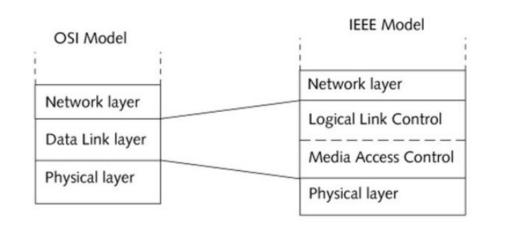


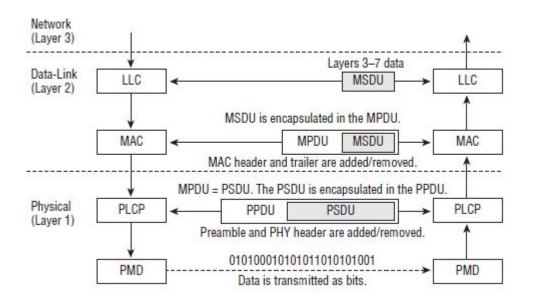
Wi-Fi Technology Fundamentals

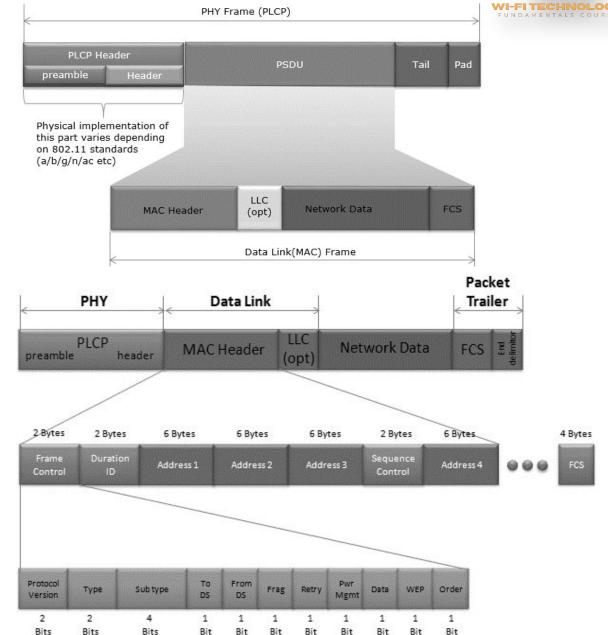

Module-3 WLAN MAC Layer Session-3b

MAC Headers, Framing and Key Functions

Last Session Recap.....




Module-3 WLAN MAC Layer Session-3a Basic AP Management and Control Functions


- Beaconing, Scanning
- ✔ Basic client connection
- Various Management and Control Functions

PHY to MAC Header

802.11 Frame Format

	me ronnat			MAC F	rame Fo	rmat				
			MAC H	eader	Frame B	ody	FCS			
			Varia	ible	Variat	ole	4 octets			
/	/									
Frame Contro	28	ation/	Address 1	Address 2	s Add		Sequence Control	Address 4	QoS Control	HT Control
2 octets	; 20	octets	6 octets	6 octets	6 oct	tets	2 octets	6 octets	2 octets	4 octets
Protocol Version	Туре	Subtype	To DS	From DS	More Frag	Retry	Power Mgmt.	More Data	Protected Frame	+HTC/ Order
2 bits	2 bits	4 bits	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit

Mandatory fields for all frame types

Fields that are mandatory based on Type and Subtype of the frame

Fields that are optionally present based on flags in the frame control field

802.11 Frame Format

WI-FI TECHNOLOGY

•Frame Control(FC) – It is 2 bytes long field which defines type of frame and some control information. Various fields present in FC are:

- Version: Current Protocol Version
- **Type:** Function of frame i.e management(00), control(01) or data(10).
- Subtype: It Indicates subtype such as Beacons, Probe Request etc..
- To DS: It is a 1 bit long field which when set indicates that destination frame is for DS(distribution system).
- From DS: It is a 1 bit long field which when set indicates frame coming from DS.
- More frag (More fragments): when set to 1 means frame is followed by other fragments.
- **Retry:** It is 1-bit long field, if the current frame is a retransmission of an earlier frame, this bit is set to 1.
- Power Mgmt.: Set to 1 the field indicates that the station goes into power-save mode. If the field is set to 0, the station stays active.
- More data: It is 1-bit long field that is used to indicate receiver that a sender has more data to send than the current frame.
- WEP: It is 1 bit long field which indicates that the standard security mechanism of 802.11 is applied.
- Order: It is 1 bit long field, if this bit is set to 1 the received frames must be processed in strict order.

Frame control	Duration /ID	Address 1	Addres 2	ss Ac	ldress 3	sc	Address 4	Data	CRC	
2 bytes	2 bytes	6 bytes	6 bytes	6	bytes	2 bytes	6 bytes	0 - 2312 bytes	4 bytes	
Protocol version	I IVDE I	Subtype	To DS	From DS	Mor Frag	IRe	try Powe Mgm		WEP	Order
2 bits	2 bits	4 bits	1 bit	1 bit	1 bit	1	bit 1 bit	1 bit	1 bit	1 bit

•Duration/ID – It is 4 bytes long field which contains the value indicating the period of time in which the medium is occupied(in µs).

•Address 1 to 4 – These are 6 bytes long fields which contain standard IEEE 802 MAC addresses (48 bit each).

•SC (Sequence control) – It is 16 bits long field which consists of 2 sub-fields, i.e., Sequence number (12 bits) and Fragment number (4 bits).

•Data – It is a variable length field which contain information specific to individual frames which is transferred transparently from a sender to the receiver(s).

•CRC (Cyclic redundancy check) – It is 4 bytes long field which contains a 32 bit CRC error detection sequence to ensure error free frame.

The Address Fields

Bits: 2	2	4	1	1	1	1	1	1	1	1
Protocol Version	Туре	Subtype	To DS	From DS	More Frag	Retry	Power Mgmt	More Data	Prot. Frame	Order
				1	Frame (Control fie	eld			
Function		ToDS	From	DS .	dress 1 ceiver)	Addre (trans	ss 2 mitter) '	Address	3 Addı	ress 4
IBSS		0	0	D	A	SA		BSSID	Not	used
To AP (in	fra.)	1	0	B	SSID	SA		DA	Not	used
From AP	(infra.)) 0	1	D	A	BSSI	D	SA	Not	used
WDS (brid	dge)	1	1	R	Ą	TA		DA	SA	

SA

Client

ΤA

AP


• SA = MAC address of the original sender (wired or wireless)

DA = MAC address of the final destination (wired or wireless)

TA = MAC address of the transmitting 802.11 radio

RA = MAC address of the receiving 802.11 radio

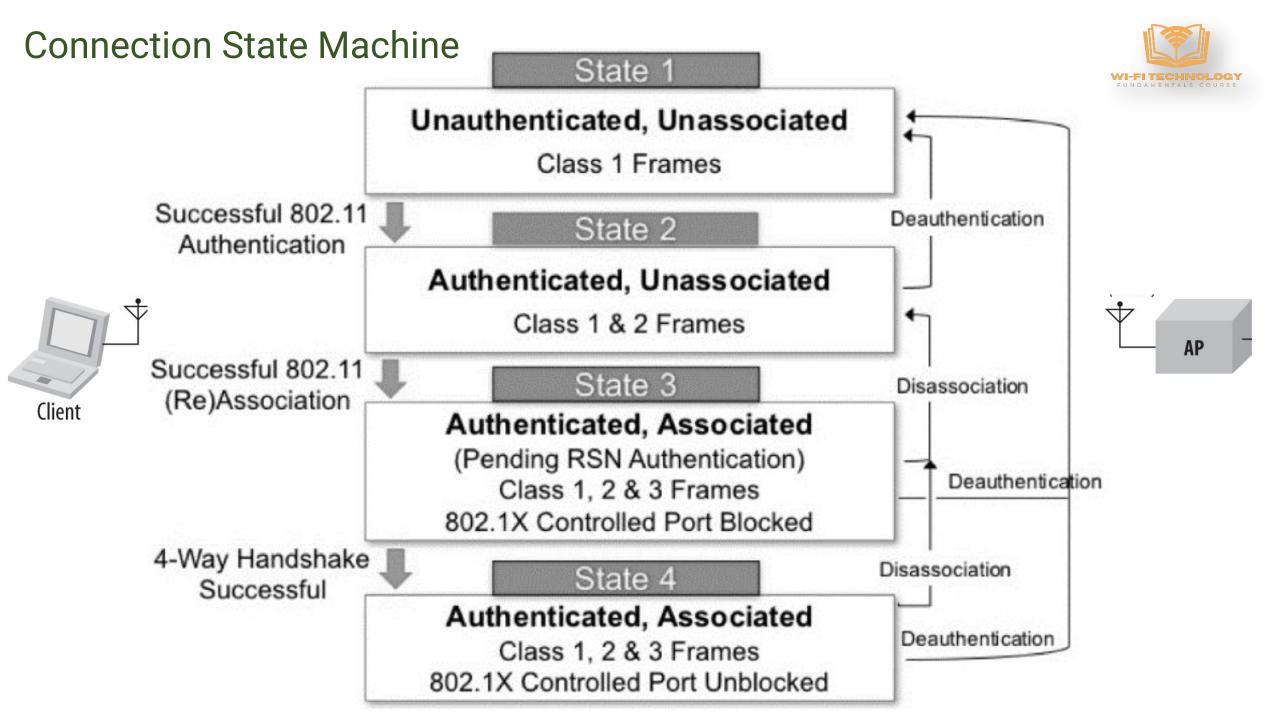
BSSID = L2 identifier of the basic service set (BSS)

Server

Frame Type/Subtypes

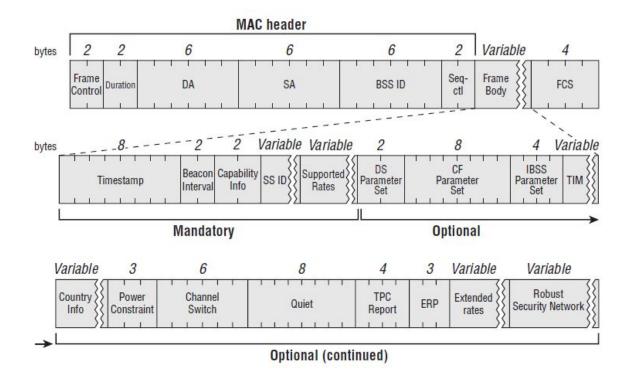
MANAGEMENT (00)	CONTROL (01)	DATA (10)
 Beacon Probe Request / Response Authentication Deauthentication Association Request / Response Reassociation Request / Response Disassociation ATIM 	 Block ACK Request Block ACK PS-Poll RTS CTS ACK 	 Data Data + CF-ACK Data + CF-Poll Data + CF-ACK + CF-Poll Null (no data) CF-ACK (no data) CF-Poll (no data) CF-ACK + CF-Poll (no data) QoS Data
 Block ACK Request / Response Delete Block ACK ADDTS Request / Response Delete TS DLS Request / Response /Teardown TPC Request / Report Channel Switch Announcement. 		 QoS Data + CF-ACK QoS Data + CF-Poll QoS Data + CF-ACK + CF-Poll QoS Null (no data) Reserved QoS CF-Poll (no data) QoS CF-ACK + CF-Poll (no data)

Frame Type/Subtypes



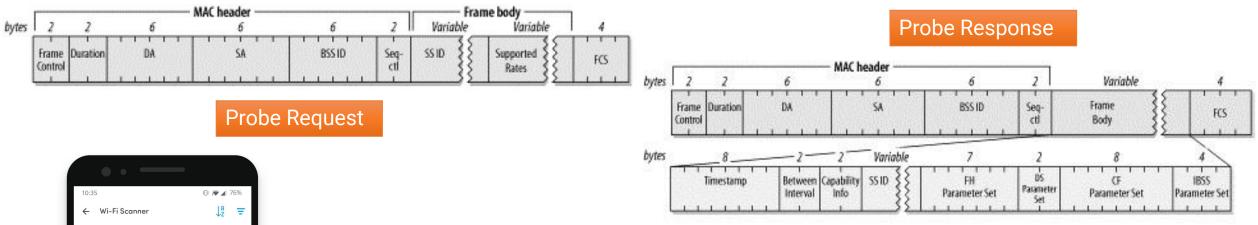
Туре	Type Description	Sub Type	Sub Type Description				FUNDAMENTALS COURS
00	Management	0000	Association Request				
00	Management	0001	Association Response				
00	Management	0010	Reassociation Request	Туре	Type Description	Sub Type	Sub Type Description
00	Management	0011	Reassociation Response	10	Data	0000	Data
00	Management	0100	Probe Request	10	Data	0001	Reserved
00	Management	0101	Probe Response	10	Data	0010	Reserved
00	Management	0110	Timing Advertisement	10	Data	0011	Reserved
00	Management	0111	Reserved	10	Data	0100	Null (no data)
00	Management	1000	Beacon	10	Data	0101	Reserved
00	Management	1001	ATIM	10	Data	0110	Reserved
00	Management	1010	Dissociation	10	Data	0111	Reserved
00	Management	1011	Authentication	10	Data	1000	QoS Data
00	Management	1100	Deauthentication	10	Data	1001	Data + CF ACK
00	Management	1101	Action	10	Data	1010	Data + CF Poll
00	Management	1110	Action No Ack (NACK)	10	Data	1011	QoS Data + CF ACK + CF Poll
00	Management	1111	Reserved	10	Data	1100	QoS Null(No Data)
01	Control	0000-0010	Reserved	10	Data	1101	Reserved
01	Control	0011	TACK	10	Data	1110	QoS CF-Poll (no Data)
01	Control	0100	BeamForming Report Poll	10	Data	1111	QoS CF ACK + CF Poll(no Data)
01	Control	0101	VHT/HE NDP Announcement	11	Extension	0000	DMG Beacon
01	Control	0110	Control Frame Extension	11	Extension	0001	S1G Beacon
01	Control	0111	Control Wrapper	11	Extension	0010-1111	Reserved
01	Control	1000	Block Ack Request (BAR)				
01	Control	1001	Block Ack (BA)				
01	Control	1010	PS-Poll				
01	Control	1011	RTS				
01	Control	1100	CTS				
01	Control	1101	ACK				
01	Control	1110	CF End				
01	Control	1111	CF End + CF ACK				

Management and Control Frames



Beacon Frame

Beacon frame is one of the management frames in IEEE 802.11 based WLANs. It contains all the information about the network. Beacon frames are transmitted periodically, they serve to announce the presence of a wireless LAN and to synchronize the members of the service set


- Fixed Parameters
 - · Beacon interval -This represents the amount of time between beacon transmissions
 - Timestamp The clock information of the AP that the stations can use to synchronize with the APs clock
 - Capabilities Information Provides information about the various basic capabilities of the AP
- Tagged Parameters
 - Service Set Identifier (SSID) is the name of the network
 - Supported Rates Info about the various MCS rates supported by the AP.
 - DS Parameter Set Provides information about channel used by AP
 - · Country Code which country regulations the AP is following
 - Traffic Indication Map Indicates which stations have traffic buffered
 - BSS Load Element Provide info about the APs medium utilization
 - TPC Shows information about the transmit power of the AP
 - RSN IE provides information about supported security mechanisms
 - EDCA parameter set provide information about the various medium access parameters that are used to implement on the air QoS
 - HT information/capabilities Indicated details about 802.11n capabilities of the AP
 - VHT information/capabilities Indicated details about 802.11ac capabilities of the AP
 - HE information/capabilities Indicated details about 802.11ax capabilities of the AP
 - EHT information/capabilities Indicated details about 802.11be capabilities of the AP
 - Vendor Specific Tags More vendor specific information.

Probe Request/Response Frames

Access points Channels TP-LINK 5B5A26 7C:8B:CA:5B:5A:26 WPA/WPA2 2.4 GHz @ 40 MHz-W- CH 11 -42 dBm === Wind3 HUB-393DB2 B8:D5:26:39:3D:B2 WPA2 🔒 2.4 GHz 🛞 20 MHz 👭 CH 8 🔋 -64 dBm 🏣 TIM-98793518 RPT 2C:4D:54:71:0E:D4 2.4 GHz @ 20 MHz ₩ CH 1 1 -70 dBm WPA2 🔒 WOW FI - FASTWEB 12:13:31:B7:49:74 WPA2 🔒 2.4 GHz 🙊 20 MHz 👭 CH 1 🔋 –72 dBm 🔝 FASTWEB-B74975

A probe request frame is transmitted from a wireless station during active scanning. Access points within reach respond by sending probe response frames.

Probe request frames contain the following information:

- SSID (0 ... 32 bytes), alphanumeric name
- Supported bit rates and other capabilities of the Station.

This is used by APs to see if the station can be permitted to join the network.

Probe response frames come from the AP to the station and contain the same information as in the beacons

Authentication Frame

Open System authentication

There are two information elements in the body of the authentication request.

Authentication Algorithm Identification is set to 0 to indicate 1. open-system method.

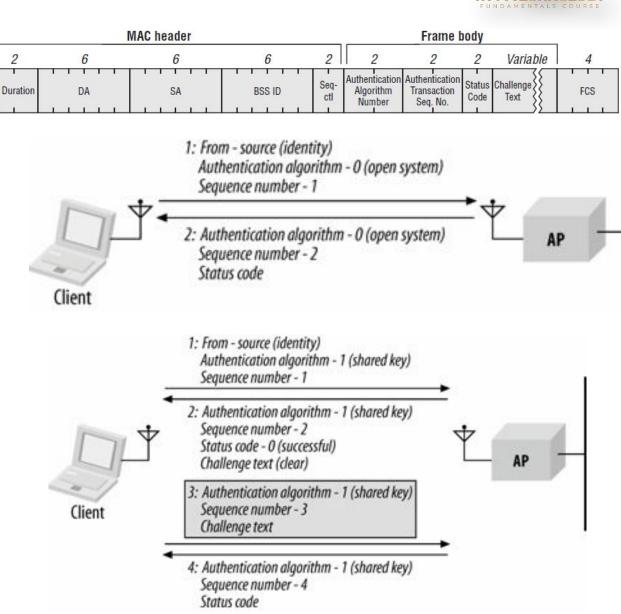
2

Frame

Control

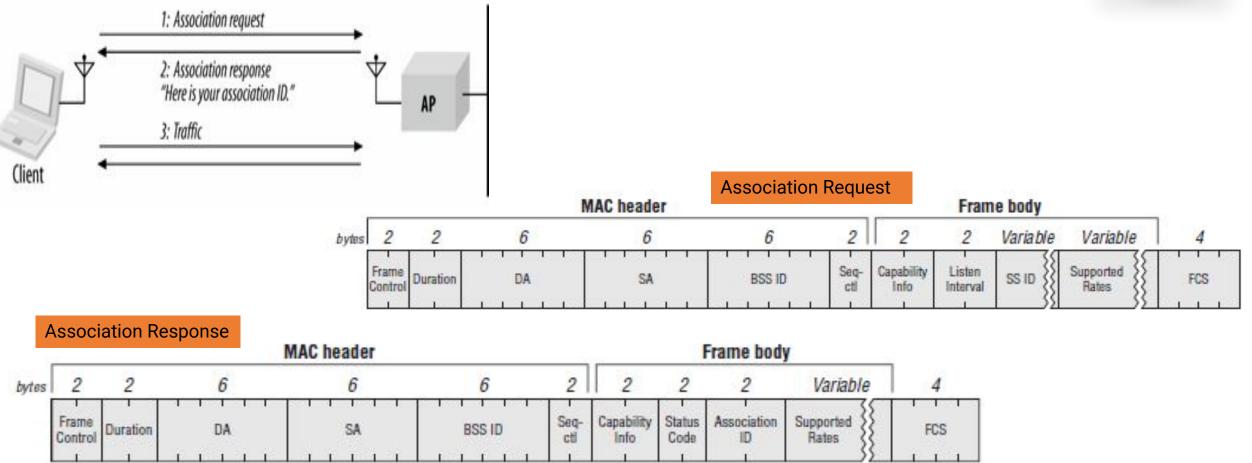
bvtes

2


Authentication Transaction Sequence number is set to 1 to indicate first frame in the sequence.

The access point then processes the authentication request and returns its response. Three information elements are present

- Authentication Algorithm Identification field is set to 0 to 1. indicate open-system authentication.
- Sequence Number is set to 2 to indicate response 2.
- Status Code indicates the outcome of the authentication 3. request.


Shared key authentication

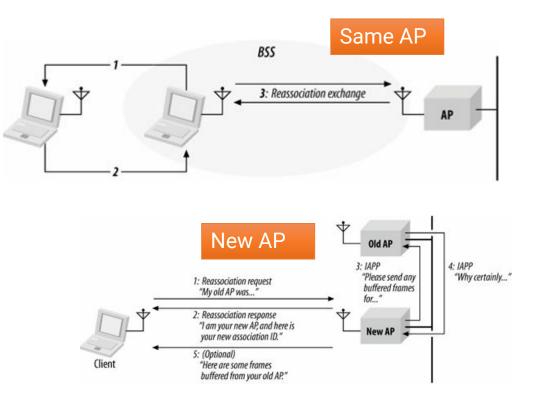
- Client sends Authentication request with Auth Algorithm set to 1 to indicate share key authentication
- AP responds with a text
- Station encrypts the text and sends it back
- AP decrypts and returns an authentication management frame

Association Frames

- 1. Once a mobile station has authenticated to an access point, it can issue an Association Request frame.
- 2. Stations that have not yet authenticated receive a Deauthentication frame from the access point in response.
- 3. One Association request is received, the access point then processes the association request. AP can chose to reject association.
- 4. When the association request is granted, the access point responds with a status code of 0 (successful) and the Association ID (AID).
- 5. The AID is a numerical identifier used to logically identify the mobile station to which buffered frames need to be delivered.

Re-association Frames

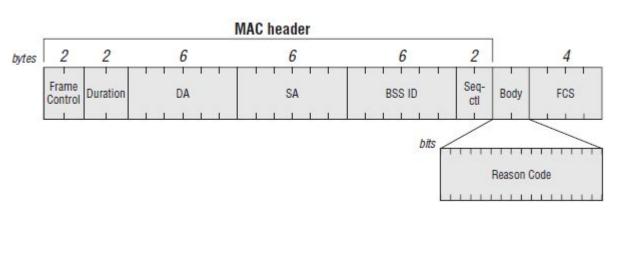
Reassociation is the process of moving an association from an old access point to a new one. Over the air, it is almost the same as an association; on the backbone network, however, access points may interact with each other to move frames. When a station moves from the coverage area of one access point to another, it uses the reassociation process to inform the 802.11 network of its new location


				Reassociat	lion	Fram	ne ⊦o	rmat			
-		N	AC header					Fram	ne body		
15 2	2	6	6	6	2	2	2	6	Variable	Variable	4
Fram Contr	le Duration	DA	SA	BSS ID	Seq- cti	Capability Info	Listen Interval	Current AP Address	SS ID	Supported Rates	FCS

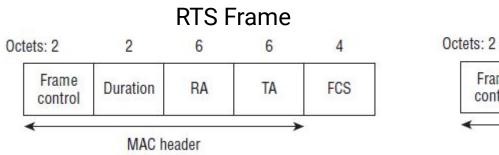
1. The mobile station issues a Reassociation Request to the new access point.

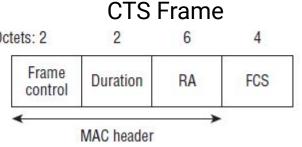
2. The access point processes the Reassociation Request:

- 1. If the Reassociation Request is granted, the access point responds with a Status Code of 0 (successful) and the AID.
- 2. Unsuccessful Reassociation Requests include just a Status Code, and the procedure ends.
- 3. The new access point contacts the old access point to finish the reassociation procedure. This communication is part of the IAPP.
- 4. The old access point sends any buffered frames for the mobile station to the new access point. 802.11 does not specify the communication between access points. At the conclusion of the buffered frame transfer:
 - 1. Any frames buffered at the old access point are transferred to the new access point so they can be delivered to the mobile station.
 - 2. The old access point terminates its association with the mobile station. Mobile stations are allowed to associate with only one access point at any given time.


Reassociation is also used to rejoin a network if the station leaves the coverage area and returns later to the same access point.

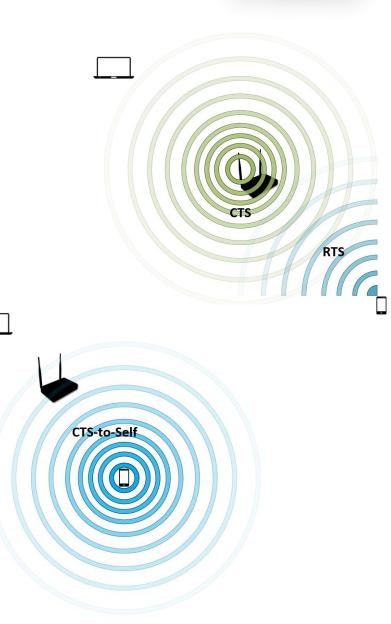
De-Authentication and Dis-association Frames


- Disassociate and Deauthenticate frames are management frames.
- Clients may disassociate prior to powering off.
- APs may disassociate clients for various reasons including failure to properly authenticate, for load balancing or timeout reasons, entering a state of maintenance, etc.
- When a station is disassociated it still maintains its authentication. This makes it easier for the client to associate again in the future.
- Deauthentication frames are used to reset the state machine back to state 1 for an associated client.
- The authentication process takes place prior to association therefor, if a station is deauthenticated, it is also disassociated.
- The body of Disassociate and Deauthentication frames includes a **reason code** explaining why the frame was sent.

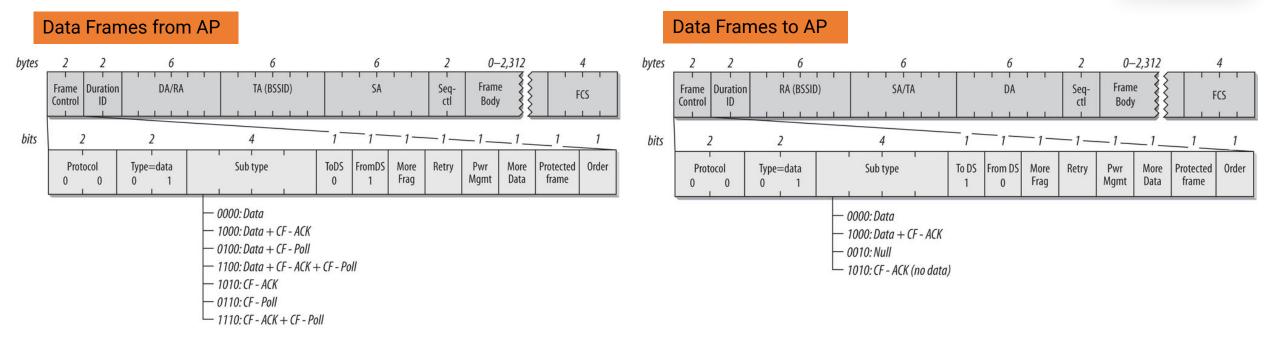


Code	802.11 definition	Explanation
0	Reserved	Normal working operation
1	Unspecified reason	We don't know what's wrong
2	Previous authentication no longer valid	Client has associated but is not authorised
3	station is leaving (or has left) IBSS or ESS	The access point went offline, deauthenticating the client.
4	Disassociated due to inactivity	Client session timeout exceeded.
5	Disassociated because AP is unable to handle all currently associated stations	The access point is busy, performing load balancing, for example.
6	Class 2 frame received from nonauthenticated station	Client attempted to transfer data before it was authenticated.
7	Class 3 frame received from nonassociated station	Client attempted to transfer data before it was associated.
8	Disassociated because sending station is leaving (or has left) BSS	Operating System moved the client to another access point using non-aggressive load balancing.
9	Station requesting (re)association is not authenticated with responding station	Client not authorized yet, still attempting to associate with an access poin
10	Disassociated because the information in the Power Capability element is unacceptable	

RTS/CTS Frames

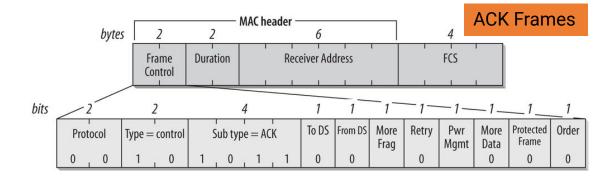


- Request to send (RTS) and clear to send (CTS) frames are used before each data frame transmission and are key to the virtual carrier sense process.
- When a station transmits a frame it will include a duration field. Stations nearby synchronize with this transmission, decode the frame, and update their NAV timers.
- A station will send an RTS frame, requesting to reserve the medium for the amount of time listed in the duration, but stations far away may not be able to decode the frame and not update their NAV timer.
- To resolve this issue, the CTS frame is used.
- CTS is a response from the AP, confirming medium reservation, which can be heard by all stations in the BSS.


CTS-to-Self

- CTS-to-Self is a simpler method of performing NAV distribution.
- It requires less overhead because only one frame is sent but risks collisions due to clients farther away potentially not being able to decode the CTA frame and set their NAV timers.
- The duration in the CTS-to-Self frame is the total time for data, ACK, and the interframe space
- CTS-to-Self is normally sent by the AP.

Data Frames and Acknowledgements



Data frames are used to transfer information or trigger an event. Data frames are the only type of frames that transfer actual useful payload.

Not all data frames contain a payload, some are "null data frames" and only contain a header and trailer.

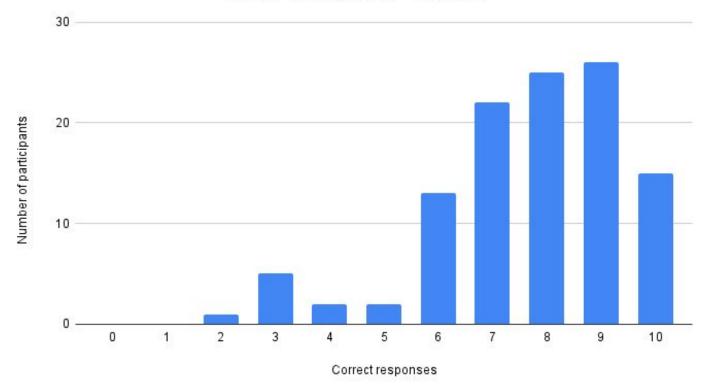
ACK frames create a delivery verification method; they are expected after the transmission of data frames to confirm receipt of the frame. If the CRC check fails, the receiver will not send an ACK. If the sender does not receive an ACK, it will retransmit the frame.

802.11 Framing in Detail https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html

802.11 Wireless Networks: The Definitive Guide, Second Edition – Book Summary <u>https://flylib.com/books/en/2.519.1/</u>

Management Frame Types <u>https://cciew2.rssing.com/chan-6090950/all_p14.html</u>

802.11 Frame Types and Formats <u>https://howiwifi.com/2020/07/13/802-11-frame-types-and-formats/</u>



INDIA

Number of participants - 111

