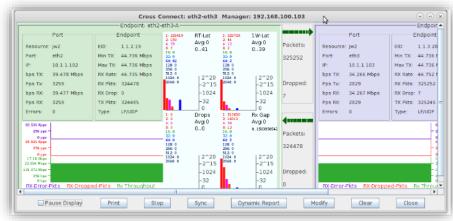
More Supported Features.

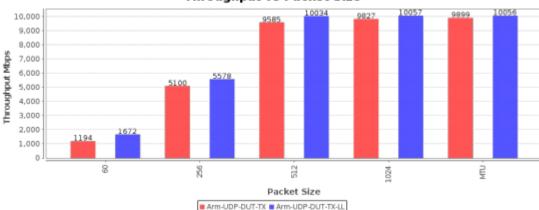
- Supports over 50,000 concurrent TCP connections on a single high-end machine
- Supports real-world compliance with ARP protocol.
- > Supports ToS (QoS) settings for TCP/IP and UDP/IP connections.
- > Utilizes libcurl for FTP, SFTP, TFTP, SCP, TELNET, HTTP and HTTPS (SSL) protocols.
- Supports file system test endpoints (can be used for NFS, NFSv4, SMB, and iSCSI file systems too!). Can emulate 1000+ CIFS and/or NFS clients with unique mount points, IPs, MACs, etc
- > Supports custom and command-line programs, like nmap and ping.
- Custom packet builder interface allows hand crafting of headers and payloads. Headers supported at Layer 2 include ARP, SNAP/LLC, 802.1Q, 802.1QinQ and MPLS. Some Layer 3 protocol headers supported include IP, IPX, UDP, TCP, ICMP, IGMP, IP-ENCAP, RDP, IPinIP and IPv6 protocols.
- > Uses publicly available Linux or Windows networking stack for increased standards compliance.
- > Supports 20 or more physical data-generating Ethernet ports per 2U LANforge chassis.
- > Emulates over 2000 unique machines with one physical interface with the MAC-VLAN feature.
- Supports over 2000 802.1Q VLANs
- > Supports PPPoE, including automated creation and deletion of the PPP interfaces
- Supports 802.11a/b/g/n/AC with WiFIRE feature set.

LANforge VoIP/RTP Call Generator Features.

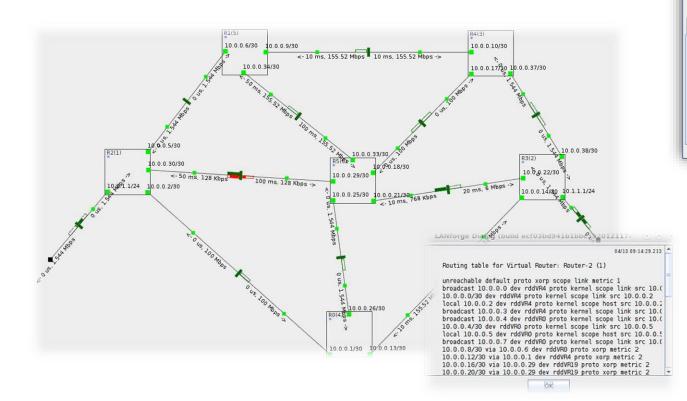



- \succ SIP protocol used for call management.
 - \geq SIP/UDP supported.
 - > Can use directed mode, where VoIP phones call directly to themselves.
 - > Can also use Gateway mode where the VoIP phones register with a SIP gateway.
 - \succ SIP authentication is supported.
- > RTP protocol used for streaming media transport, and supports many CODECS.
- > Supports PESQ automated voice quality testing.
- > RTCP protocol used for streaming media statistics
- > Each LANforge VoIP/RTP endpoint can play from a wav file and record to a separate way file. Almost any sound file can be converted to the correct way file format with tools bundled with LANforge. Sample voice files are included.
- Support for 1000 or more emulated VoIP phones per machine (hardware dependent).
- LANforge VoIP/RTP endpoints can call other LANforge endpoints or third party SIP phones like Cisco and Grandstream. Third party phones can also call LANforge endpoints and hear the WAV file being played.
- > Can expose wandering latency scenarios caused by lack of network time sync.


0			Create	/Modify Cross Connect			\odot \otimes \otimes			
			Cro	ss Connect Information						
	CX Name:		Rpt Timer: fast (1	s) 🔻 Test Manage	er default_tm 🔻 CX *	Type: Voice	- SIP 🔻			
	Multi-Call	Directed	Min Call Duration (s) Fil	Max Ring Time (s	;): 20 🔽 Coc	lec: G.711	u 🔻			
	 Continuous Call 	🔾 Use Gateway	Max Call Duration (s) Fil	e 🛛 🔻 Min Inter-Call Ga	p (s): 3 🛛 🔻 Sta	rt Delay: 3	•			
		Don't Send RTP	Number Of Calls	INITE 🔽 Max Inter-Call Ga	ıp (s): 3 🛛 🔽 Qui	esce: 45 (45	isec) 🔻			
			тх	Endpoint (endpoint A)			1			
Endp Name:		UnMana	aged 🔽 Bind SIP	UDP Port	AUTO	Tx File	media/female voice 8khz.wav			
Shelf:	1	Don't A		SIP Port	5060	Destination:				
Resource:	1 (LF1-Mobilestati	ons)	_	IP ToS:	Best Effort (0)]	/dev/audio			
Port:	1 (eth1) AUTO				0		AUTO			
IP Addr: Phone #	AUTO	No Tunr		er Socket Priority:		Call Gateway:				
Display Name:	AUTO	No Fast		VAD Delay(ms)	250	Record File	AUTO			
Auth User Name	AUTO	Single C	Codec 🔄 Override SDP	VAD Force Send	3000	PESQ Server:	127.0.0.1:3998			
Reg Expire:	300	-		Jitter Buffer:	8	Quiesce:	45 (45 sec) 💌			
			RX	Endpoint (endpoint B)						
Endp Name:		UnMana	aged 🔽 Bind SIP	UDP Port	AUTO	Tx File	media/female_voice_8khz.wav			
Shelf:	1		-	SIP Port	5060	Destination:				
Resource:	1 (LF1-Mobilestati	ons) 💌		IP ToS:	Best Effort (0) 🗸	Speaker	/dev/audio 👻			
Port: IP Addr:	8 (wlan6) AUTO	V No Tuni		er Socket Priority:	0	Call Gateway:	AUTO			
Phone #	AUTO			-	250	_	AUTO			
Display Name:	AUTO	No Fast		VAD Delay(ms)		Record File				
Auth User Name	AUTO	Single C	Codec 🗌 Override SDP	VAD Force Send	3000	PESQ Server:	127.0.0.1:3998			
Reg Expire:	300	-		Jitter Buffer:	8	Quiesce:	45 (45 sec) 💌			
	<u></u>			LANforge M	anager Version(5.3.3)		_ D (x)		
	<u>C</u> or	ntrol <u>R</u> eporting	<u>T</u> ear-Off <u>I</u> nfo <u>P</u> lugi	15						
					Stop All	Restart Ma	nager Re	fresh HELP		
	Fi	le-IO Layer-4	Generic Test	Mgr Test Group I	Resource Mgr Eve	nt Log Ale	erts Port Mgr Messa	ages		
	S	tatus Layer-	3 L3 Endps Vo	VoIP/RTP	ndps Armageddo	n WanLi	nks Attenuators C	ollision-Domains		
		Rpt Timer:	default (5 s) 💌	Go Test Manager a	II 💌	Select All	Start Stop Quies	sce Clear		
	View 0-200 View O.200									
			Chate		ts for Selected Test	ľ				
		Name Type	e State	Pkt Tx A → B Pkt Tx A	⊢B Bps Rx B Bps	Rx A Rx Dro	op % A Rx Drop % B Delay A	→ B Delay A ← B Jit		
		st-1 SIP/G.71		15,752 15,7		7,923	0.07 0	0 0		
	te	st-2 SIP/G.71	.1u In progress	1,185 1,1	85 56,531 5	6,531	0.084 0	0 0		


Testing L2-3 Switches

- Total aggregate throughput testing
- Per port throughout testing
- CAM table limit testing
- Routing/VLAN testing
- QoS Testing
- Multicast Testing



Throughput vs Packet Size

Testing Routers

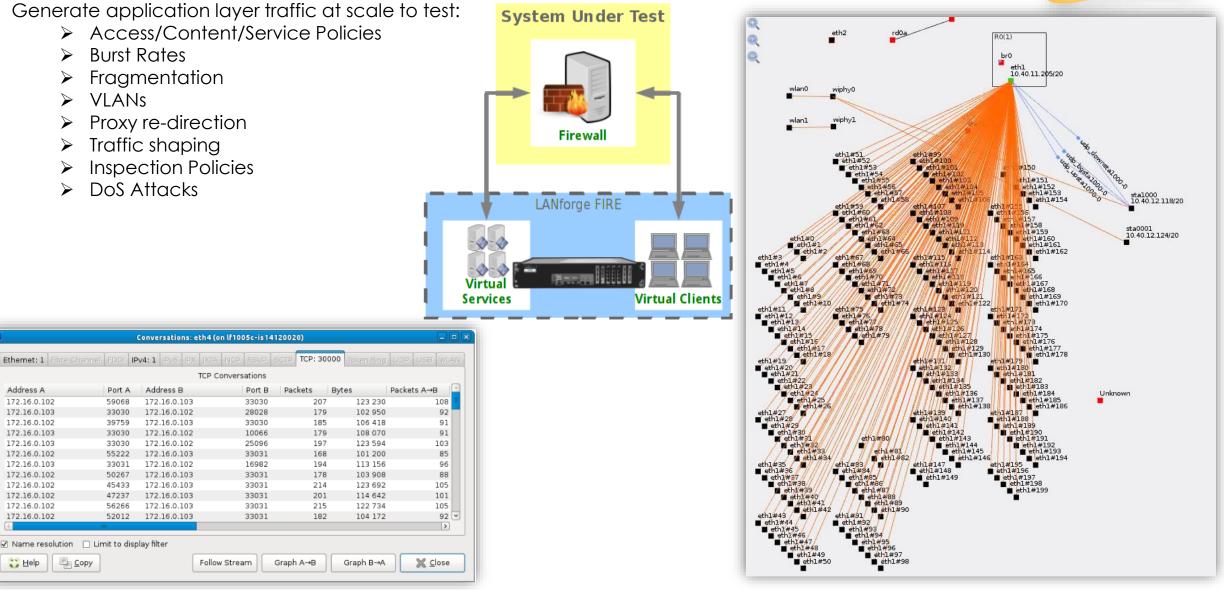
- > Testing various routing protocols (RIP, OSPF)
- Multicast/Broadcast Testing
- Routing Table lookup/route propagation Testing
- Link Failover Scenarios testing

						_					
							Harry	8866688			
					<u> </u>				· _ ·		
	R	outer									
		LANForg	je Mana	iger Vers	ion(5.2.1	0)				4	
l <u>R</u> eporting <u>T</u> ear-Off In	fo <u>P</u> lugi	ns									
				Stop A		Restart	Manage	r	Refree	ih 🛛	HELP
D Layer-4 Generic To	est Mar	Test Group	n Res	ource Mgr	Event I		rts Por	rt Mgr Me	ssanes		
s Layer-3 L3 Endps	VoIP/F		/RTP End		nageddon		Links	Attenuator		ion-Dom	ains
Disp: 192.168.100.27:0.0	Sr	niff Packets		Clear C	ounters	Rese	t Port	Delete			
Rpt Timer: medium (8 s)	I-		-	View	Details		ate	Modify	Batch M	a difu	
Kpt Timer: neotun (8 S)	•	Apply All Ethorn	et Inter	faces (Por				Modily	Datchim	louily	
Pha Down IP	SEC		X Bytes	RX Pkts	Pps RX	bps RX	TX Bytes	s TX Pkts	Pps TX	bps TX	Collis
192.168.100.12			682,954	6,865	5		1,370,41			9,827	
0.0.0.0		eth1	15,192	67	0		21,38			C	
192.168.2.102	-	eth3 eth4	16,407	59 46	0	(0	
	1- 1	euria	13,065	46	0	(22,64	18 110	0	C	
d in to: 192.168.100.129:4	002 as: /		13,065	40	0	(0 22,64	18 110	0 0	C)
d in to: 192.168.100.129:4	002 as: /		13,065		-1		0 22,64	110	0	C	•
d in to: 192.168.100.129:4		Admin	13,065	Create/I	Modify Virtu	al Router	0 22,64			C	
d in to: 192.168.100.129:40	eate New M	Admin Name>		Create//	Modify Virtu Vidth: 100	al Router		Height:	100		•
d in to: 192.168.100.129:4	eate New N	Admin Name> st Routing [Use OI	Create// W LSR RIF	Modify Virtu ridth: 100 Pv2 - RIP	al Router Dflt Rout	e 🗌 Xor		: 100 Pv6 Router	IPv6 R/	•
d in to: 192.168.100.129:40	eate New N	Admin Name> st Routing [Use OI	Create// W LSR RIF BAS B(Modify Virtu ridth: 100 Pv2 - RIP	al Router Dflt Rout r 🗌 BGF	e Xor	Height:	: 100 Pv6 Router	IPv6 R/	×
d in to: 192.168.100.129:40	eate New N	Admin Name> st Routing [Use OI	Create// W LSR RIF B AS BC Notes abo	Modify Virtu Vidth: 100 V2 RIP 3P Reflecto out this Virt	Dflt Router Dflt Rout r 🗌 BGF tual Route	e Xor ? Confeder ?	Height:	: 100 Pv6 Router	IPv6 R/	•
d in to: 192.168.100.129:4	eate New N	Admin Name> st Routing [Use OI	Create// W LSR RIF B AS BC Notes abo	Modify Virtu fidth: 100 V2 RIP	Dfit Router Dfit Rout r 🗌 BGF tual Route	e Xor ? Confeder ?	Height:	: 100 Pv6 Router	IPv6 R/	•
d in to: 192.168.100.129:44	eate New M Multicas Cfg 🔲 B4	Admin Name> t Routing [GP Router]	Use Ol BGP 4E	Create// WLSR RIF BAS BC Notes abc	Modify Virtu Fidth: 100 V2 RIP SP Reflecto out this Virt	Dflt Router Dflt Rout r BGF tual Routo nformatio	e Xor Confeder er n luster ID	Height:	: 100 v6 Router GP Damping	IPv6 R/	•
d in to: 192.168.100.129;4	eate New M Multicas Cfg B Couter ID confedera camping R	Admin Name> st Routing [GP Router 0.0.0. tion ID 0	Use Ol BGP 4E	Create// W LSR RI Notes abo BGP Confi Docal AS amping Hal amping Sup	Modify Virtu Vidth: 100 V2 Repetence out this Virt iguration In 6 f Life 3 opress 3	Dflt Router Dflt Rout r BGF tual Route nformatio D	e Xor Confeder ar n luster ID amping M	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	IPv6 RJ	
d in to: 192.168.100.129:44	eate New M Multicas Cfg B Couter ID confedera camping R	Admin Name> it Routing [GP Router GP Router] tion ID 0 eeuse 3	Use Ol BGP 4E	Create// V LSR RIF RIF ASS BAS Notes abc BGP Confi occal AS amping Hat As amping Sup r AS Pece	Modify Virtu fidth: 100 V2 RIP PReflecto hut this Virt iguration Ir iguration Ir iguration State state state state Lo	al Router Dflt Rout r BGF tual Rout formatio C D bcal Iface	e Xor Confeder ar Iuster ID amping M Nexthop	Height: p SHA IF ration B ax Suppress	: 100 v6 Router GP Damping	IPv6 RJ	
d in to: 192.168.100.129:44	eate New M Multicas Cfg B Couter ID Confedera Pamping R ient C	Admin Name> t Routing [GP Router	Use Ol BGP 4E	Creste// VULSR RIF 8 AS Bto BGP Confi ccal AS amping Hal amping Sup colored and Sup colored an	Modify Virtu ridth: 100 V2 RIP 3P Reflecto Ir iguration Ir iguration Ir 0 f Life 3 spress 3 r ID Lc 0.00 0.0	al Router Dflt Rout r BGF tual Rout tual Rout cual Rout D D D D D D D D D D D D D D D D D D D	e Xor Confeder ar Iuster ID amping M Nexthop 0.0.0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	IPv6 RJ	
d in to: 192.168.100.129:44	eate New N Multicas Cfg Bo outer ID confedera Pamping R ient C C ient C C	Admin Vame> tt Routing [GP Router GP Router tion ID 0 euse 3 onfed 🕑 Ucc onfed 🕑 Ucc	Use Ol BGP 4E Da Da Peer ast O ast O	Create// WLSR RIF ASS BASS BASS Notes abc BGP Confi coal AS amping Hal amping Sup AS Pece AS Pece 0.00	Modify Virtu ridth: 100 Pv2 RIP PReflecton Ir iguration Ir iguration I f Life 3 or ID Lc 0.0.0 0.0	Dfit Router Dfit Rout r BGF tual Route formatio C D bcal Iface 0.0.0	e Xor Confeder ar Nuster ID amping M Nexthop 0.0.0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	IPv6 RJ	
d in to: 192.168.100.129:44	eate New N Multicas Cfg B4 oonter ID oonfedera amping R ient C ient C ient C	Admin Vame> tt Routing [GP Router GP Router tion ID 0 euse 3 onfed UC onfed UC onfed UC	Use OI	Create// W LSR RIL BGP Confi BGP Confi bcal AS amping Hal amping Sup r AS Per 0.0 0.0	Modify Virtu ridth: 100 iv2 RIP iP Reflector f Life 3 ippress 3 r ID L0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	al Router Dflt Rout r BGF tual Rout formatio C D bcal Iface 0.0.0 0.0.0	e Xor Confeder ar Nuster ID amping M Nexthop 0.0.0 0.0.0 0.0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	IPv6 RJ	
d in to: 192.168.100.129:44	eate New N Multicas Cfg B4 outer ID onfedera amping R ient C ient C ient C ient C	Admin Vame> t Routing [GP Router GP Router Confed Vuc onfed Vuc onfed Vuc onfed Vuc	Use OI BGP 4E D4 Peer ast 0 ast 0 ast 0 ast 0	Create// WLSR RIF B AS BG BGP Conf ocal AS BGP Conf ocal AS amping Hal amping Sup r AS Pee	wodify Virtu ridth: 100 yz RIP jip Reflecto u uut this Virtu 0 ft Life 3 upress 3 er ID Lc 0.0 0. 0.0 0. 0.0 0.	al Router Dfit Rout T BGF Ual Rout formatio C D D D Cal Iface 0.0.0 0.0.	e Xor Confeder r n Uuster ID amping M Nexthop 0.0.0.0 0.0.0.0 0.0.0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	IPv6 RJ	
d in to: 192.168.100.129:4	eate New N Multicas Outer ID onfedera amping R ient C ient C ient C ient C	Admin Vame> t Routing [GP Router GP Router Confed Vuc onfed Vuc onfed Vuc onfed Vuc	Use Ol BGP 4E D4 D4 Peer ast 0 ast 0 ast 0 ast 0 ast 0	Creste// W LSR RIF 8 AS BR Notes abc BGP Confo cccal AS amping Hal amping Sup AS 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Modify Virtu fidth: 100 v2 RIP jP Reflecto ut this Virt iguration Ir opress 3 r ID Lc 0.0 0.0 0.0 0.00	al Router Dflt Rout r BGF ual Rout formatio C D D cal Iface 0.0.0	e Xor P Confeder amping M Nexthop 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	🗌 IPv6 RJ	
d in to: 192.168.100.129:44	eate New N Multicas Cfg B outer ID onfedera amping R ient C ient C ient C ient C ient C	Admin Vame> t Routing [GP Router GP Router GP Router Confed Vuc onfed Vuc onfed Vuc onfed Vuc onfed Vuc	Use Ol BGP 4E Da Da Da St O ast O ast O ast O ast O ast O ast O ast	Creste// W LSR R RIF B AS B R Notes abc BGP Confo cccl AS amping Sup AS Pec Co Co Co Co Co Co Co Co Co Co Co Co Co	Modify Virtu fidth: 100 v2 RIP iP Reflecto ut this Virt iguration Ir guration Ir guration I f Life 3 press 3 r ID L c 0.0 0.0 0.0 0.00	al Router Dflt Rout r BGF ual Rout cal Iface 0.0.0 0	e Xor P Confedence Pr Nuster ID amping M Nexthop 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	🗌 IPv6 RJ	
d in to: 192.168.100.129:4	eate New N Multicas Cfg B outer ID onfederar amping R ient C ient C ient C ient C ient C ient C	Admin Vame> tt Routing [GP Router [GP Router] GP Router [Confed V Ucc onfed V Ucc onfe	Use Ol BGP 4E Da Da Peer ast 0 ast 0	Creste// WLSR RIF 8 AS BR Notes abc BGP Confo Coccl AS amping Hal amping Sup AS Pee 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Modify Virtu fidth: 100 v2 RIP P Reflecto iguration Ir guration Ir guration I content stribert content	al Router Dflt Rout r BGF ual Rout formatio C D D cal Iface 0.0.0	e Xor P Confeder amping M Nexthop 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0	Height: p SHA IF ration B ax Suppress	: 100 Pv6 Router GP Damping	Delay (0 0	

ок

Cancel

System Under


Test

ECHNOLOGIE

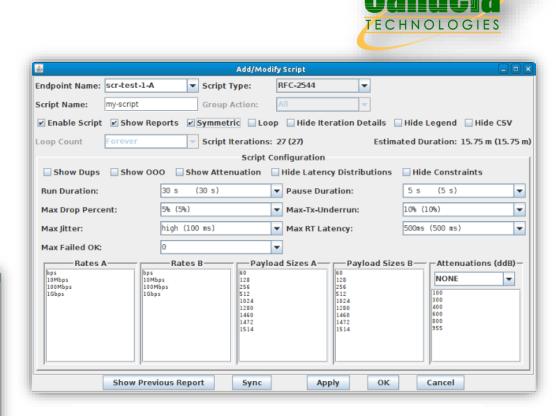
LANforge FIRE

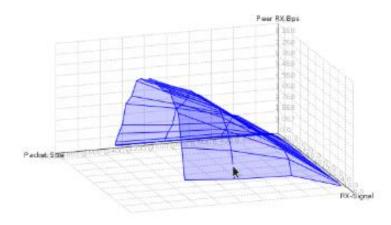
Testing Firewalls

Testing Webservers

Generate application layer traffic at scale to test:

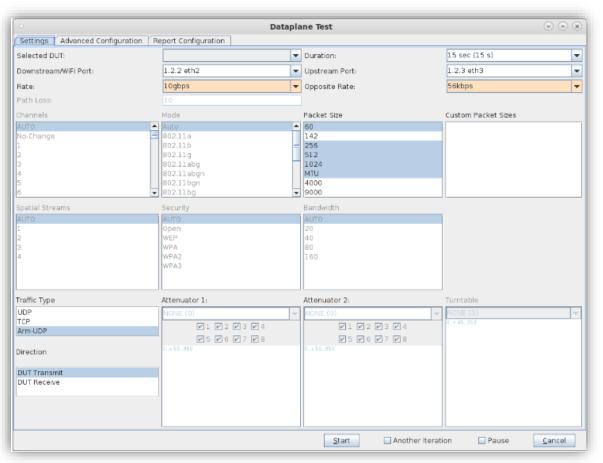
- Effective URLs/second
- > Throughput per request size
- Response Times / Time to first byte
- Client Scale
- Connections per Client
- Performance over Time
- Failover/redundancy Scenarios

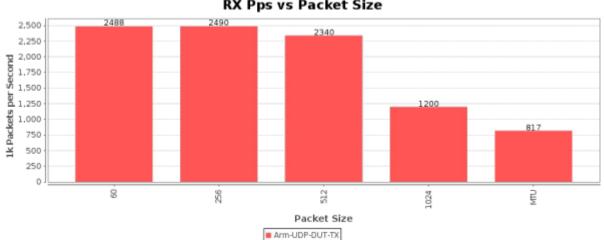

$ \begin{array}{c} 1.1.67 & 199, 146, 0.138 & ethn 1 28 & ethn 1 \\ 1.1.168 & 199, 146, 0.138 & ethn 1 28 & ethn 1 \\ 1.1.168 & 199, 146, 0.138 & ethn 1 248 & ethn 1 \\ 1.1.169 & 199, 146, 0.140 & ethn 1 240 & ethn 1 \\ 1.1.169 & 199, 146, 0.140 & ethn 1 240 & ethn 1 \\ 1.1.171 & 199, 146, 0.142 & ethn 1 242 & ethn 1 \\ 1.1.171 & 199, 146, 0.142 & ethn 1 242 & ethn 1 \\ 1.1.171 & 199, 146, 0.142 & ethn 1 242 & ethn 1 \\ 1.1.171 & 199, 146, 0.142 & ethn 1 244 & ethn 1 \\ 0 & 0 & 0 & 0 & 0 & ethn 1 241 1500 & 255, 255, 0 & 0, 0, 0 & 00 & eths 2.5 & eth 2001, 1040; 2005 btff ferds 2.5 & eth 2.5 & ethn 1 \\ 1.1.171 & 199, 146, 0.142 & ethn 1 242 & ethn 1 \\ 1.1.171 & 199, 146, 0.144 & ethn 1 244 & ethn 1 \\ 0 & 0 & 0 & 0 & 0 & ethn 1 241 1500 & 255, 255, 0 & 0, 0, 0 & 00 & eths 2.5 & eth 2.5 & 00 & 0, 0 & 00 & eths 2.5 & eth 2.5 & 0 & 0, 0 & 0 & 0 & eths 2.5 & eth 2.5 & 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & 0 & ethn 2.4 & 1500 & 255, 255, 0 & 0, 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$			TECHNOLOGIES
Image: Normality Image: Normality Image: Normality	est:	-	
Close (section) Close (section) Soft yew Setting: Eli To Aug 12.23.01			LANforge FIRE
Port Kyr Setting: En Thu kug 13, 221:013 Applications Place Terminal LANforge Manager Version(5.4.2) Mate Terminal LANforge Manager Version(5.4.2) Mate Terminal Depi List Terminal Depi Depi List Terminal Depi Depi Terminal Terminal Depi Terminal Depi			zo) - Officialization
Image:			
Entropy Entropy <t< td=""><td></td><td></td><td></td></t<>			
Status Port Mgr Layer-3 L3 Endps Layer 4-7 Armagedon Wanunks VoiPRITE Endps Fiel-0 Resource Mgr DUT Profiles Traffic-Profiles Alerts Warrings + Disp [92:166.95:20:1] Sinff Packets [20 or 1] Cigate Modify Batch Modify Port 0 I IP Alias Parent Status Activity CX Age CX Time ANQP Modify Modify 20011040::2004b9fffedf12/b004d4 F 11.160 199.164.0.132 ethi = 133 ethi 0 <t< td=""><td>Control R Info Tests</td><td>LANIOI 98 Mariay</td><td></td></t<>	Control R Info Tests	LANIOI 98 Mariay	
Prot 0 Image Status Activity CA gaps Create Mody Backmark 11.160 199.164.0.131 eth 1=23 eth 1 0 <t< td=""><td>Status Port Mgr Layer-3 L3 Endps La</td><td></td><td>Resource Mgr DUT Profiles Traffic-Profiles Alerts Warnings +</td></t<>	Status Port Mgr Layer-3 L3 Endps La		Resource Mgr DUT Profiles Traffic-Profiles Alerts Warnings +
Port 0 1 IP Alias Parent Dev Status Attivity CX App (ts) May Time (us) Period MTU Mask Gateway IP MAC IPr6 Address 11.160 199.164.0.132 eth1 = 13 eth1 0			
11.160 199.164.0.131 ethl #131 ethl #131 ethl #131 ethl #131 100 0	Port Ø I IP Alias	Parent Chature Anthetic CY Ann CX Time ANQP 4Way	
11.203 199.164.0.158 eth = 158 eth 1 0 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ethi 0 0 0 0 ethi 0	Peth # 13 15:00 255.255.0.0 0.0.0.0 00:00 HeV 54 T2:40 2001.1040::200 HeV Feds/1204/64 Peth # 13 15:00 255.255.0.0 0.0.0.0 00:00 HeV 54 T2:40 2001.1040::200 HeV Feds/1204/64 Peth # 13 15:00 255.255.0.0 0.0.0.0 00:00 HeV 54 T2:40 2001.1040::200 HeV Feds/1204/64 Peth # 13 15:00 255.255.0.0 0.0.0.0 00:00 HeV 53:33:34 2001.1040::200 HeV Feds/1204/64 Peth # 13 15:00 255.255.0 0.0.0.0 00:00 HeV 54:33:34 2001.1040::200 HeV Feds/1204/64 Peth # 13 15:00 255.255.0 0.0.0.0 00:00 HeV 54:24 2001.1040::200 HeV Feds/1204/64 Peth # 14 15:00 255.255.0 0.0.0.0 00:00 HeV 54:24 2001.1040::200 HeV Feds/1204/64 Peth # 14 15:00 255.255.0 0.0.0.0 00:00 HeV 54:24 2001.1040::200 HeV Feds/1404/64 Peth # 14 15:00 255.255.0 0.0.0.0 00:00 HeV 54:24 2001.1040::200 HeV Feds/1404/64 Peth # 14 15:00 255.255.0 0.0.0.0 00:00 HeV 54:24 2001.1040::200 HeV Feds/140/64

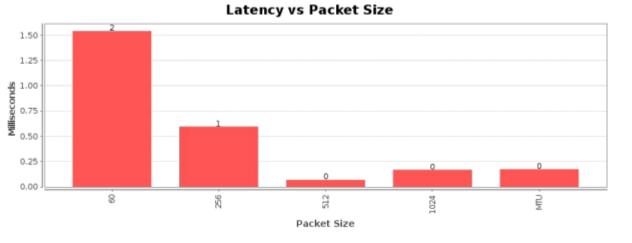


RFC2544 Test Example

- > Testing performance with 1xN, Nx1, NxM endpoint mappings.
- TCP/UDP line rate performance at different Payload sizes and Traffic rates.
- Set PASS Criteria for Max % Packet drops. Max Jitter, Max Latency, Tx-underruns
- > Measure WiFi performance over distance.
- Generate reports in text, CSV, HTML and PDF formats.


2					Script Repor	t for: arm	-scr-test-B	-A				
Summary data for each iteration:												
	d-size	cfg-rate	tx-bps	rx-bps	rx-bps-LL	tx-pps	rx-pps	tx-pkts	rx-pkts	cx-drops	drop% r	x-lat(us)
	ytes)	(pps-ll)	-	peer	peer	-	peer	-	peer	peer	peer	peer
<u>0</u> *	60	100	47808	47808	66931	100	100	996	996	0	0.000	37
1*	128	100	102093	102093	121235	100	100	997	997	0	0.000	39
2*	256	100	204186	204186	223328	100	100	997	997	Θ	0.000	39
3*	512	100	408781	408781	427942	100	100	998	998	Θ	0.000	39
4×	1024	100	816742	816742	835885	100	100	997	997	0	0.000	38
5*	1280	100	1021952	1021952	1041114	100	100	998	998	Θ	0.000	41
6*	1460	100	1164496	1164496	1183638	100	100	997	997	0	0.000	41
7*	1472	100	1169240	1169240	1188304	99	99	993	993	0	0.000	39
8*	1514	100	1206235	1206235	1225356	100	100	996	996	Θ	0.000	40
9*	60	1000	477408	477408	668371	995	995	9946	9946	0	0.000	43
0*	128	1000	1019802	1019802	1211014	996	996	9959	9959	0	0.000	41
1*	256	1000	2039194	2039194	2230368	996	996	9957	9957	Θ	0.000	42
2*	512	1000	4077158	4077158	4268275	995	995	9954	9954	0	0.000	43
3*	1024	1000	8144486	8144486	8335373	994	994	9942	9942	0	0.000	39
4*	1280	1000	10184704	10184704	10375667	995	995	9946	9946	Θ	0.000	43
5×	1460	1000	11609920	11609920	11800768	994	994	9940	9940	0	0.000	37
6*	1472	1000	11739494	11739494	11930899	997	997	9969	9969	0	0.000	42
7*	1514	1000	12065974	12065974	12257245	996	996	9962	9962	0	0.000	39
8*	60	10000	4296336	4296336	6014870	8951	8951	89507	89507	0	0.000	60
9*	128	10000	9681869	9081869	10784720	8869	8869	88699	88699	0	0.000	60
0*	256	10000	18175590	18175590	19879552	8875	8875	88748	88748	0	0.000	61
1*	512	10000	36326195	36326195	38028986	8869	8869	88687	88687	0	0.000	61
2*	1024	10000	72433664	72433664	74131328	8842	8842	88429	88420	0	0.000	62
3*	1280	10000	92143616	92143616	93871309	8998	8998	89984	89984	0	0.000	64
4*	1460	10000	103397200	103397200	105096880	8852	8852	88525	88525	0	0.000	62
5*	1472	10000	105047808	105047808	106760544	8920	8920	89205	89205	0	0.000	64
6*	1514	10000	107713227	107713227	109420702	8893	8893	88931	88931	0	0.000	62
7*	60	100000	45971232	45971232	64359725	95773	95773	957734	957734	0	0.000	60
8*	128	100000	96722125	96722125	114857523	94455	94455	944552	944552	0	0.000	62
0* 9×	256	100000	194837504 385214855	194837504	213103520	95136	95136	951355 940560	951355 940560	0	0.000	61 63
10* ∏*	512			385214855	403271801	94047	94047					63
12* 12*	1024	100000	778949427	778949427	797206054 982886349	95087 94218	95087	950866	950866	0	0.000	60
	1280		964796416	964796416			94218	942184	942184	0	0.000	
13* 14*	1460 1472	100000	1119052624 1112450458	1119052624 1112450458	1137448010 1130588237	95809	95809 94468	958093 944676	958093 944676	0	0.000	61
4* 5*	14/2	100000	1112450458	1112450458	1130588237	94468 95661	94468 95661	944676	944676 956607	0	0.000	62 62
<u> </u>	1014	100000	1130042398	1100042396	1111003523	90001	30001	90000/	900007	0	0.000	62
		🔤 Pause	Cl	ose	Save File		Graphica	Display	🔄 Inver	t RX-Signal)	Axis	




Dataplane Test on 10Gig Switched Network

- Support for 10GE copper and fiber. \geq
- Full line rate testing. \succ
- Measure Throughput, latency, packet loss, Jitter. \geq
- Generate reports in text, CSV, HTML and PDF formats.

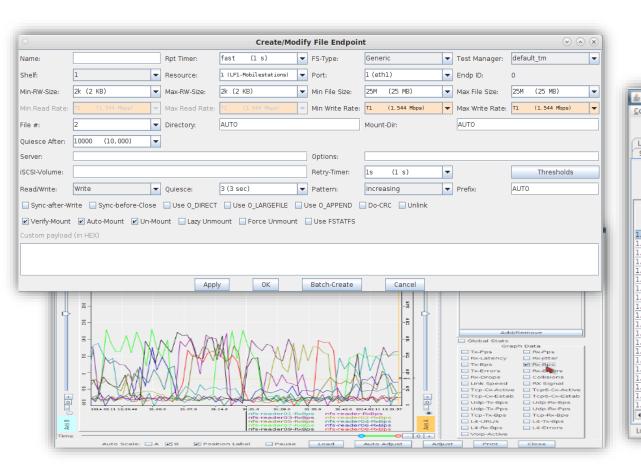
RX Pps vs Packet Size

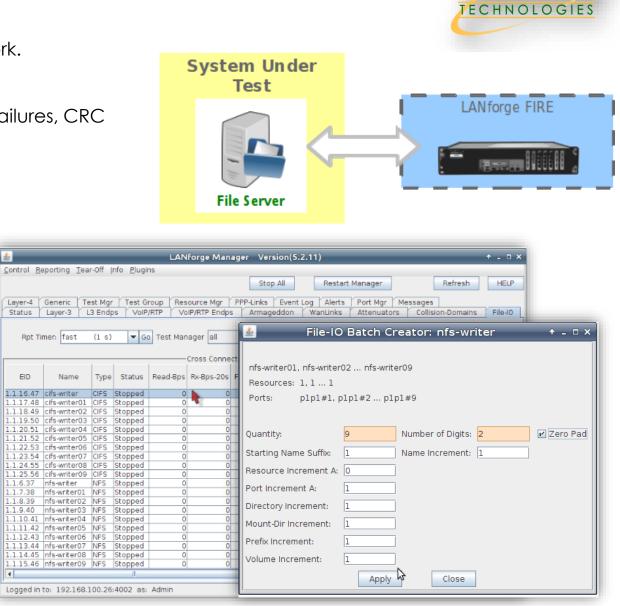
Accelerated UDP Testing

- Uses pktgen Kernel module to generate accelerated UDP /stateless TCP traffic to test full throughput capacity of the device under test.
- Tester can generate multiple duplicates of the same packet to further accelerate traffic generation.

Create/Modify Armageddon Endpoint											
+ - All				Display Refresh Apply OK Cancel							
0	Cross-Connect			Cross-Connect							
CX Name:	rand-macs			Rpt Timer:	fast (1 s)						
CX Type:	Armageddon UDP		•	Test Manager	default_tm TX Endpoint (endpoint A) RX Endpoint (endp						
Quiesce:	3 (3 sec)										
	Relative-Timestamps			Src MAC:	00:30:18:cc:5b:d2	00:30:18:cc:5b:d3					
	TX Endpoint (endpoint A)		RX Endpoint (endpoint B)	Dest MAC:	00:30:18:cc:5b:d3	00:30:18:cc:5b:d2					
Endp Name:	rand-macs-A		rand-macs-B	Src MAC Cnt:	0	0					
Shelf:	1	-	1		0	0 DEFAULT DEFAULT					
Resource:	1 (jw2)	-	1 (jw2)		DEFAULT						
Port:	2 (eth2)	-	3 (eth3) 👻		DEFAULT						
Pps Tx:	1 Kpps (1,000)	-	1 Kpps (1,000) 🔻		9	9					
Min Pkt Size:	1514 BYTES	-	1514 BYTES -	in the second second	9	9					
Est. Rate:	12.112 Mbps		12.112 Mbps	Min Dst IP:	DEFAULT	DEFAULT					
Max Pkt Size:	1514 BYTES	-	1514 BYTES		DEFAULT	DEFAULT					
Pkts to Send:	0		0	Min Dst Port:	9	9					
Multi-Pkt:	0	-	0		9	9					
Burst:	DEFAULT (1)	-	DEFAULT (1)		0						
	TX Endpoint (endpoint A)		RX Endpoint (endpoint B)								
Thread-ID:	0		0]							
Thresholds Script		Thresholds]								
		Script]	\$							
🖉 Random Payload Size 🖉 Ra			Random Payload Size		M.						
	Use Router MAC		Use Router MAC								
	🗌 UnManaged		UnManaged								

Random MAC address Example



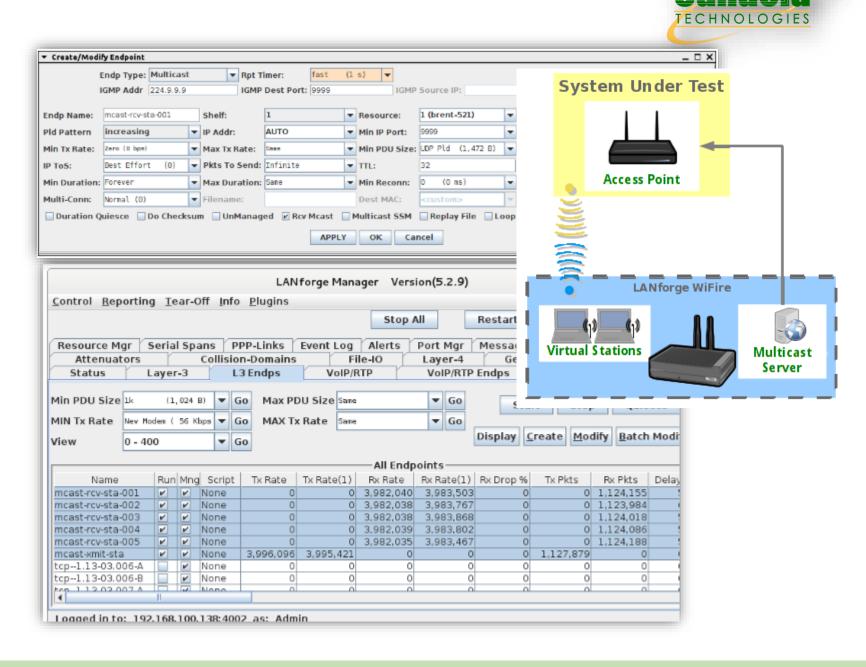

- Create internet scale connections with 1000s of endpoints
- Saturate look up tables on Device under Test
- Saturate DHCP addresses.
- Create effect of lots of different endpoints arriving and leaving in a large public venue scenario.
- Use well known MAC OUI for device profiling and MAC address based policy testing.

0		Create VLAN	s on Port: 1	.1.02				
•	⊖ MAC-V <u>L</u> AN	○ 802. <u>1</u> Q-VLAN	○ <u>R</u> edirect	⊖ Bridge	○ Bond			
U	⊖ GRE Tunnel	◉ <u>W</u> iFi STA	⊖ WiFi <u>V</u> AP	○ WiFi <u>M</u> onitor	⊖ WiFi Vir			
2	Shelf: 1 🔻 F	Reso <u>u</u> rce: 1 (Mobi	leStations) 🔻	Port: 2 (wiph	iy0)			
B	<u>Q</u> uantity: 1							
	Basic Settings	WiFi Se <u>t</u> tings	Advanc <u>e</u> d Se	ettings				
	VLAN ID:							
	<u>S</u> TA ID:	0000						
	Parent MAC:	04:f0:21:3e:de:	09					
	MAC Addr:	XXX:XXX:XXX:*:*:XXX	-					
4	DHCP-IPv4	<custom></custom>	Enter the	MAC address i	in HEX, EC	G: 00:00:E8	3:20:9E:56	
	IP Address:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		nize octets, us orginal octets,			Evampla	
	IP <u>M</u> ask or Bits:	XX:XX: *: *: *: *	XX:XX:XX:		use the 7	or symbol.	Example:	
	Gateway IP:	xxxxxxxxx;*:*:* xxxxxxxxxxx;*:*		the first four o				
	#1 Redir <u>N</u> ame:	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	bit unset.	:*:*:*:* will ra	andomize	an octets	ует кеер тпе і	multicas
	#2 Redir Name:							
6	Down Ap	ply <u>C</u> ancel]	Ready				

File IO Endpoint Testing

- > Measure Throughput with large file Reads/writes over the network.
- > Measure scaled File I/O with 100s of thousands of end points.
- Supports NFS 3/NFS 4/TFTP/SCP/Samba/CIFS testing
- Measure File Reads/Writes per second, Throughput (Mbps), IO Failures, CRC Failures

HTTP/FTP/DNS Traffic Generation



- > Can run FTP server service to test FTP uploads
- Can run HTTP service to perform transaction testing and create lots of Web calls
- Example: Create 10,000 web requests/per sec of 15Kbyte files and measure URLs/sec and failed requests.
- > Can act as upstream DNS server for firewall testing.

			eth1 (Mobil	eStations) Conf	iaure	Settings						×
			etiir (Port Status Infor	-	-					0.000	
	Current:	LINK-U	JP 1000bt-FD	AUTO-N	JEGOTIATE Flow-Cor			C					
	Driver Info:	Port T	ype: Ethernet	Drive	er: igb(5.6.0-k) Bus	s: 0000	:03:00.0 C	ur: 2.50	GT/s xl Max:	2.5GT/s x1			
					Port Configura	ables							
— Enable ——			Gen	ieral In	terface Settings				Port	Rates	Adver	t Rates —	
Set MAC					_				O 10bt-H		🕑 10b	t-HD	
Set TX Q Len	\O_100bt-HD												
Set MTU	DHCP-I	Pv <u>6</u>	DHCP Rele	Release DHCP Vendor ID:				-	0 100bt-		▶ 100bt-HD		
Set Offload	DHCP-I	Pv4	Secondary	-IPs	DHCP Client ID:	None		-	0 1000-F		100		
Set Rate Info Set PROMISC	DNS Serve	rs:	0.0.0.0		Global IPv6:	NA			0 40G-FE		100		
Set Rx-All/FCS	IP Address	S:	0.0.0.0			AUTO			Autone	egotiate	400		
Set Bypass	IP Mask:	_	255.255.255.	0	Link IPv6:	AUTO			Renego	tiate			
Set Bridge Info	Gateway II Alias:	-: -:	0.0.0.0		IPv6 GW: MTU:	AUTO 1500			Restart Xcvr		Offload		
Set CPU Mask	MAC Addr:		00:03:2d:3b:a	al:29	TX Q Len	1000			PROMIS	С	1	Enabled	
Services	Br Cost:		Ignore	-	Priority:	Ignor	e	-	RX-ALL			Enabled	
HTTP FTP	Rpt Timer:		faste Bridge	ort co	st. A lower cost is	'hetter	4		RX-FCS		GSC GSC) Enabled	
DNS	CPU Mask		NO-SET		WiFi Bridge:	NONE		-	🗌 Bypass	NOW!		Enabled	
RADIUS	IPSec GW:	₫.				· ·	e/Modify	L4End	lpoint		11.1.000	F	1 = 🗆 X
IPSEC-Client	IPSec Loca	Nam	e:	web-r	equests	Rot	Timer:	fast	(1 s) 🔻	Test Manage	en	default tm	-
IPsec-Upstream	_					<u> </u>	_						
		Shelf	1	Resour	ce: 1 (jed-f20)	•	Port: 4 (raub)	•	IP Addr:		AUTO	•
	<u>P</u> rint	Endp	Name:	0		URL	s per 10m:	6000		Max Speed:		Infinite	-
		Quie	sce:	3 (3 9	sec)	URL	Timeout:	10000		DNS Cache T	limeout:	60	-
		TETP	Block Size:	Defau	ilt (512 B)	-				-			
			/ Port:			-	ky Server:						
			/ Auth:				ly berten.						
		1											
			y Auth Types:		asic 📃 Digest 📃 N	LM							
		HTTP	Compression:	Gz Gz	ip 📃 Deflate								
		нттр	Auth Types:	📃 Ba	asic 🔲 Digest 🔲 G	SS-Nego	otiate 📃 N	TLM					
		SSL (Cert:	ca-bu	undle.crt								
		SMTP	P-From:										
		Agen	t/RCTP-TO:										
		UL/DI	Ŀ	Dowr	load		Pv4		6				
		URL:		http:/	//10.2.0.1/index.htm	I							
		Sour	ce/Dest File:	/dev/r	null								
		G	et-URLs-From-F	ile	Authenticate Serv	er 🗌	Use-Proxy		ow-Reuse [Allow-Cache	Enal	ble 4XX	Show Headers
		В	ind DNS 🛛 🗹 F	TP PAS	V FTP EPSV								
					Apply		ок	Bat	ch-Create	Canc	el		
		-											

Multicast Testing

- Can create lots of multicast endpoints to test real networks/routers
- Can create virtual routers to test Multicast endpoints.
- Create lots of IGMP groups and test end points join/leaves and traffic flows.
- ➢ Support for IPv4/IPv6
- Test multicast throughput with several multicast groups at scale.
- Generate IGMP join/leave message floods.

Video Streaming Traffic

- Emulate live video transmission from different types of \triangleright devices and different video qualities.
- Examples: \geq

Stability Duration:

VOIP Call Count:

Video Emulation Rate:

Concurrent Ports to Reset:

Minimum Time between Resets:

Stability Multicast Min Download Rate

Stability UDP Min Download Rate:

Stability TCP Min Download Rate:

Stability stall threshold UDP Upload:

Stability stall threshold TCP Upload:

Stability UDP Min Upload Rate:

Stability TCP Min Upload Rate:

Stability stall threshold Video:

- Streaming 1080p Youtube video on a surface tables
- Skype conversation on a smartphone at 480x360, 720p, 1080i and 1080p resolutions
- Measure throughput, latency, packet loss, frequency of video buffering/stalls, connections/streaming gaps.

AP Automated Test

Reset Radios

Video Buffer Size:

Maximum Time between Resets:

Stability Multicast Max Download Rate Same

A zero rate disables this connection type

Stability TCP Max Download Rate:

Stability stall threshold UDP Download:

Stability stall threshold TCP Download:

100000 (100 Kbps)

100000 (100 Kbps

20000 (20 Kbps

Stability TCP Max Upload Rate:

Stability stall threshold VOIP

3600 (1 hr)

Twenty (20)

10 seconds (10 s)

SD 360p (700 Kbps)

isabled (0 bps)

216 p4 (300 Kbps)

240 p4 (500 Kbps)

SD 360p (700 Kbps)

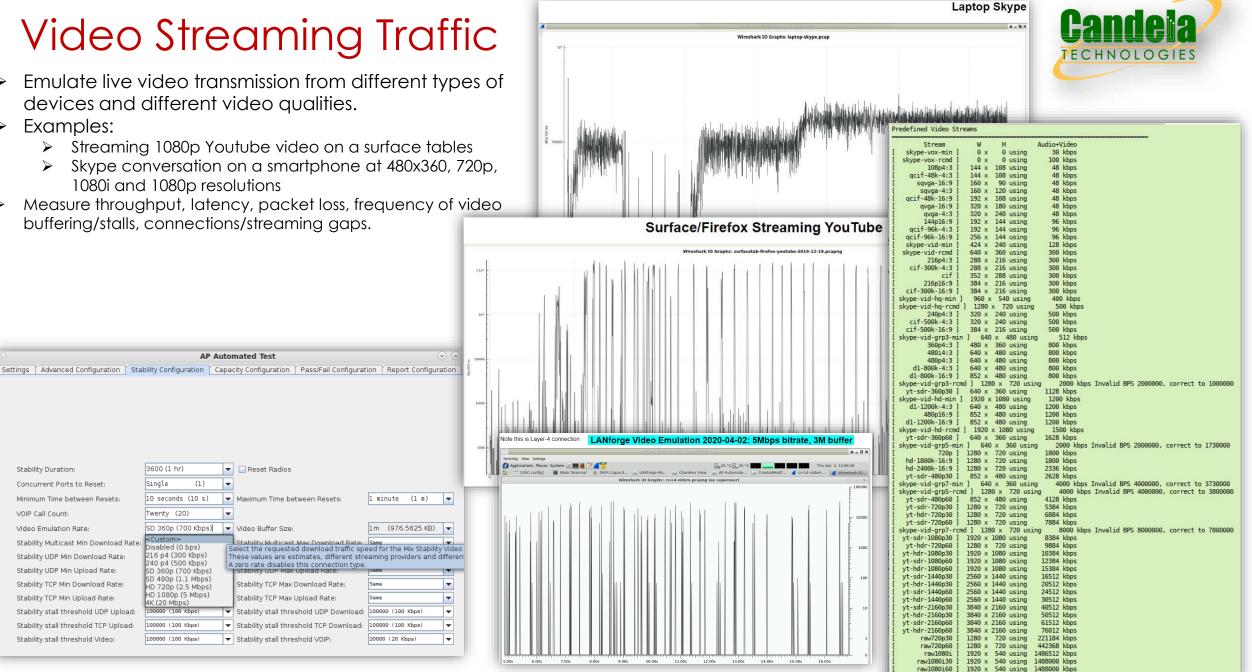
SD 480p (1.1 Mbps)

HD 720p (2.5 Mbps)

HD 1080p (5 Mbps)

K (20 Mbps)

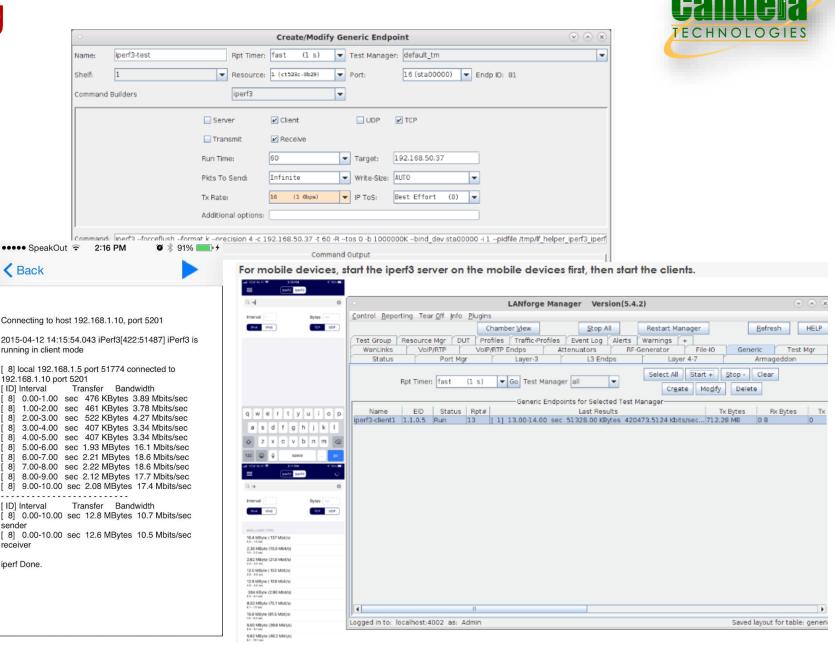
00000 (100 Kbps

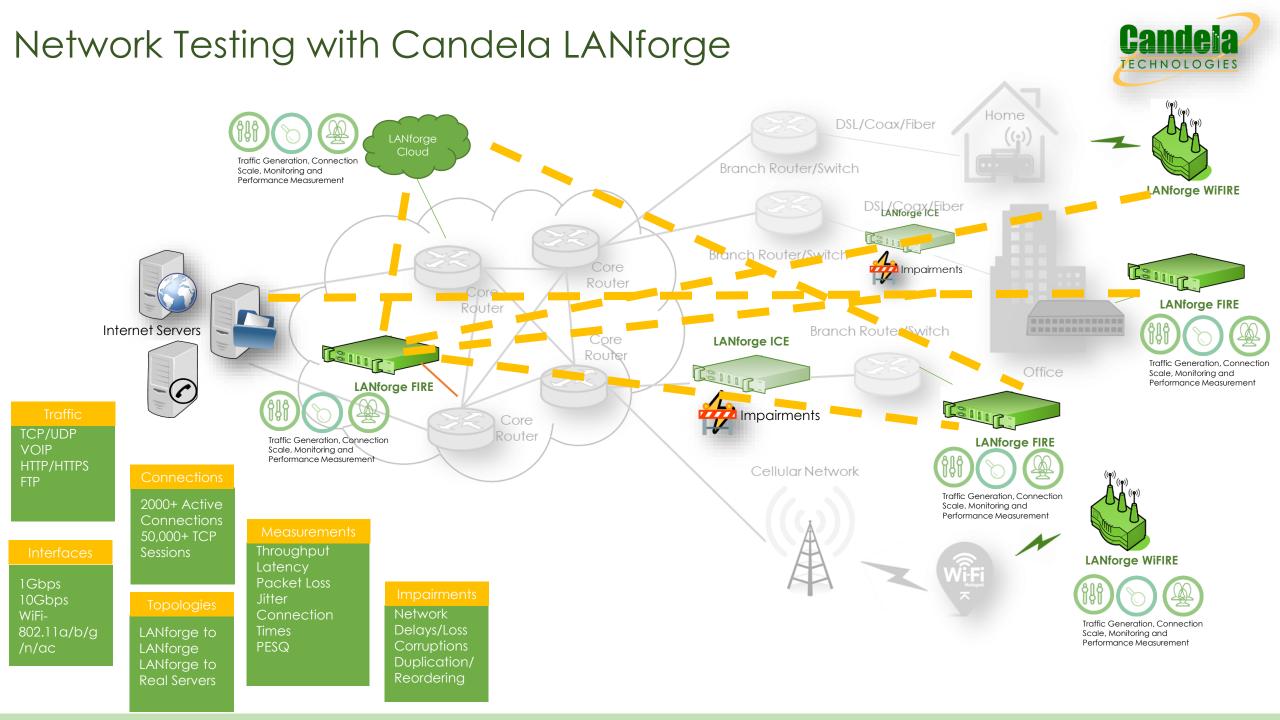

00000 (100 Kbps

00000 (100 Kbps

Single

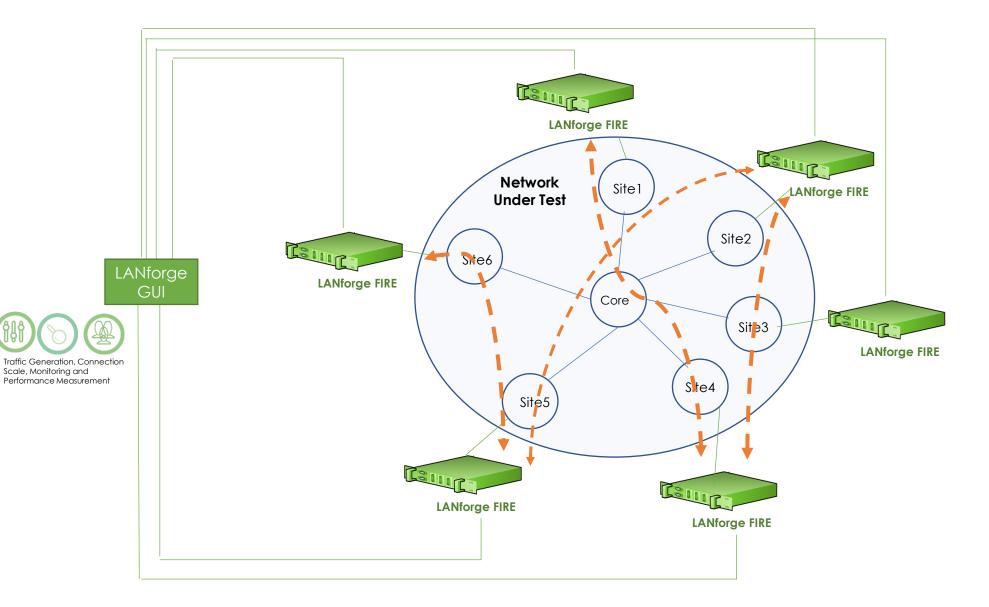
(1)


.

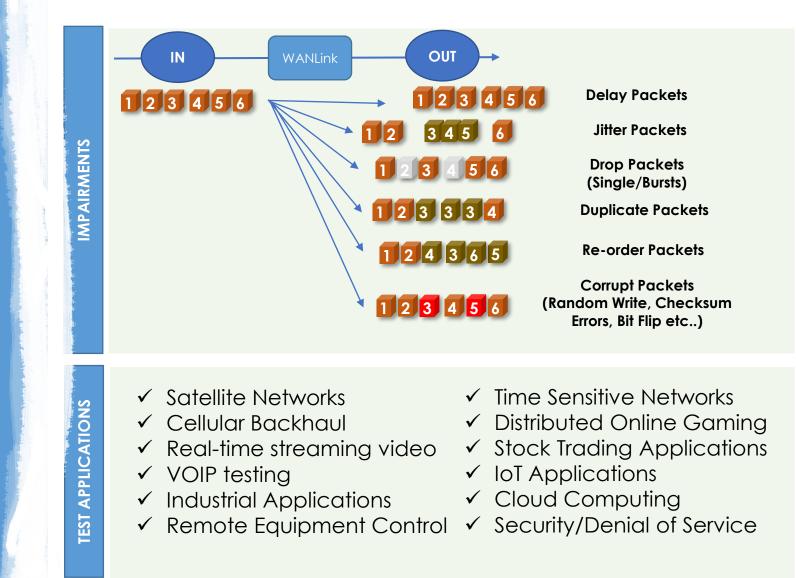


raw1080p] 1920 x 1080 using 2976000 kbps

iPerf Traffic Testing


- Supports testing with iPerf clients and servers.
- User can load iPerf on any type of handheld devices and test with Candela.
- Can test phones/tablets/wireless printers/scanners/medical equipment/consumer electronics devices that run Windows, Linux, Mac OS and other variants of compact embedded Operating Systems.
- Users can test real wired/wireless endpoints in the presence of Candela emulated Wired/Wireless endpoints creating lots of background traffic.
- Candela offers an improved iPerf 3 client to create multiple connections.

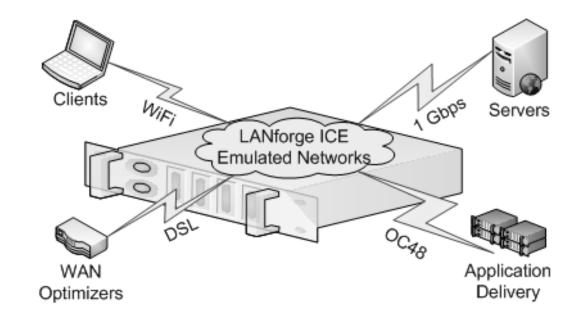
Network Test Setup



LANforge-FIRE : Systems

Product	Description	Price
<u>Remote Endpoint:</u> <u>CT314</u>	Most affordable system, supports single 10/100 Ethernet port. Optional single b/g/n WiFi station interface. Useful for network monitoring.	USD 595
<u>Network in a Box:</u> <u>CT502-1G</u>	Simulate up to 250 ethernet devices with unique MAC, IP Address and routing table over 6 physical ports with gigabit traffic generation. Excellent for testing routers and firewalls that monitor traffic flows. For low speed networks, consider the more affordable: <u>CT502</u> .	USD 12,250
<u>Gigabit Generator:</u> <u>CT503</u>	Generate and receive up to 8 Gbps of traffic with a single system. The CT503 is configured with 8 10/100/1000 Ethernet interfaces, and other options with more or fewer ports are available. This system is excellent for testing multi-port high-speed networks.	USD 16,295
<u>CT503-10G</u>	Generate and receive 10 Gbps of traffic with a single system. The CT503-10G is configured with two 10 Gigabit Fiber interfaces. Other options including portable systems and more ports are available. This system is excellent for testing multi-port high-speed networks. For even more capacity, consider the <u>CT503-10G-4</u> system.	USD 15,155
<u>10 Gig Combo Generator:</u> <u>CT503-MIX</u>	Generate and receive 12+ Gbps of traffic with a single system. The CT503-MIX is configured with two 10 Gigabit Fiber interfaces and 12 1Gbps SFP interfaces. This system is designed to be a general purpose network traffic generator for high-speed networks.	USD 47,805
<u>48-port Last-Mile Traffic Generator:</u> <u>CT570</u>	Generate and receive up to 2 Gbps of traffic across 48 10/100 ethernet interfaces utilizing a single LANforge machine and a 48-port managed ethernet switch. This system is excellent for testing DSL, Cable Modem, and other networks with a large number of lower-speed network devices.	USD 31,900
File-IO Generator: <u>CT510-10G</u>	Generate up to 2000 unique NFS, CIFS and other File-IO sessions. Excellent for testing File Servers and network storage devices. for the individual calls.	USD 21,655
<u>VoIP Call Generator:</u> <u>CT505-30</u>	Generate up to 30 concurrent SIP calls with RTP. Excellent for testing SIP gateways, routers and QoS configurations. Includes optional PESQ module that provides automated perceptive quality scoring for the individual calls. See also: <u>CT505-100</u> . Systems supporting up to 500 calls are also available.	USD 14,350

LANforge-ICE



LANforge – ICE : WAN Emulation/Impairments

LANforge ICE can add impairments in a controlled and reproducible manner to aid in testing applications and network equipment that must operate over a network.

LANforge-ICE supports many impairments: latency, bandwidth, jitter, packet loss, packet reordering and more. It can act as a layer-2 pass-through device for easy insertion into the system under test. It also supports 802.1Q VLANs, router emulation, bridges and other network elements for more advanced emulation needs. Emulation speeds range from 10bps to 9.8Gbps, and some systems support more than 48 concurrent emulations.

Some users may want to simulate an entire LAN or WAN network. LANforge ICE supports Bridges (switches) including spanning tree protocol, as well as OSPF, BGP, RIP and multicast routers. IPv4 and IPv6 routing protocols are supported, and the bridge will handle any Ethernet frame. LANforge is running real router and bridge software, so it can exchange messages with external equipment to populate routes and set up spanning trees.

LANforge – ICE : Use Cases

- > Verify applications can run over a WAN before migrating applications to remote data center.
- > Test multi-player games and other interactive real-time group applications.
- > Test streaming media CODECs and network stacks in a controllable manner.
- > Test LAN based applications for adverse network conditions.
- > Verify data-replication services can function properly over degraded networks.
- Simulate large complicated networks
- > Do specific application testing by impairing only a certain subset of packets.

LANforge – ICE : Features Summary

- General purpose WAN and Network impairment emulator: Validates stability and functionality of devices and programs over a wide variety of network conditions.
- Able to simulate DS1, DS3, OC-3, OC-12, OC-24, OC-48, GigE, DSL, Cable Modern, Satellite links and other rate-limited networks, from 10bps up to 9.8 Gbps speeds (full duplex).
- ✓ Can modify various network attributes including: network-speed, latency, jitter, packet-loss, packet-reordering, and packet-duplication.
- ✓ Supports Packet corruptions, including bit-flips, bit-transposes and byte-overwrites.
- Supports WanPath feature to allow configuration of specific behavior between different IP subnets or MAC addresses using a single pair of physical interfaces.
- ✓ WanPaths can also impair packets based on an arbitrary filter that is created using the powerful and well documented topdump filter syntax.
- ✓ Supports WAN emulation across virtual 802.1Q VLAN interfaces for more efficient use of valuable physical network interfaces.
- ✓ Supports routed and bridged mode for more flexibility in how your configure your network and LANforge ICE.
- ✓ Supported routing protocols include: static, OSPF, RIP, OLSR, BGP, and Multicast (PIM, IGMP). Most protocols support both IPv4 and IPv6.
- ✓ Supports 'WAN-Playback' allowing one to capture the characteristics of a live WAN and later have LANforge ICE emulate those captured characteristics.
- \checkmark Allows packet sniffing and network protocol decoding with the integrated Wireshark sniffer.

LANforge – ICE : Advanced Settings

On a per network link basis the user can apply the following advanced impairment settings:

- ➢Packet Drop Frequency
- ➢Packet Re-order Frequency
- ➤Packet Duplicate Frequency
- ➢ Drop Bursts
- ➢Reorder Amount
- Dump Packets of certain type
- ➢ Force Packet Gap
- ➢ Drop Xth packet
- ➢ Reorder Xth packet
- Changing Queuing Mechanism to:
 - ≻ FIFO

>WRR (Weighted Round robin)

lame: resets:	WanLink Information			_	0	WanLink Info				HW P	ass-Th	hrough	
resets:	CUSTOM			-		Coupled	-Mode			Kern	el-Mod	е	
	Endpoint A		ndpoint B		Resource:	1 (resource-	-1)						-
ort:	2 (eth2)	▼ 3	(eth3)	-	Rpt Timer:	fast (1	s)						-
ransfer Rate:	100M (100 Mbps)	- 10	00M (100 Mbps)	-		Endpoint A			En	dpoin	+ P		1000
elay:	tiny (10 ms)	▼ t	iny (10 ms)	-	Reorder-Freq:	zero (0%)			-	ro (G			-
rop-Freq:	zero (G%)	▼ Z4	ero (G%)	-	Dup-Freq:	zero (O%)		-		ro (0			-
ter:	zero (O us)	▼ Z(ero (O us)	-		min 1	max 1		min	-		nex 1	
ter-Freq:	zero (O%)	▼ 26	ero (0%)	-	Drop Burst:				ma	-	_		_
					Reorder Amt:	min 1	mex 20	h.	min	1	1	-ax 20	
						Sc	cript				Scri	pt	_
uz-iD:	WanLink Information				Test Manager:	WanLink Info					Scri	pt	-
M/HD:	WanLink Information	En	idpoint B	+					End	point		pt	
W-ID:	P.		idpoint B ICEcap Replay	<u>+</u>		WanLink Infor default_tm	rmation						•
	Endpoint A		80 8 93 93 8 30 93 C	+		WanLink Infor default_tm Endpoint A Dump Pack	rmation			,)ump	B Packet	ts	•
	Endpoint A		80 8 93 93 8 30 93 C		Test Manager:	WanLink Info default_tm Endpoint A Dump Pack	rmation			orce	B Packet Packet	ts	•
	Endpoint A		ICEcap Replay		Test Manager:	WanLink Infor default_tm Endpoint A Dump Pack Force Pack	rmation cets cet Gap			orce orce	B Packet Packet	ts	•
	Endpoint A DICEcap Replay DIC		ICEcap Replay		Test Manager: Dump File:	WanLink Infor default_tm Endpoint A Dump Pack Force Pack Drop-Xth Reorder-Xtl	rmation cets cet Gap			orce orce orop-X	B Packet Packet	ts	v
	Endpoint A ICEcap Replay Dir Dir Loop Replay		ICEcap Replay Dir Loop Replay		Test Manager: Dump File: QDisc:	WanLink Info default_tm Endpoint A Dump Pack Force Pack Drop-Xth Reorder-Xth FIFO	rmation cets cet Gap			oump Force Drop-X Reorde	B Packet Packet	ts	
aul-ID: eplay File:	Endpoint A ICEcap Replay Dir Loop Replay Replay Latency		Dir Dir Loop Replay Replay Latency		Test Manager: Dump File:	WanLink Infor default_tm Endpoint A Dump Pack Force Pack Drop-Xth Reorder-Xtl	rmation cets cet Gap			orce orce orop-X leorde 0	B Packet Packet	ts	

Queue Discipline:

FIFO or WRR, weight1-v1-m1...-vX-mX,..., weightX-vX-mX,...

where vX-mX are decimal value and mask pair(s) (bitwise AND) to be matched to the associated queue/weightX. Higher weight is higher priority.

Example, 3 queues (2000, 50000 and 20000) with match-all-bits mask of 255 for IP-TOS values of 10, 11 and 12, 10 is in the lowest priority queue and 11 is in the highest:

QDisc: WRR, 2000-10-255, 50000-11-255, 20000-12-255

The value-mask pair behave like the IP address and network mask pair. An incoming packet's 8-bit IP-TOS header field is compared against the value-mask pair. The packet is placed in the queue if the TOS matches the value-mask pair.

LANforge – ICE : Real-Time Impairments

- Setup a certain impairment profile on a WANLink.
- Create a peer link with the different impairments
- While traffic is running, use the Switch button to change the impairment in run time to the peer WAN Link

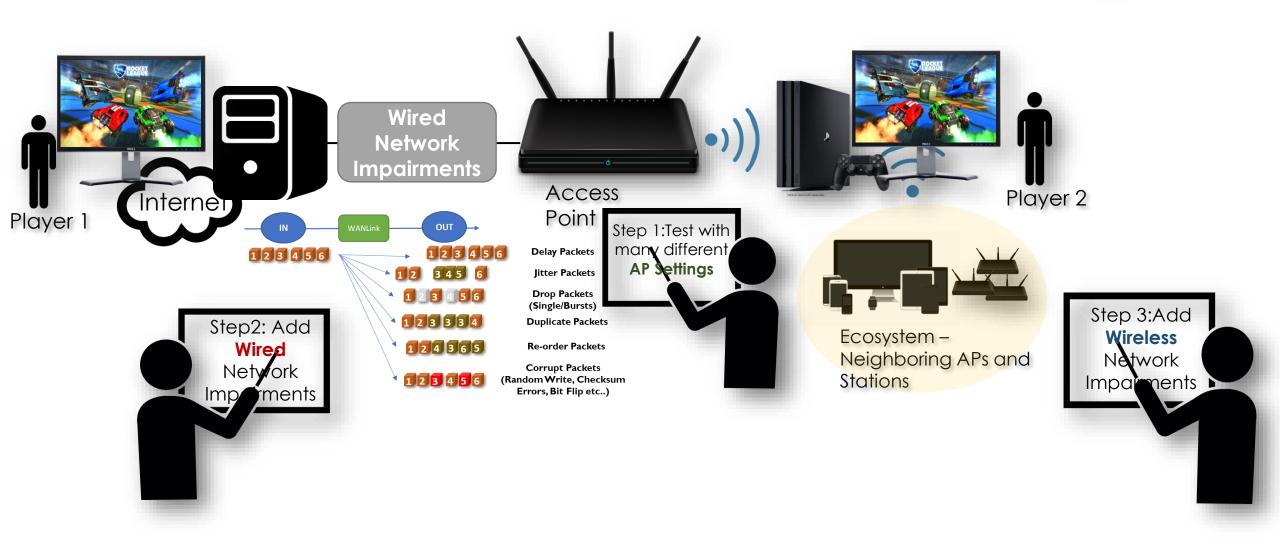
				LANforge Man	ager version	(5.4.2)			000
ontrol <u>R</u> eportin	g Tea	r Off Inf	o <u>P</u> lugins						
			Ch	amber <u>V</u> iew	<u>S</u> top All	Restart Ma	anager	<u>R</u> efresh	HELP
VoIP/RTP Endps	File-I	0 Gen		t Group Resource M				rnings +	
Status	Port I	1gr	Layer-3	L3 Endps	Layer 4-7	Armagedd	lon War	links V	oIP/RTP
Rpt Timer:	fast	(1 s)	▼ Go	Test Manager all	-	Select All St	tart + Switch	clear	
				Hide Stopped		Disp <u>l</u> ay Cr <u>e</u> ate	Modify Bat	ch Modify De	lete
					for Selected Test	Manager			
Name	EID	K-M	State	Endpoints (A ++ B)	Pkt Tx A → B	Pkt Tx A ← B	Bps Rx B	Bps Rx A	Rpt Timer
00Mbps-wan	6.61	Run		100Mbps-wan-A <	15,590	15,535	100,000,000	100,000,000	1,00
	and the second se			100Mbps-wan-B-A	0	0	100,000,000	100,000,000	1,00
.00Mbps-wan-8	6.73	Stop	ped			(5.4.2)			
				LANforge Man		(5.4.2)			
			Plugins			(5.4.2) Restart Ma	anager	Befresh	
ontrol <u>R</u> eportin		r <u>O</u> ff Int	<u>P</u> lugins Ch	LANforge Man namber⊻iew	ager Version <u>S</u> top All	Restart Ma			00
ontrol <u>R</u> eportin	g Tea	r <u>O</u> ff Ini	<u>P</u> lugins Ch	LANforge Man namber⊻iew t Group Resource M	ager Version <u>S</u> top All	Restart Ma	es Alerts Wa	rnings +	00
ontrol <u>R</u> eportin /oIP/RTP Endps	g Tea File-I Port I	r <u>O</u> ff Ini	Elugins Ch	LANforge Man namber View t Group Resource M L3 Endps	ager Version Stop All	Restart Ma les Traffic-Profile Armagedd	es Alerts Wa	rnings +	(*) (*) HELP DIP/RTP
ontrol <u>R</u> eportin /oIP/RTP Endps Status	g Tea File-I Port I	r Off Ini 0 Ger 1gr	<u>P</u> lugins Ch ric Tes Layer-3	LANforge Man Namber View t Group Resource M L3 Endps	ager Version Stop All Igr DUT Prof Layer 4-7	Restart Ma les Traffic-Profile Armagedd	es Alerts Wa Ion War tart + Switch	rnings + DLinks V Stop - Clear	HELP
ontrol <u>R</u> eportin /oIP/RTP Endps Status	g Tea File-I Port I	r Off Ini 0 Ger 1gr	<u>P</u> lugins Ch ric Tes Layer-3	LANforge Man namber View t Group Resource M L3 Endps Test Manager all Hide Stopped	ager Version Stop All Igr DUT Prof Layer 4-7	Restart Ma lies Traffic-Profile Armagedd Select All St Disp <u>l</u> ay Cr <u>e</u> ate	es Alerts Wa Ion War tart + Switch	rnings + DLinks V Stop - Clear	
ontrol <u>R</u> eportin VoIP/RTP Endps Status	g Tea File-I Port I fast	r <u>O</u> ff _Ini 0 Ger 4gr (1 s)	<u>P</u> lugins Ch ric Tes Layer-3	LANforge Man namber View t Group Resource M L3 Endps Test Manager all Hide Stopped WanLinks	ager Version Stop All Igr DUT Prof Layer 4-7	Restart Ma lies Traffic-Profile Armagedd Select All St Disp <u>l</u> ay Cr <u>e</u> ate	es Alerts Wa Ion War tart + Switch	rnings + DLinks V Stop - Clear	HELP OIP/RTP
Rpt Timer:	g Tea File-I Port I fast	r Off Ini 0 Ger 1gr	Plugins Ch fic Tes Layer-3 V Go	LANforge Man namber View t Group Resource M L3 Endps Test Manager all Hide Stopped	ager Version	Restart Ma Iles Traffic-Profile Armagedd Select All St Display Cr <u>e</u> ate Manager	es Alerts Wa lon War tart + Switch Mo <u>d</u> ify Bat	rnings + Links V Stop - Clear ch Modify De	

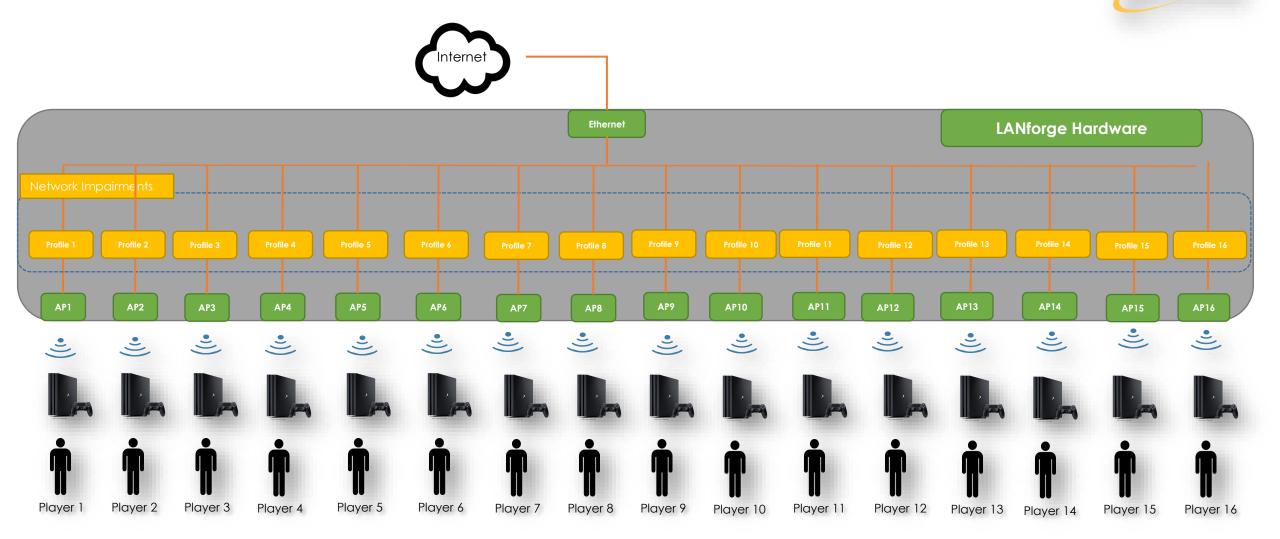
Gaming Networks

Challenges:

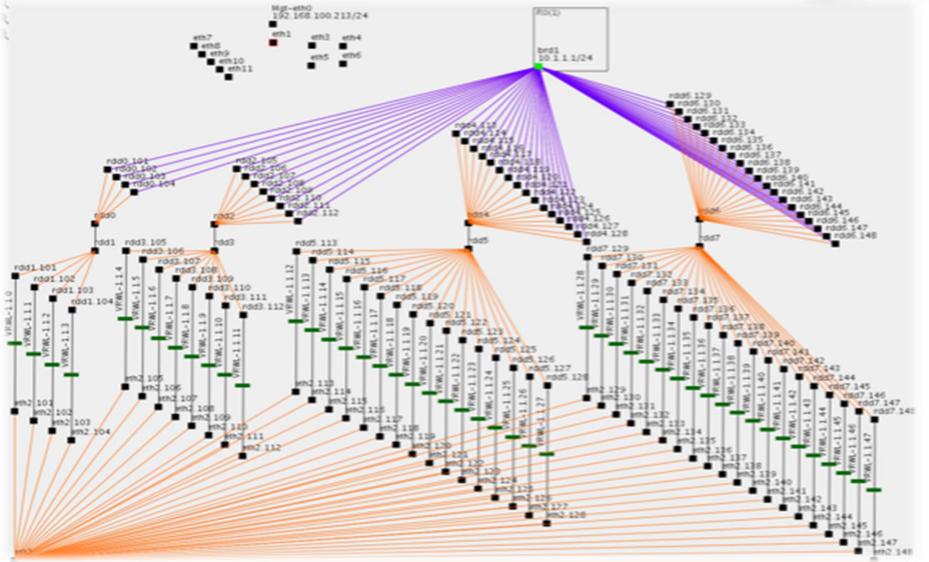
- How do we ensure a high quality gaming experience given variable network conditions?
- > What are the network limits of a particular game or gaming platform?
- > How do we ensure that 3rd party game developers test to the same requirements?

Key Performance Indicators:


- ➢ User Experience
- ➤ Latency/Lag
- > Jitter, variable latency


Testing Gaming over the Network

16 Game Console Example Setup



ECHNOLOGIES

48 Game Console Test Example

- Unique emulation profile per gaming console.
- Can test upto 48 gaming consoles at a time.
- Can emulate DSL, Cable Modem, Satellite and other type of network links.
- Can dynamically change impairment profiles during the test.
- Easy to integrate with real game servers allowing for testing with real gaming applications over the Internet.
- Can easily create test groups /profiles.
- Real time sniffing and analysis of any of the network links.

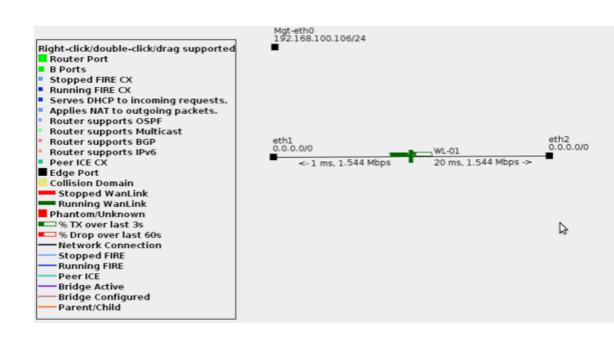
Banking/Finance Networks

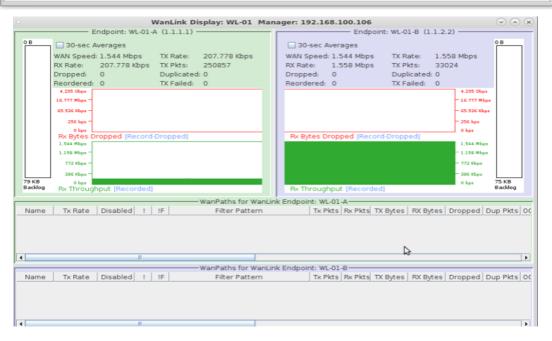
Challenges:

- Prototyping large scale network additions or modifications before going live.
- Speed an Accuracy of applications over very diverse network conditions.
- Create the redundancy and security needed.
- Handling large data transfers.

Key Performance Indicators:

- Application performance
- Failure Downtime/Resiliency
- Network Latency




Simple WAN Emulation Example

- Simple but highly effective way of emulating WAN impairment between two bank branch office sites.
- Below example shows a WANLink that is rate limited to 1.544Mbps on both sides and 1msecs of latency on one side and 20 msecs of latency on the other side.
- Similar configurations can created very easily and can be automated to create 100s of combinations to represent various real world scenarios for testing transactions across various sites.
- Configuration can be scaled to match the complexity of large distributed financial institutions.

		WL-01 - C	N	lodify WanLink		\odot
+ - All			13	Apply	OK Display Wa	InLink & WanPaths Canc
Name: Presets:	WanLink Information WL-01 CUSTOM Endpoint A	Endpoint B	•	Resource:	WanLink Information Pass-Through Coupled-Mode () (16939-10ac)	☐ HW Pass-Through ✔ Kernel-Mode
Port:	1 (eth1)	v 2 (eth2)	-	Resource: Rpt Timer:	fast (1 s)	
Transfer Rate: Delay:	T1 (1.544 Mbps) small (20 ms)	 T1 (1.544 Mbps) 30 (30 ms) 	•	Reorder-Freq:	Endpoint A zero (0%)	Endpoint B
Drop-Freq: Jitter:	zero (0%) zero (0 us)	 zero (0%) zero (0 us) 	•	Dup-Freq:	zero (0%)	▼ zero (0%) ▼
Jitter-Freq:	zero (0%)	▼ zero (0%)	-	Drop Burst: Reorder Amt:	min 1 max 1 min 1 max 20	min 1 max 1 min 1 max 20
					Script	Script

Defense Networks

Challenges:

- Verifying multiple devices, systems and applications can perform under adverse network conditions.
- Verifying backup and redundant systems perform as expected.
- Accurately emulating geographically diverse networks.

Key Performance Indicators:

- Communication delay/Jitter
- Application adaptability
- Worst case scenario performance

Network Corruptions Example

- LANforge ICE allows for creation of extensive amount of corruptions on the network to mimic security attacks and corruption of information on the network.
- Users can take various real-world behaviors and recreate them using LANforge ICE features.

LANforge-ICE supports bit and byte error corruptions in ethernet frames. The **Rate** field determines how often to apply the corruption (out of 1 million packets).

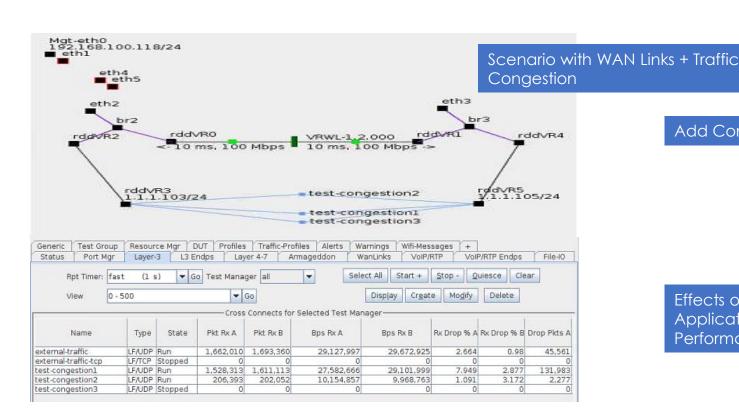
Select the type of corruption you want to apply from the **Corruption** drop-down menu:

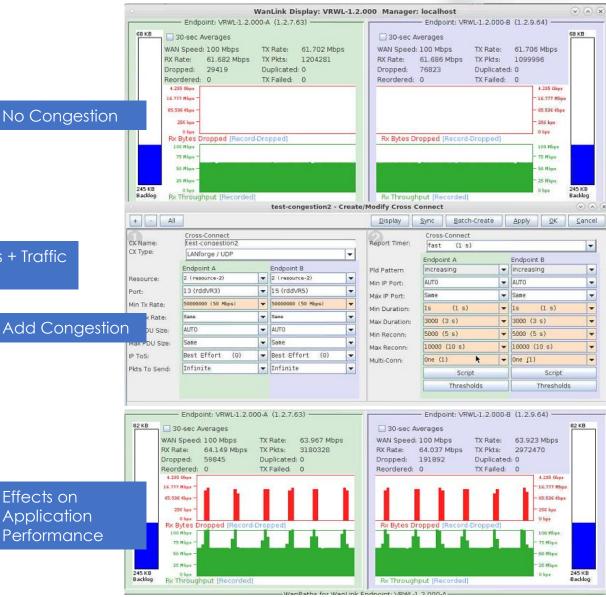
•Random Write: Will write a random byte to one byte between the min and max offset into the ethernet frame.

- •Write Byte: Will write the byte specified in the Byte-to-Write field to a location between the Min and Max Offset into the ethernet frame.
- •**Bit-Flip:** Will flip one bit from 0 to 1 or 1 to zero in a byte between the Min and Max Offset into the ethernet frame.
- •Bit-Transpose: Will transpose two bits in a byte between the Min and Max Offset into the ethernet frame.

The **Min** and **Max Offset** fields determine the location of the corruption. If Min is less than Max, the corruption will be at a random byte between Min and Max. If the **Chain-to-Next** checkbox is selected, any time this corruption is applied, the **next** corruption will be applied as well. This can allow you to reliably generate multiple corruptions in a single packet.

If the **Checksum** checkbox is selected, LANforge will attempt to recalculate the IPv4, UDP, and TCP checksum for the packet after applying the corruption. This will allow the errored packet to be accepted by the stacks on the receiving machine as if the data were actually valid.


		Create/Modify	WanPath for En	dpoint: 100Mbps-	van-A-A	\odot \odot \otimes
		Display	Clear Counters	Apply	<u>0</u> K <u>C</u> ancel]
	Name:	wp-a		Backlog Buffer:	AUTO	-
	PCAP Filter:	vlan 1010	,			
	MAC:			Source Mask:		
ipairn	nents _{AC:}	0.0.0.0		Dest Mask:	0.0.0.0	
	Transfer Rate:	100M (100 Mbps)	-	Delay	zero (O us)	-
	Jitter	zero (0 us)	-	Drop-Freq:	zero (0%)	-
	Min Drop Burst:	1		Max Drop Burst:	1	
	Min Reorder Amount	1		Max Reorder Amoun	t: 20	
	Reorder-Freq:	zero (0%)	-	Dup-Freq:	zero (0%)	•
	Jitter-Freq:	zero (0%)	-	Test Manager:		-
	🗌 ICEcap Replay	Replay File:			L	▼ Dir
	0 D	isabled 🛛	Loop Replay	Replay Latency	✓ Replay Loss	
	• s	ame As WanLink 🛛 🕨	Replay Dup	Replay Bandwidth	Use Pcap Filt	er
rrupti	ons	iverse Match	Drop-Xth	Duplicate-Xth	Reorder-Xth	
•	Corrupt	ion #0		tion #1		otion #2
		100000	Rate:		Rate:	
		Write Byte 🔻	Corruption:		Corruption:	Random Write 🔻
	Byte-to-Write:	40	Byte-to-Write:	0	Byte-to-Write:	0
	Min Offset:	19	Min Offset:	0	Min Offset:	0
	Max Offset:	20	Max Offset:	0	Max Offset:	0
	Chain-to-Next	🖌 Do Checksum	Chain-to-Next	Do Checksum	Chain-to-Next	🔲 Do Checksum
	Corrupt	ion #3	Corrup	tion #4	Corrup	tion #5
	Rate:	0	Rate:	0	Rate:	0
	Corruption:	Random Write 🔻	Corruption:	Random Write 💌	Corruption:	Random Write 💌
	Byte-to-Write:	0	Byte-to-Write:	0	Byte-to-Write:	0
	Min Offset:	0	Min Offset:	0	Min Offset:	0
	Max Offset:	0	Max Offset:	0	Max Offset:	0
	Chain-to-Next	Do Checksum	Chain-to-Next	Do Checksum	Chain-to-Next	Do Checksum


Co

Example Operation in Hostile Defense Network conditions

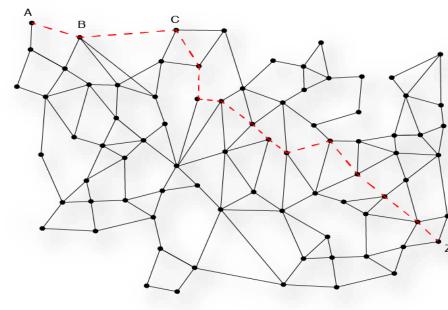
- LANforge can be used to add background congestion to mimic real world hostile network conditions.
- Impairments can be created on the WAN Links and congestion can be added separately to make the testing more real world.
- Congestion can be created in the form of Constant Bit Rate or bursty TCP and/or UDP traffic.

Enterprise IT Networks

Challenges:

- > Doing more with less.
- > Troubleshoot, Isolate and eliminate network bottlenecks.
- Network upgrades, how do we test an upgrade before installing it?
- > How to ensure smoot operation of high bandwidth applications across sites spread all across the world

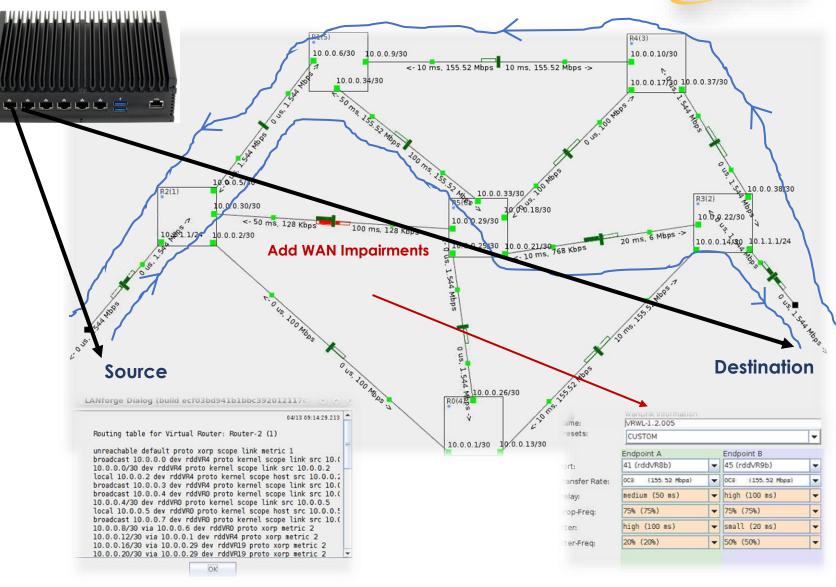
Key Performance Indicators:


- End user Experience
- Reduced trouble tickets
- Application Performance

64 Hop WAN Emulation Example

- Enterprise IT has to test applications to work well across several network hops on the Internet
- How can you test an application by emulating the entire internet in a box?
- > Can you create multiple virtual routers/hops to test high BW/low latency enterprise IT application over the Internet?
- LANforge ICE can be used to create an entire virtual network between two ethernet ports.
- User can create virtual routers on each hop
- User can apply different impairment profiles for each virtual hop.
- End to End and per hop network latencies, packet loss and jitter can be measured and reported.
- End to End application performance can be measured.

Mate Terminal


File Edit View Search Terminal Help

Iro	otaresour	ce-2	2 lan	for	je]i	tra	icer	oute	e - m	65	-n	-i et	h2 3.	3.3
Ta	ceroute to	0.3	3.3.	3 (3.3	3.3	, 6	5 ho	ops n	ax,	60	byte	pack	ets
H	2.2.2.1 11.11.10	0.5	555 m 1.9		1.14	18 ms 1.96	5 Z	63						
Ŕ.	12.12.11	12	2.5	72	ns ns	3.17	57 m 32 m		3.621 3.129 3.542	ms				
4	$\begin{array}{c} 12, 12, 11\\ 13, 13, 12\\ 14, 14, 13\\ 15, 15, 14\\ 16, 16, 15\\ 17, 17, 16\\ 18, 18, 17, 16\\ 19, 19, 19, 18\\ 20, 20, 12, 21, 22\\ 24, 24, 23\\ 25, 25, 24, 24\\ 23, 23, 22\\ 24, 24, 23\\ 25, 25, 24, 24\\ 23, 23, 22\\ 24, 24, 23\\ 25, 25, 24, 24\\ 23, 23, 23\\ 24, 24, 23\\ 25, 25, 24, 24\\ 23, 23, 23\\ 24, 24, 23\\ 25, 25, 24\\ 24, 24, 23\\ 25, 25, 24\\ 24, 24\\ 23, 23\\ 24, 24\\ 23, 23\\ 24, 34\\ 33, 33\\ 22, 32\\ 33, 33, 32\\ 24, 34, 33\\ 33, 33, 32\\ 24, 34, 33\\ 33, 33, 32\\ 24, 34, 33\\ 33, 33, 32\\ 24, 34, 33\\ 35, 35, 34\\ 34, 34, 33\\ 35, 35, 35\\ 34, 34, 33\\ 35, 35, 35\\ 34, 34, 33\\ 35, 35\\ 34, 34, 33\\ 36, 36, 35\\ 37, 37, 36\\ 36, 36\\ 38, 38, 37\\ 39, 39, 38\\ 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 39, 39\\ 38, 38\\ 39, 39\\ 39, 30\\ 38, 38, 37\\ 39, 39, 39\\ 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 39, 39\\ 38, 38, 37\\ 39, 39, 39\\ 39, 39\\ 38, 38\\ 30, 30\\ 39, 39\\ 39, 30\\ 38, 38, 37\\ 39, 39, 39\\ 39, 39\\ 38, 38\\ 39, 39\\ 39, 39\\ 38, 38\\ 39, 39\\ 39, 39\\ 39, 30\\ 39, 39\\ 30, 30\\ 39, 30\\ 39, 39\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30, 30\\ 39, 30\\ 30\\ 30, 30\\ 30\\ 30, 30\\ 30\\ 30, 30\\$	13	2.5	56	ns	3.1	53 m		3.542	ms				
5	14.14.13	.14	6.9	64 1	ns	0.90	90 m:	s (5.947	ms				
6	15.15.14	. 15	4.0	11 1	ns	3.59	96 m:	5	3.936	ms				
17	16.16.15	. 16	3.7	78 1	ns	3.76	57 m	5	3.405	ms				
Š.	10 10 17	10	3.9 7.1	25 1	ns ns	6.82	29 m 95 m		5.818	3 ms				
la la	19.19.18	19	7.8	30 1	ns	7.37	76 m			5 ms				
11	20.20.19	.20	7.1	75	ns	8.63	39 m:	5 8						
12	21.21.20	.21	9.2	94 1	ns	8.75	63 m	5	10.09)2 m:	5			
18	22.22.21	.22	11.	94 r 999 014 870 526 044 176 350 892 051	ms	11.	088	ms	9.4	45 1				
18	23.23.22	.23	10.	014	ms	11.	281	ms	11.	45 1 271 146 504 289 777 129 305	ms			
12	24.24.25	24	- 11	576	ms ms	- 11	227	ms ms		504	ms ms			
17	26.26.25	.25	12	644	ms	11	327	ms	11	289	ms			
18	27.27.26	.27	11.	176	ms	11	327 787	ms	11	777	ms			
9	28.28.27	.28	13.	350	ms			ms	14.	129	ms			
20	29.29.28	. 29	14.	892	ms	14.	324	ms	14.	305 885	ms			
34	30.30.29	. 30			ms	14.	548	ms	15.	885	ms			
15	31.31.30	- 31	10.	855	ms ms	10.	.764 .324 .548 .221 .314 .415	ms ms	10.	274	ms ms			
12	33, 33, 37	32	16	772 650	ms	16	415	ms	16	957 406	ms			
25	34.34.33	.34	16.	291	ms			ms	17	188	ms			
26	35.35.34	.35	17.	755	ms	17.	028	ms	17.	015 521 844	ms			
27	36.36.35	. 36	17	176	ms	18.	532	ms	18.	521	ms			
18	37.37.36	. 37	19.	164 668 571 069	ms		646	ms	18.	844	ms			
18	38.38.37	. 38	19.	571	ms ms	18.	983 678	ms ms	18.	926 450 439 453	ms ms			
1	VU VU 30	40	21	060	ms	20.	489	ms	20.	430	ms			
2	41.41.40	.41	21.	017	ms	21	936	ms	21	453	ms			
-3	42.42.41	.42	22.	017 117 715 910 752 696 544 561 557 301 681 718 330	ms	23.	130	ms	23.	120 084 494 131 838 958 845 951 108 087 666 994	ms			
-4	43.43.42	.43	23.	715	ms	23.	059	ms	23.	084	ms			
12	44.44.43	.44	23.	910	ms	24.	743	ms	23.	494	ms			
12	45.45.44 46.45	.45	25.	152	ms	25.	085	ms ms	20.	131	ms			
16	40.40.45		25.	544	ms ms	25	196	ms	24.	958	ms ms			
1.9	48.48.47	.48	26.	561	ms	77	297	ms	25	845	ms			
Ð			26.	557	ms	27.	067	ms	26.	951	ms			
31	50.50.49	.50	27.	301	ms	28.	123	ms	28.	108	ms			
2	51.51.50	.51	28.	681	ms	28.	094	ms	28.	087	ms			
18	52 52 52	- 22	28.	718	ms ms	30.	594 714	ms ms	30. 20	000	ms ms			
18	54.54.53	54	31	785	ms	31	066	ms	32	103	ms			
6	49.49.48 50.50.49 51.51.50 52.52.51 53.53.52 54.54.53 55.55.54 56.56.55 57.57.56 58.58.57 59.59.58	.55	33.	785 645	ms	35.	492	ms	35.	193 613	ms			
37	56.56.55	.56	36.	463	ms	37	060	ms	37.	957	ms			
8	57.57.56	.57	38.	874 102	ms	38.	688	ms	38.	957 283 561 710	πs			
12	58.58.57	.58 .59	39.	102	ms	38.	571	ms	38.	501	ms-			
88	59.59.58 60.60.59	. 59	39.	957 726	ms ms	30	493	ms ms	20	422	ms ms			
5	61.61.60	.61	28	0.87	ms	39	523	ms	28	0.46	ms			
-3	62.62.61	.62	39.	775 218 099	ms	40.	523 296	ms	39.	995 288 815	ms			
-14	63.63.62	.63	40.	218	ms	39.	533 331	ms	39.	288	ms			
15	64.64.63	.64	40.	099	ms	40.	331	ms	38.	815	ms			
20	65.65.64		41.	900	ms	40.	450 353	ms	40.	389	ms			
16	66.66.65 67.67.66		47	195 622	ms ms	41	815	ms ms		789	ms ms			
0	68.68.67		42	533	ms	41	797	ms	43.	176	ms			
60	69.69.68	.69	42.	533 593 186	ms	43.	797 430 348	ms	43.	456	ms			
31	70.70.69	.70	44.	186	ms	43.	348	ms	43.	456 588	ms			
02	71.71.70	.71	43.	100	ms	41.	000	ms	40.	840	ms			
14567898111111111111112122234567898123345678981123445678981234567898585858585858585858585858585858585858	72.72.71	.72 .36.	40.	490	ms 33	38. 987	106	ms 28.		091	ms			
5	72.72.71 3.3.3.1 3.3.3.3	24		ms ms	23	418	ms ms	220	.771	ms				
10	otoresour	ceri	lar	for	pele									

Internet in a Box Example

Candeia TECHNOLOGIES

- LANforge ICE allows users to create several virtual routers and paths between two physical ports.
- Various router protocols like OSPF, RIP, BGP and others can programmed.
- Various impairments can be created on the virtual router links and the router protocols can be tested.
- End to end performance of applications can tested.
- This allows enterprise IT engineers to model and create various real-world network scenarios and the entire internet in a box and test applications, network policies etc...before implementing them on real networks.

Traffic Shaping/Profiling on Network Links

V A X

- User can take any WANlink and use the WANpaths features to apply impairments based on very specific filters.
- For example apply a certain impairment profile for a traffic stream on vlan 1010 doing udp traffic on port 33018....simply apply the wireshark filter "vlan 1010 and udp and port 33018" and select the type of impairments and/or corruptions the user wishes to apply.
- Several such wanpaths can be created and this feature can be used to test how traffic shaping/policing rules are effecting applications.

Tauran Tah	ording 1	ear <u>o</u> n	Info Plugins			100		1	-				100	
			C	hamber ⊻iew	(Sto	p All		Restar	t Manag	ger		Befr	e
VoiP/RTP Er	dps Fi	le-10 (Seneric Te	st Group F	Resource Mgr	DUT	Pro	files	Traffic-Pr	ofiles	Alerts	Warr	nings +	
Status	Po	rt Mgr	Layer-	3 L3	Endps	Laye	r 4-7		Armag	eddon		WanL	inks	6
	*/ 10	- 500			Go				Displa	w Co	este	Modify	Delet	6
Vie	N D	- 500			Go Go Go Go Go Go Go Go Go Go Go Go Go G	for Sele	cted 1	est M	Displa anager—	iy Cr	gate	Modify	Delet	e
Name	v O		Rx Drop % A	Cro	ss Connects	for Sele Rpt Timer	cted T EID	est M	anager—	iy Cr			Delet	e
Name		State	Rx Drop % A	Cro Rx Drop % B	Avg RTT	Rpt Timer	EID		anager—	idpoints	; (A ⇔ B)	Delet	e
	Туре	State		Cro Rx Drop % B	Avg RTT	Rpt Timer 1000	EID	udp-	anager— En	idpoints => udp·	: (A ↔ B -1009-B)	Delet	e
Name udp-1009	Type	State Run Run		Rx Drop % B	Avg RTT 20 22 22	Rpt Timer 1000 1000	EID 1.58 2.71 2.72	udp- tcp-1	enager En 1009-A <=	dpoints => udp- :> tcp-1	: (A ↔ B -1009-B 009-B)	Delet	e

Create/Modify WanPath for Endpoint: 100Mbps-wan-A

			Create/Mod	ity wanPath for E	napoint: 100mbps	s-wan-A	008
WanLink Display: 100Mbps-wa	n Manager: localhost		Display	Clear Counters	Apply	OK Cancel	
Endpoint: 100Mbps-wan-A (1.1.2.113)	Endpoint: 100Mbps-wan-i	Name:	wp-a		Backlog Buffer:	AUTO	
WAN Speed: 100 Mbps TX Rate: 47.051 Mbps	WAN Speed: 100 Mbps TX Rate:	PCAP Filter: Source IP/MAC:	Van 1010 and u	dp and port 33018	Source Mask:	0.0.0.0	
RX Rate: 49.139 Mbps TX Pkts: 723332 Dropped: 27742 Duplicated: 0	RX Rate: 48.779 Mbps TX Pkts: Dropped: 27584 Duplicate	Dest IP/MAC:	0.0.0.0		Dest Mask:	0.0.0.0	
Reordered: 0 TX Failed: 0	Reordered: 0 TX Failed:		100M (100 Mbps)		Delay	high (100 ms)	-
4.295 Obpa 15.777 Nbps -		Jitter	zero (O us)		Drop-Freq:	20% (20%)	•
65.526 Khps -		Min Drop Burst: Min Reorder Amount	t: 1		Max Drop Burst: Max Reorder Amour	nt: 20	1
256 bps == 0 bps =		Reorder-Freq:	zero (0%)		Dup-Freq:	zero (0%)	
Rx Bytes Dropped [Record-Dropped]	Rx Bytes Dropped [Record-Dropped]	Jitter-Freq:	zero (O%)	-	Test Manager:		-
75 Mbps -		🔲 ICEcap Replay	Replay File:				- Dir
50 Mbps -				🗹 Loop Replay	Replay Latency	Replay Loss	
1.552 MB 0 bps Baddog Rx Throughput [Recorded]	Rx Throughput [Recorded]		Same As WanLink nverse Match	Replay Dup Drop-Xth	Replay Bandwidt	h 🗹 Use Pcap Filt	er
	and the second		tion #0-		otion #1		ntion #2
Name Tx Rate Disabled I IF Filter Pattern	Tx Pkts Rx Pkts TX Bytes	Rate:	0	Rate:	0	Rate:	0
wp-a 100 M 🔄 🔄 Pcap: vlan 1010 and udp and	port 33018 109419 1371 166098	Corruption:	Write Byte 🔽	Corruption:	Random Write 💌	Corruption:	Random Write 👻
		Byte-to-Write:	0	Byte-to-Write:	0	Byte-to-Write:	0
▲		Min Offset:	0	Min Offset:	0	Min Offset:	0
-WanPaths for WanLink End	point: 100Mbps-wan-B	Max Offset:		Max Offset:		Max Offset:	
Name Tx Rate Disabled I IF Filter Pattern	Tx Pkts Rx Pkts TX Bytes		Do Checksum	Chain-to-Next	Do Checksum		
wp-b 100 M Pcap: vian 1010 and udp and	port 33017 110282 1380 167408	Rate:	0	Bate:	otion #4	Bate:	otion #5
		Comunition	Pandam Write	Comunition	Pandom Weito	Comunitien	Pandam Write

Record and Replay Network Impairments

- Record impairments (latency, loss, packet duplication, Jitter etc...) on real networks using ICEcap
- > The impairments are saved in the form of XML file.
- One or more XML files can then be loaded into WAN emulation WANLink to replay the impairments.
- The user is allowed to replay one or more or all the components of the recorded impairments and allowed to loop replay those impairments.

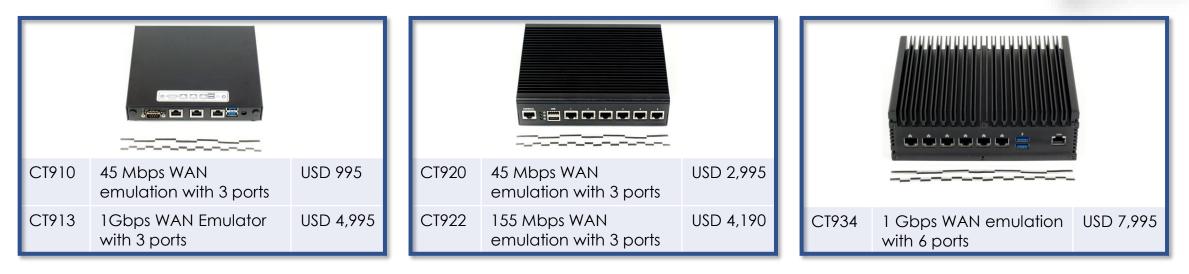
	LANforge-ICEcap Version	n(1.0) (as supe	ruser) 📀 🔿 🔅
Client UDP Se	rver Application Info		
Remote Host:	192.168.100.118	Remote Port:	10007
Interval:	Default 🗸	Packet Size:	Default 💌
Count:	Infinite 💌	UDP Ping	🗹 Update Graph Range
-	Key	1	Stats
Received: Dropped: Duplicate: Reordered:	- Victor	Dropped: Duplicated: Reordered: TX Pkts:	0 (0.0%) 0 (0.0%) 0 (0.0%) 29
500 400	piicate: 🗳	Avg Latency	(ms): 2

<!DOCTYPE NETWOR_X SYSTEM "NetworX_1_1.dtd"> <NETWOR_X CREATED_ON_DATE="Wed Mar 07 15:46:20 PST 2018" CREATED_ON_HOST_NAME="192.168.100.197" NETWOR_X_VERSION="1.1" NAME="NETWORX_NAME" ID="NETWORX_ID"> <NET_OBJECTS/>

<LINKS/> - <RECORDING_DATA>

- <DATA_BLOCK NAME="ICEcap_Imported_Data">

<RECORDING_DETAILS DESCRIPTION="" IMPORTED_INTERVAL_LENGTH="0" IMPORTED_INTERVAL_START_TIME="1520466380609" CREATE_DATE="Wed Mar 07 15:46:20 PST 2018" ORIGIN_VERSION="1.0-beta" ORIGIN="ICEcap" PAYLOAD_SIZE="56" DESTINATION_IP="www.google.com/172.217.12.228:0" SOURCE_IP="192.168.100.197:0" RECORDING_HOST="" RECORDING_NAME="" SAMPLE_INTERVAL="1000"/> - <LATENCY_AND_LOSS_DATA SAMPLE_INTERVAL="1000">


<LATENCY_AND_LOSS_DATA S <LAT>101</LAT>

<?xml version="1.0" encoding="UTF-8"?>

<ts>0</ts> <los>10</los> <dup>1</dup>	RU-ID:	WanLink Information		Test Manager:	WanLink Information default_tm		-
<lat>103</lat> <ts>1</ts> <los>5</los>		Endpoint A ICEcap Replay	Endpoint 8		Endpoint A	Endpoint B	
<dup>7</dup> <lat>101</lat> <ts>2</ts>	Replay File:	/home/lanforge/myiceca Dir	p.xml Dir	Dump File:	Force Packet Gap	Force Packet Gap	,
<los>7</los> <dup>8</dup>		Loop Replay	Loop Replay	_	Drop-Xth	Drop-Xth	
<lat>107</lat> <ts>3</ts> <los>5</los>		 Replay Latency Replay Loss 	Replay Latency	QDisc:	FIFO	FIFO	
<dup>6</dup> <lat>101</lat>		Replay Dup	Replay Dup	Max Lateness: Backlog Buffer:	OTUA		-
<ts>4</ts> <los>8</los>							

LANforge ICE – Product Models

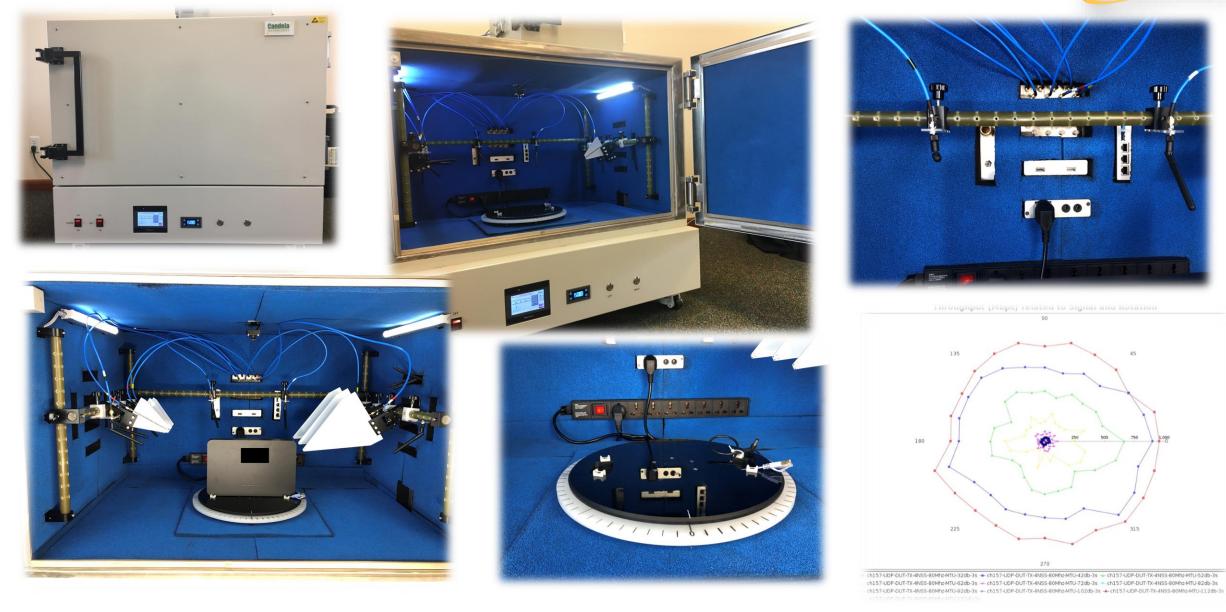
CT962	155 Mbps WAN emulation with 8 ports	USD 5,120
CT963	1Gbps with 8 ports copper or 4 ports fiber	USD 7,995
CT964	1Gbps with(10+ secs latency) 8 ports copper or 4 ports fiber	USD 9,290
CT966	10Gbps WAN Emulator, fiber and copper	USD 12,995

CT970-10	Supports 10 unique WAN Emulators	USD 12,000
CT963-16	Supports 16 unique WAN Emulators	USD 17,000
CT964-24	Supports 24 unique WAN Emulators	USD 24,995
CT966-48	Supports 48 unique WAN Emulators	USD 29,460

LANforge System Capabilities

WIFI TEST HARDWARE

WIFI TEST ACCESSORIES


Candela RF Enclosures

Chamber with Turntable

