

Wi-Fi Technology Fundamentals

Module-5

Advanced Features and Standard Extensions

Session-5d

WiFi7 New Features – 320MHz, 4K QAM, MLO, Multi-RU, Preamble Puncturing

Last Session Recap.....

Module-5 Advanced Features and Standard Extensions Session-5c WiFi6e New Features

- ✓ 6GHz Channels
- ✓ Equipment/Device Classes
- ✓ Automatic Frequency Coordination
- ✓ WiFi 6E Main Use Cases
- ✓ Native WiFi6 Mode Shortened Beacons
- ✓ In-Band Scanning Methods FILS, PSC
- ✓ Out of Band Scanning RNR
- ✓ Multi-BSSID

How to Stay Connected?

Access Course Webpage

Register to Get Updates

<u>Click here: Wi-Fi Technology Fundamentals</u> <u>Course (candelatech.com)</u>

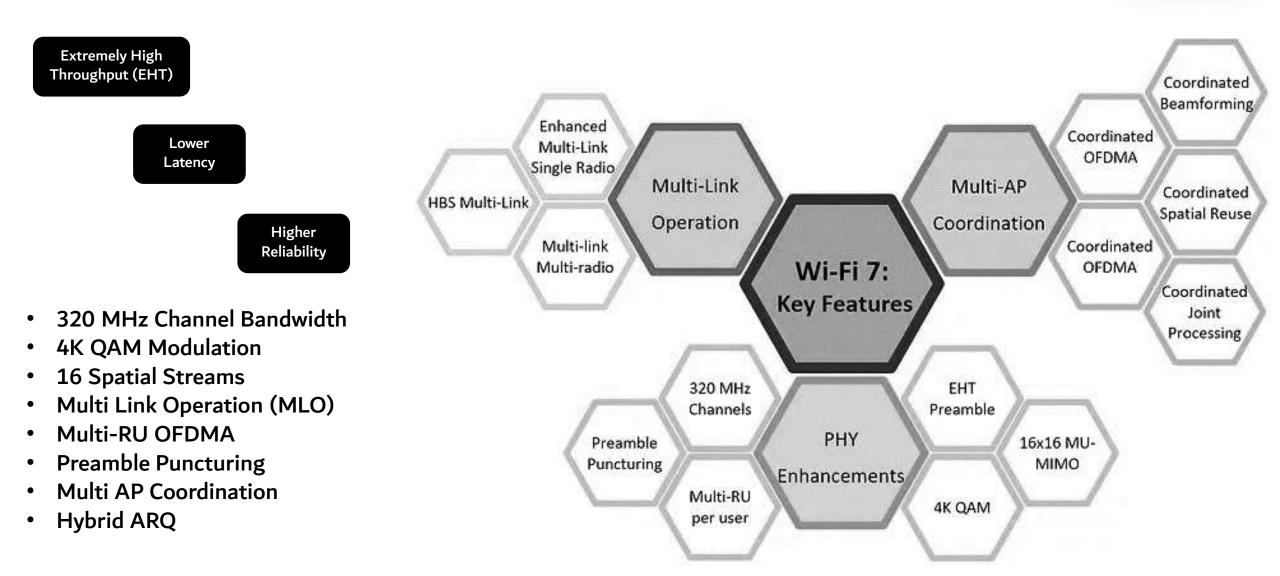
 ✓ Access course notes, slides, video recordings

Click Here: Registration (zoho.in)

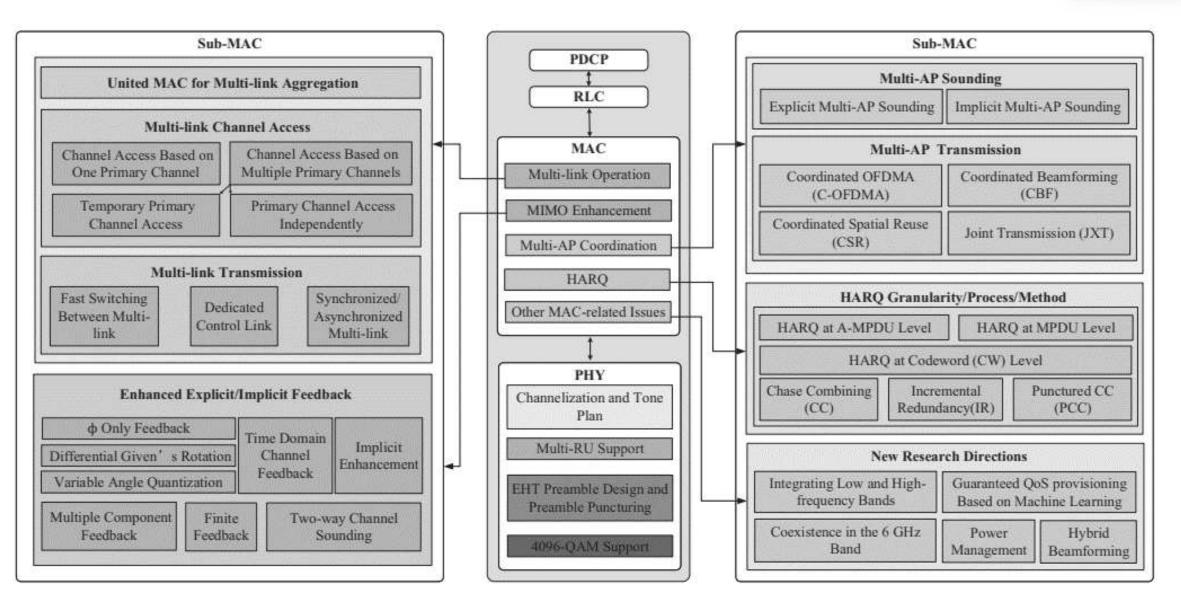
 Provide basic contact into to get calendar invites, reminders and updates about the material and sessions. Join Whatsapp Group

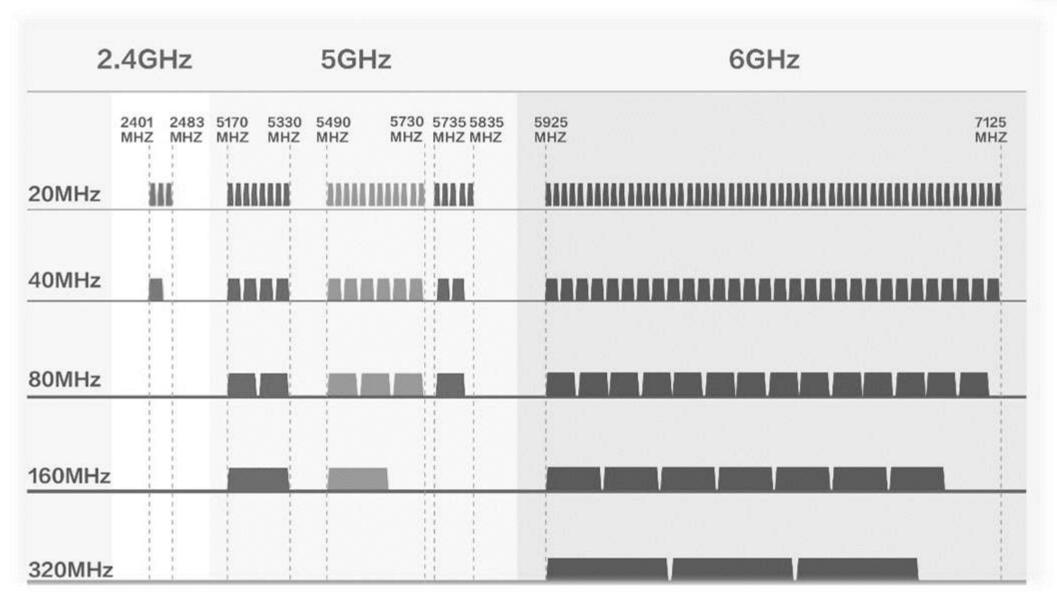
Click here: WhatsApp Group Invite

 Provide basic contact into to get whatsapp messages about calendar invites, reminders and updates about the material and sessions.

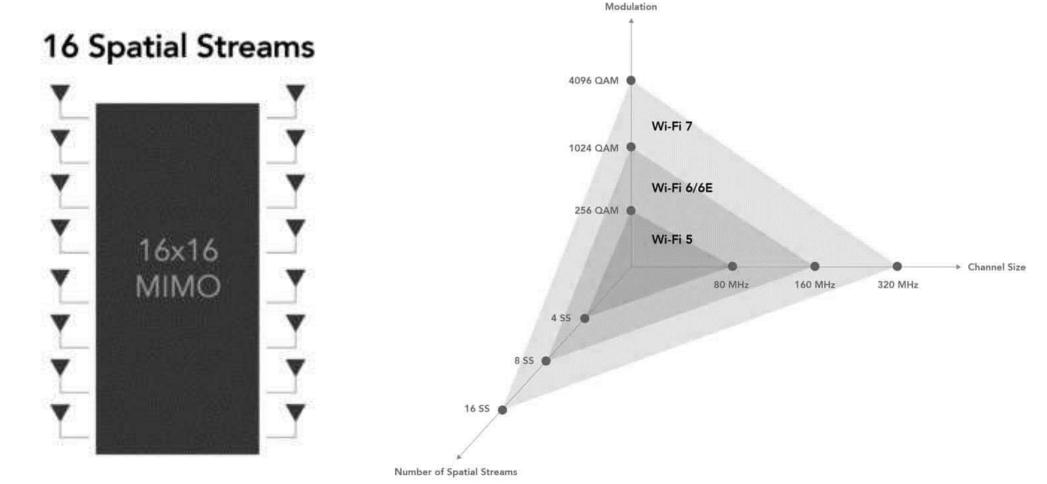

WiFi Technology Generations

	Wi-Fi 4 (IEEE 802.11n)	Wi-Fi 5 (IEEE 802.11ac)	Wi-Fi 6 (IEEE 802.11ax)	Wi-Fi 6E (IEEE 802.11ax)	Wi-Fi 7 (IEEE 802.11be)
Frequency bands operations	2.4GHz (2.402 - 2.494) 5GHz (5.030 - 5.990)	5GHz (5.030 - 5.990)	2.4GHz (2.402 - 2.494) 5GHz (5.030 - 5.990)	2.4GHz (2.402 - 2.494) 5GHz (5.030 - 5.990) 6GHz (5.925 7.125)	2.4GHz (2.402 - 2.494) 5GHz (5.030 - 5.990) 6GHz (5.925 7.125)
Maximum bandwidth per channel	2.4GHz: 40MHz 5GHz: 40MHz	2.4GHz: 40MHz 5GHz: 80MHz	2.4GHz: 40MHz 5GHz: 160MHz	2.4GHz: 40MHz 5GHz: 160MHz 6GHz: 160MHz	2.4GHz: 40MHz 5GHz: 160MHz 6GHz: 320MHz
Maximum number of non- overlapping channels	2.4GHz: 3 Channel:1,6,11	5GHz: Channels:36,52 (80MHz)	2.4GHz: 2 (40MHz) Channel:1,11 5GHz: Channel 36: 5.180 GHz to 5.340 GHz (160 MHz width) or Channel:36,52,100,116,132(8 0 MHz)	2.4GHz: 2 (40MHz) Channel:1,5,9,13 5GHz: Channel 36: 5.180 GHz to 5.340 GHz (160 MHz width) Channel 36,52,100,116,132 (80MHz) 6GHz: 7 (160MHz)	2.4GHz: Channel 1,5,9,13 (40MHz) 5GHz: 2 (160MHz) or Channel 36,149 (80MHz) 6GHz: Channel 31, 63, 95, 127, 159, 191 (320MHz)
Maximum MIMO configuration	4x4	4x4	8x8	8x8	16x16
Highest modulation	64 QAM	256 QAM	1024 QAM (1K QAM)	1024 QAM (1K QAM)	4096 QAM (4K QAM)
Maximum PHY datarate	600 Mbps	1.73 Gbps	9.6 Gbps	9.6 Gbps	46.1 Gbps
Multi user MIMO (MU- MIMO)	N/A	Downlink (Wave 2 only)	Downlink Uplink	Downlink Uplink	Downlink Uplink
Multi user OFDMA (bandwidth sharing)	N/A	N/A	Yes	Yes	Yes
Target Wake Time (TWT)	N/A	N/A	Yes	Yes	Yes (improved)
Multi Link Operation / Multi Resource Unit	N/A	N/A	N/A	N/A	Yes


802.11be (Wi-Fi7) Key Features

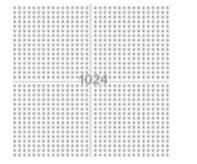

More Advanced View of what is new in 802.11be

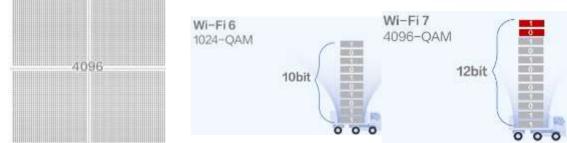
320MHz Channels



16 Spatial Streams

- WiFi7 standard allows for 16×16 MIMO, and thus doubling the maximum throughput compared to 802.11ax.
- While the theoretical maximum throughput can only be achieved between devices with the same antenna count, the number of MIMO streams for Client Stations is typically limited to 2 or 3.
- Larger spatial streams will only be practically used with Mu-MIMO.

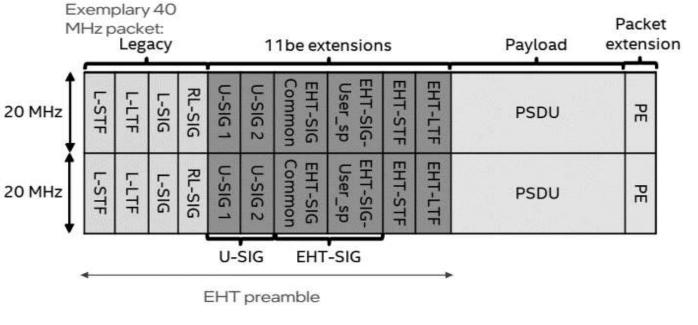



4096QAM and MCS Table for Wi-Fi7

all and ha
FUNDAMENTALS COURSE

Parameter	Wi-Fi 6	Wi-Fi 7
Max channel bandwidth	160 MHz	320 MHz (3 channels in 6 GHz)
Highest modulation order	1024-QAM	4096-QAM
Max number of spatial streams	8	16
Max data rate*	~9.6 Gbps	~46.1 Gbps

.



order												Data rate	e (Mbit/s) [[]	ii]						
lax number of	mber of 8 16		MCS	Modulation	Coding	20 MHz channels			40 MHz channels			80 MH	lz channe	ls	160 N	IHz chann	els	320 M	/Hz chann	els
patial streams			index ^[i]	type	rate	3200 ns Gl ^[iii]	1600 ns Gl	800 ns Gl	3200 ns Gl	1600 ns Gl	800 ns Gl	3200 ns Gl	1600 ns Gl	800 ns Gl	3200 ns Gl	1600 ns Gl	800 ns Gl	3200 ns Gl	1600 ns Gl	800 ns Gl
Max data rate*	~9.6 Gbps	~46.1 Gbps	0	BPSK	1/2	7	8	9	15	16	17	31	34	36	61	68	72	123	136	144
			1	QPSK	1/2	15	16	17	29	33	34	61	68	72	122	136	144	245	272	288
			2	QPSK	3/4	22	24	26	44	49	52	92	102	108	184	204	216	368	408	432
4 New MCS India			3	16-QAM	1/2	29	33	34	59	65	69	123	136	144	245	272	282	490	544	577
	4096QAM, 34 Coding		4	16-QAM	3/4	44	49	52	88	98	103	184	204	216	368	408	432	735	817	865
	- 4096QAM, 5/6 Coding - BPSK-DCM-DUP , ½ C	•	5	64-QAM	2/3	59	65	69	117	130	138	245	272	288	490	544	576	980	1089	1153
	BPSK-DCM, ½ Coding	-	6	64-QAM	3/4	66	73	77	132	146	155	276	306	324	551	613	649	1103	1225	1297
110313		Note	7	64-QAM	5/6	73	81	86	146	163	172	306	340	360	613	681	721	1225	1361	1441
DCM- Dual Carrie	r Modulation		8	256-QAM	3/4	88	98	103	176	195	207	368	408	432	735	817	865	1470	1633	1729
 Same code 	d bits are duplicated in	2 different tones for	9	256-QAM	5/6	98	108	115	195	217	229	408	453	480	817	907	961	1633	1815	1922
	• •	arios and low data rate	10	1024-QAM	3/4	110	122	129	219	244	258	459	510	540	919	1021	1081	1838	2042	2162
	ons of IOT devices		11	1024-QAM	5/6	122	135	143	244	271	287	510	567	600	1021	1134	1201	2042	2269	2402
DCM- DUP			12	4096-QAM	3/4	131	146	155	263	293	310	551	613	649	1103	1225	1297	2205	2450	2594
		plicated across multiple	13	4096-QAM	5/6	146	163	172	293	325	344	613	681	721	1225	1361	1441	2450	2722	2882
reliability	channel for even more r	redundancy and	14	BPSK- DCM-DUP	1/2							7	8	9	15	17	18	31	34	36
			15	BPSK-DCM	1/2	4	4	4	7	8	9	15	17	18	31	34	36	61	68	72

PHY Headers Improvements (U-SIG/EHT-SIG)

- Every new standard extensions requires backward compatibility in the preamble for accurate signal detection.
- L-SIG fields are used for backward compatibility
- Wi-Fi7 introduces the concept of forward compatibility using the new Universal Signal (U-SIG) field.
- U-SIG consists of version independent fields such as BW, UL/DL TXOP Duration etc..
- U-SIG contains PHY version identifier starting for EHT which simplifies auto detection

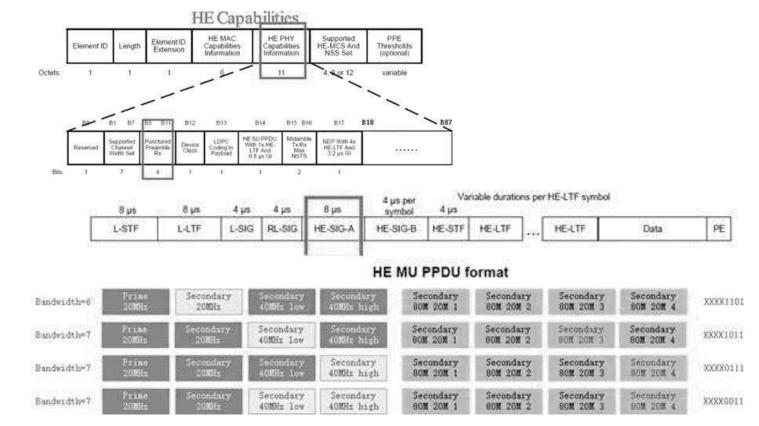
U-SIG field of an EHT MU PPDU

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
rt 1	V	ersior	n ¹⁾	Bar	ndwi	dth 11	UL" DL			BSS	color				ii Ki		TXOF				2	D	isrega	ard		V 1)
art 2	Ty	pe	V^{η}	Pun	cture	d cha	annel	info	$V^{(t)}$	М	cs	#	EHT-S	SIG s	ymbo	ls		CI	RC			1	Γ,	ail		
Tart 2		1		nese f		-		-	_			п		10.3	, inde	1.	5			<u> </u>		i –		1	1	_

Preamble Puncturing

- In the past wider channels could not be used unless the entire channel was free.
- With wider channels enabled, data would only be sent on the primary 20MHz if any of the non-primary 20MHz channels making up a wider channel were busy.
- With preamble puncturing, the busy channels can be blocked or punctured from the wider channel allowing radios to leverage the clear channel blocks across a wider channel width.
- Preamble puncturing makes the use of wider channels more attractive with greater potential for realizing performance benefits from enabling wider channels.
- This technique can also used for DFS/AFC compliance

Two Parts of HE-SIG-A	Bit	Field	Number of bits	Description
HE-SIG-A1	B0	UL/DL	L	Indicates whether the PPDU is sent UL or DL: Set to 0 for DL, TDLS, mesh and IBSS Set to 1 for UL NOTE—The TDLS peer can identify the TDLS frame by To DS and From DS fields in the MAC header of the MPDU.
	B15-B17	Bandwidth	3	 Set to 0 for 20 MHz. Set to 1 for 40 MHz. Set to 2 for 80 MHz non-preamble puncturing mode. Set to 3 for 160 MHz and 80+80 MHz non-preamble puncturing mode. If the SIGB Compression field is 0: Set to 4 for preamble puncturing in 80 MHz, where in the preamble only the secondary 20 MHz is punctured. Set to 5 for preamble puncturing in 80 MHz, where in the preamble only one of the two 20 MHz subchannels in secondary 40 MHz is punctured. Set to 6 for preamble puncturing in 160 MHz or 80+80 MHz, where in the preamble only 0 MHz is punctured. Set to 6 for preamble puncturing in 160 MHz or 80+80 MHz, where in the primary 80 MHz of the preamble only the secondary 20 MHz is punctured. Set to 7 for preamble puncturing in 160 MHz or 80+80 MHz, where in the primary 80 MHz of the preamble only the secondary 20 MHz is punctured. Set to 7 for preamble primary 80 MHz of the preamble only the secondary 20 MHz of the preamble the primary 40 MHz is present. If the SIGB Compression field is 1 then values 4–7 are reserved.



Without preamble puncturing

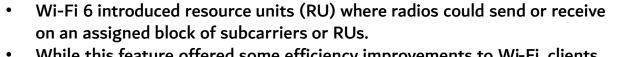
With preamble puncturing

Puncturing	Used channels

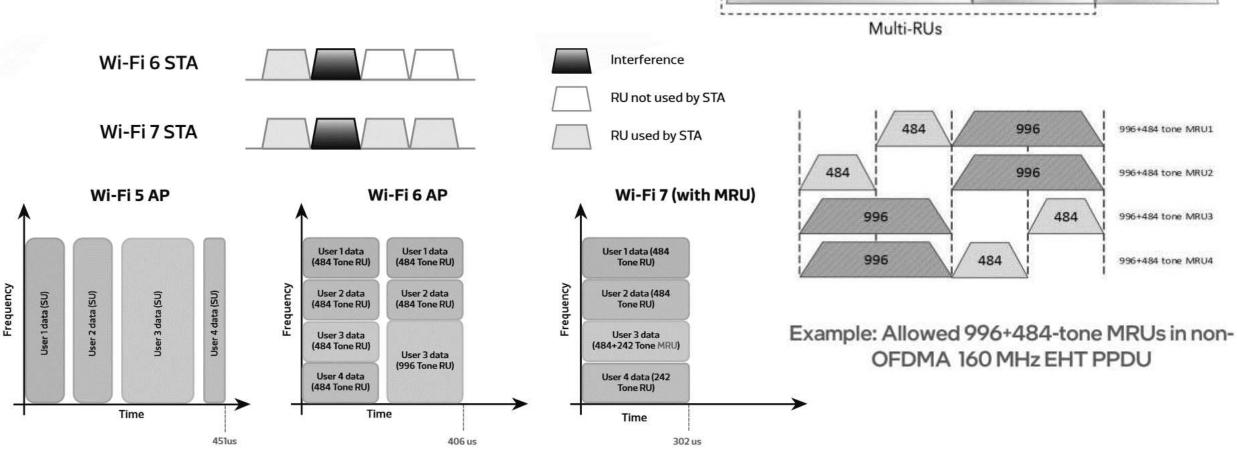
Multi-RU OFDMA

User 2

RU3


User 2

RU3


Not Used

RU2

RU2

- While this feature offered some efficiency improvements to Wi-Fi, clients could only be assigned one RU per TxOp sometimes leaving unused RUs which needed to be padded.
- Multi-RU allows radios to fill in those unused RUs with support for multiple RUs from the same user, further increasing transmission efficiency.

Wi-Fi 6

Wi-Fi 7

User 1

RU1

RU1

User 1

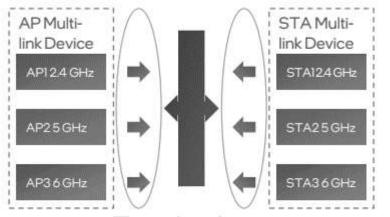
Multi Link Operation (MLO)

- Multi Link Operation is a new feature in Wi-Fi that allows APs and STAs to ٠ communicate over multiple channels/bands/radios simultaneously in order to improve throughput, latency and/or reliability
- With a common MAC layer and separate PHY layers, Wi-Fi 7 Access Points and Client Stations are capable of transmitting and receiving simultaneously on multiple links.
- By taking advantage of intelligent traffic scheduling and prioritization, MLO enables reduced latency and jitter by prioritizing data transmission on links with the best RF conditions or improve reliability by duplicating data on multiple links.

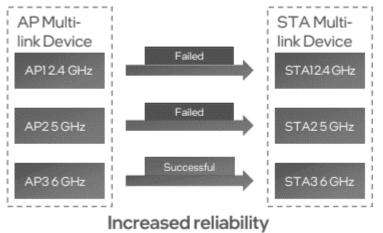
MLO Terminology and Framework

- A Device the supports MLO is referred \langle to as a Multi Link Device (MLD)
- AP that supports MLO is referred to as AP MLD
- STA that supports MLO is referred to as non-AP MLD
- MLO can be supported both on single and multiple radio devices.

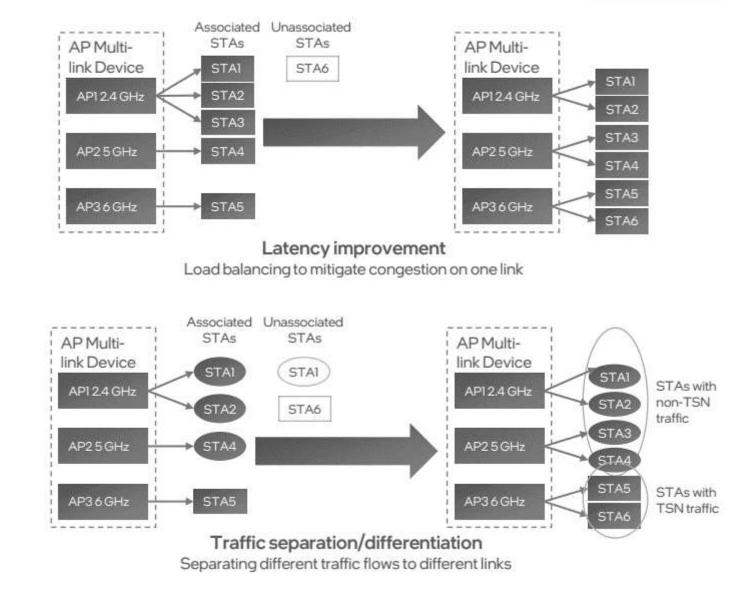
Distribution System (DS)			
		Distribut Medium	ion System (DSM)
APM	1ulti-link Devic	e	
	API	AP2	AP3
Channel XI, Band YI	Channel X2, Eand Y2	Channel X Band Y3	^{3,} Link 3
	Non-AP STA1	Non-AP STA2	Non-AP STA3
Non-	AP Multi-link d	levice	



Types of MLO

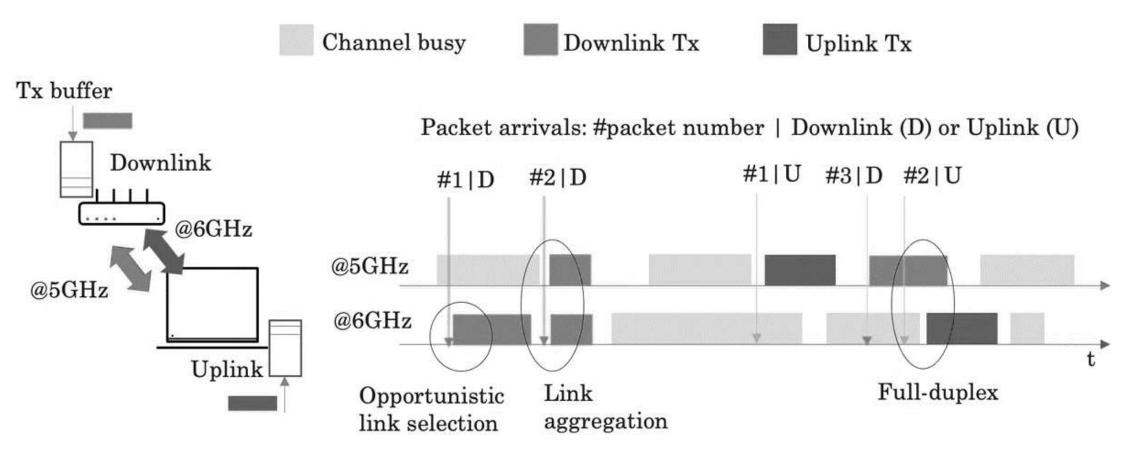

MLO Type	Number of Radios	Characteristics
Multi-link single radio (MLSR)	1	TX/RX over one link at a time.
Enhanced multi-link single radio (EMLSR)	1	MLSR with additional capability to listen to two links simultaneously.
Nonsimultaneous transmit and receive multi-link multi- radio (NSTR MLMR)	>=2	Simultaneous TX/TX, RX/RX over multiple links.
Simultaneous transmit and receive multi-link multi-radio (STR MLMR)	>=2	Simultaneous TX/TX, RX/RX, and TX/RX over multiple links.
Enhanced multi-link multi- radio (EMLMR)	>=2	MLMR with additional capability to dynamically reconfigure spatial multiplexing capability on each link.

Benefits of Multi Link Operation (MLO)



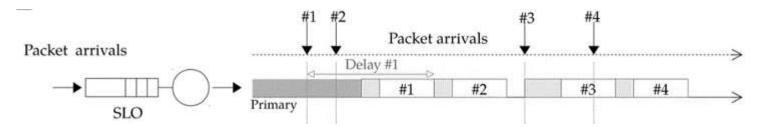
Throughput boost Aggregating multiple links for data transmission

Duplicating critical packets on multiple links

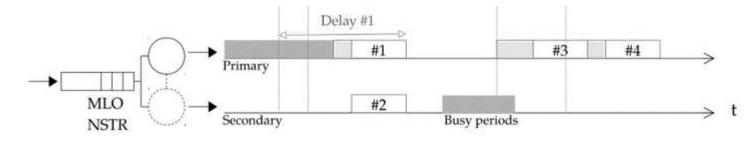


Multi Link Operation Example

#1 | D : Opportunistically select the best link available for DL transmission based on interference and channel availability.


- #2 | D : Aggregate both 5GHz and 6GHz links achieve higher throughput in DL when both links are available.
- #1 | U : Select the 5GHz link for UL transmission when only 5GHz link is available.
- #3 | D : Full duplex transmissions with Downlink in 5GHz band and Uplink in the 6GHz band.
- #2 | U : Full duplex transmissions with Downlink in 5GHz band and Uplink in the 6GHz band.

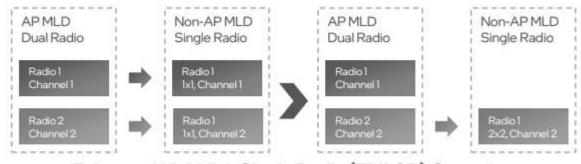

MLO Basic Modes


- SLO (Single Link Operation)
 - Only one radio interface /One Link

- MLO STR (Simultaneous Tx and Rx)
 - Two independent radio interfaces
 - Each backoff and transmit independently
 - Packets are assigned to first available radio

- MLO NSTR (Non Simultaneous Tx and Rx)
 - Interface #1 acts as the primary interface
 - There is a single backoff for medium access
 - Interface #2 can only be used when Interface #1 is available

Single Radio MLO – MLSR and EMLSR



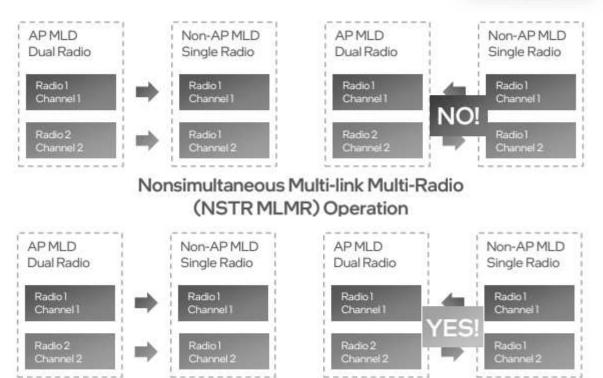
- Multi-Link Single Radio (MLSR)
 - STA can pick the best link to use for Tx and Rx and Transmit or Receive using the selected link/channel
 - Switching between channels/links can be done dynamically without need for new connection with new encryption keys

Multi-link Single Radio (MLSR) Operation

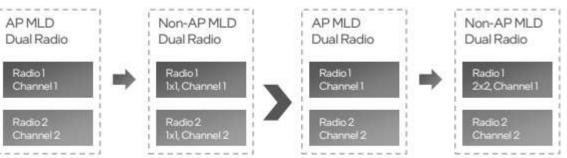
- Enhanced Multi-Link Single Radio (EMLSR)
 - A 2x2 MIMO single radio STA can listen to two radios links on an AP simultaneously in 1x1 mode.
 - Once the best channel/link is found, the transmission can happen on a single link in 2x2 MIMO.
 - Switching between links can happen seamlessly.

Enhanced Multi-link Single Radio (EMLSR) Operation

Multi Radio MLO – MLMR, STR-MLMR and NSTR-MLMR


• Non Simultaneous Multi-Link Multi Radio (NSTR MLMR)

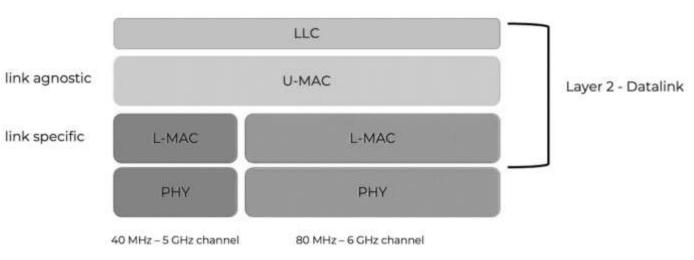
- STA can transmit or receive over multi links to multiple radios on the AP.
- Simultaneous transmit on one radio and receive on the other radio on the STA is not allowed.
- This is done to avoid interference issues on the closely placed radios on the STA.
- Simultaneous Multi-Link Multi Radio (STR MLMR)
 - STA can transmit or receive over multi links to multiple radios on the AP.
 - Simultaneous transmit on one radio and receive on the other radio on the STA is allowed.



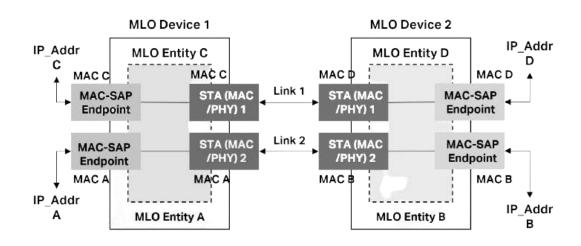
•

- STA can listen to multiple radio links over multiple radio chains.
- STA can transmit or receive over multi links to multiple radios on the AP.

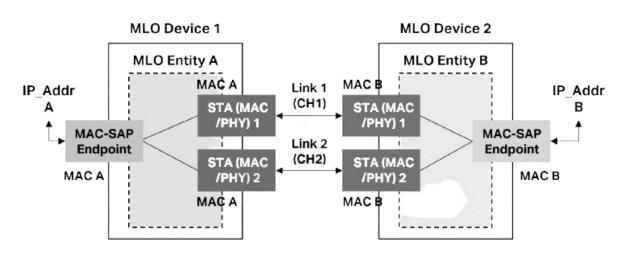
Simultaneous Multi-link Multi-Radio (STR MLMR) Operation



RX chain switching for Enhanced Multi-link Multi-Radio (EMLMR) Operation

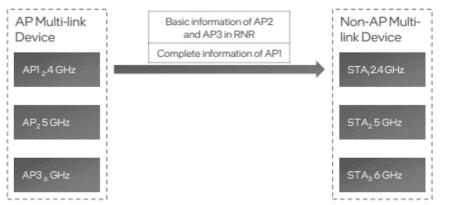

WH-FITECHNOLOGY PUNDAMENTALS COURSE

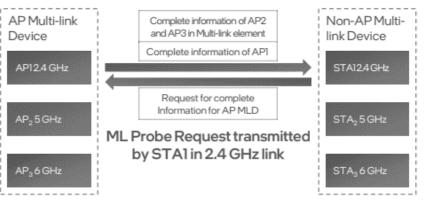
MLO – 2 MAC Layers


- Upper MAC is responsible for connectivity and security and interface with LLC
- Lower MAC responsible for medium access, data transmission, multi PHY management multi link operation.
- There will a single MAC address called the MLD MAC address which will be used for connectivity and security.
- Packet-Level Aggregation will aggregate transmission of packets from the same TID across multiple links to achieve better throughput and lower latency
- Flow-Level Aggregation can be used for mesh backhaul when two AP MLDs can aggregate multiple traffic flows for different devices across multiple links

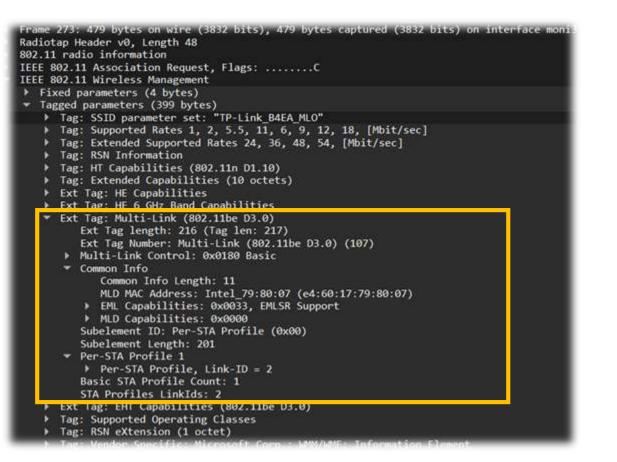
Flow-Level Aggregation

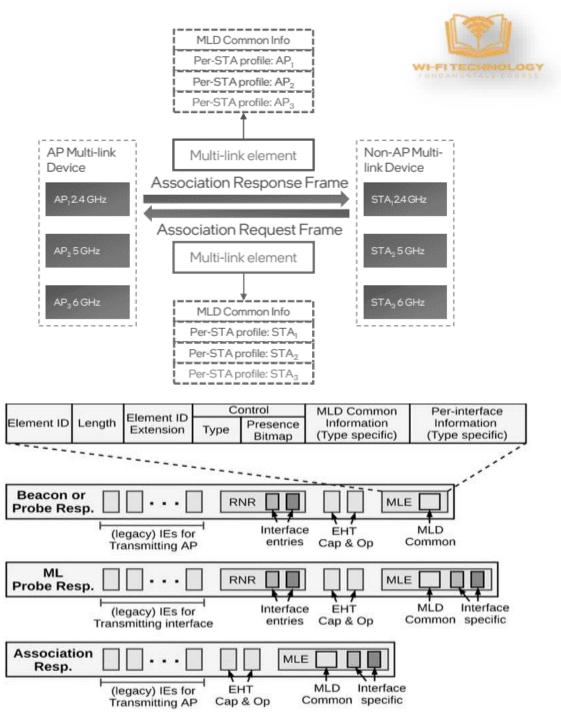
Packet-Level Aggregation


Multi Link Device Discovery


- On each link/channel, the AP MLD will usually transmit a link specific SSID and also an MLO SSID.
- Normal discovery process can use the standard active and/or passive scanning methods across all the links to obtain the MLO information
- More efficient methods of discovery would be to use RNR information elements that provide information about all the links/channels SSIDs on the same primary link probe response.
- MLD discovery methods can send Basic Information in the RNR or complete information in the Multi-Link Information Element.

wian.fc.type_subtype=+8			
lource	Destination	Channel * Info	
TPLink_47:b4:ec	Broadcast	1 Beacon frame, SN=225, FN=0, Flags=C, BI=1000, SSID="TP-Link_B4EA_2	G"
92:ed:00:47:b4:ec	Broadcast	1 Beacon frame, SN=912, FN=0, Flags=C, BI=1000, SSID="TP-Link_B4EA_M	LO"
62:ed:00:47:b4:ec	Broadcast	1 Beacon frame, SN=215, FN=0, Flags=C, BI=1000, SSID=Wildcard (Broad	cast)
TPLink_47:b4:ec	Broadcast	1 Beacon frame, SN=226, FN=0, Flags=C, BI=1000, SSID="TP-Link_B4EA_2	G"
92:ed:00:47:b4:ec	Broadcast	1 Beacon frame, SN=913, FN=0, Flags=C, BI=1000, SSID="TP-Link_B4EA_M	L0"
62:ed:00:47:b4:ec	Broadcast	1 Beacon frame, SN=216, FN=0, Flags=C, BI=1000, SSID=Wildcard (Broad	cast)
TPLink_47:b4:ec	Broadcast	1 Beacon frame, SN=227, FN=0, Flags=C, BI=1000, SSID="TP-Link_B4EA_2	G"
92:ed:00:47:b4:ec	Broadcast	1 Beacon frame, SN=914, FN=0, Flags=C, BI=1000, SSID="TP-Link_B4EA_M	LO"
62:ed:00:47:b4:ec	Broadcast	1 Beacon frame, SN=217, FN=0, Flags=C, BI=1000, SSID=Wildcard (Broad	cast)

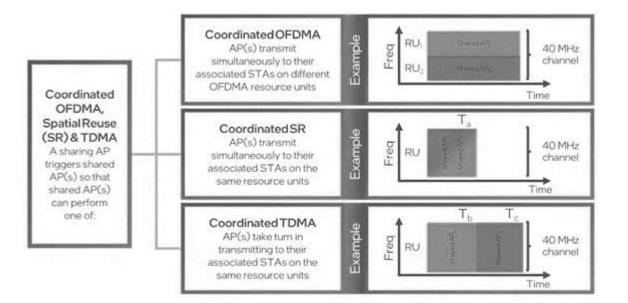


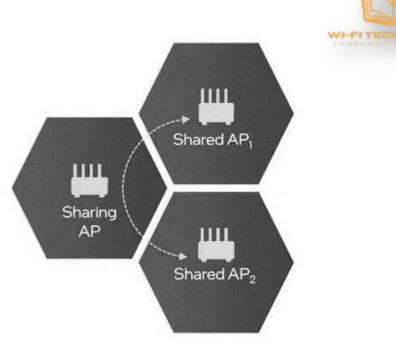

MLD Discovery---Complete Information

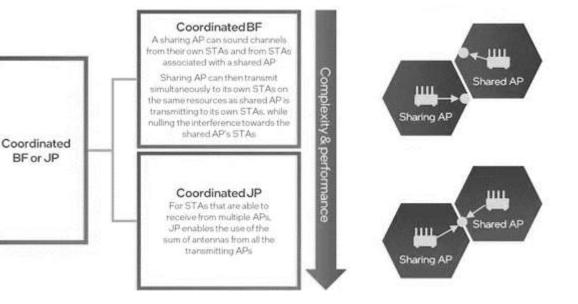
MLD Discovery---Basic Information

Multi Link Association and Security

- Normal process will require separate associations on all links but Multi Link association is only needed on a single link.
- Multi-Link Element in association response will contain all the MLD common information like MLD MAC address and also the per STA profile information.
- The single link association is also followed by a 4-way handshake process using the MLD MAC address and the keys generated will be used for encryption on all the links.
- No one key generation is needed when switching between links.

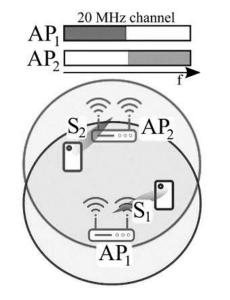



Multi-AP Coordination Concept


- Multiple APs coordinate their frequency and time transmissions attempting to avoid channel congestion and improve throughput and latency.
- Some Methods used are:

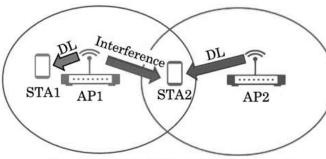
٠

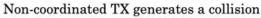
- Low Complexity AP coordination
 - Coordinated OFDMA
 - Coordinated Spatial Reuse
 - Coordinated TDMA
- More Complex AP coordination
 - Joint Transmissions (D-MIMO)
 - Coordinated Beamforming (CBF)



Multi-AP Coordination Methods

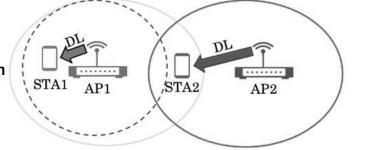
Coordinated OFDMA

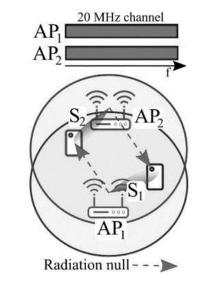

- APs jointly allocate time and frequency resources
- Minimizes Inter BSS collision
- Reduces contention time



AP₁ AP₂ AP₂ AP₂ AP₂ AP₂ S₁ High-speed AP₁

Joint Transmissions (D-MIMO)


- Joint spatial multiplexing across multiple APs to transmit from multiple APs to STA at the same time.
- Requires very complex synchronization and backhaul capability

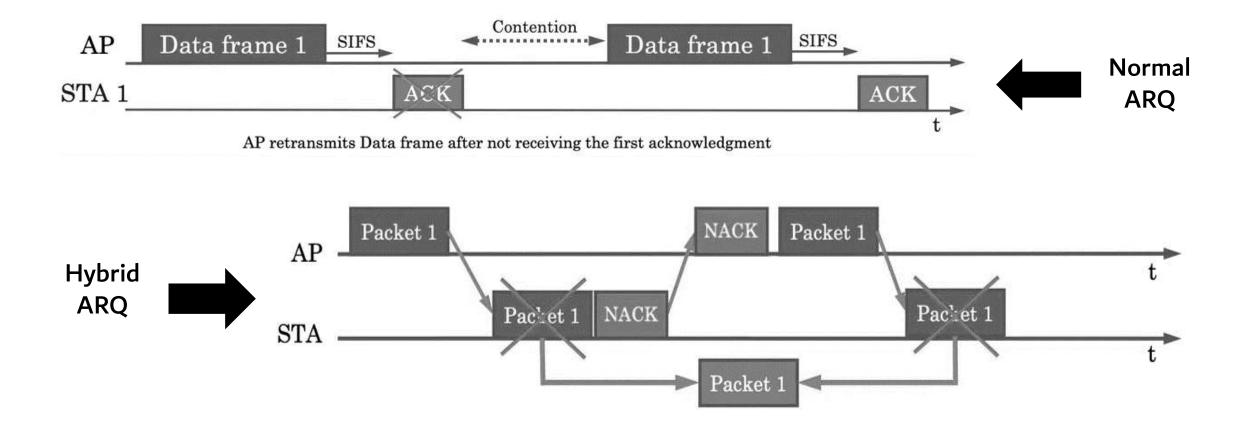


Coordinated Spatial Reuse

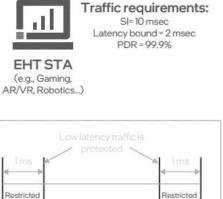
- This coordination works in the power domain.
- APs coordinate their TX power on a per transmission basis to avoid interference
- Both APs participate in joint scheduling

Coordinated TX: AP1 reduces its TX power to prevent collision

Coordinated Beamforming(CBF)

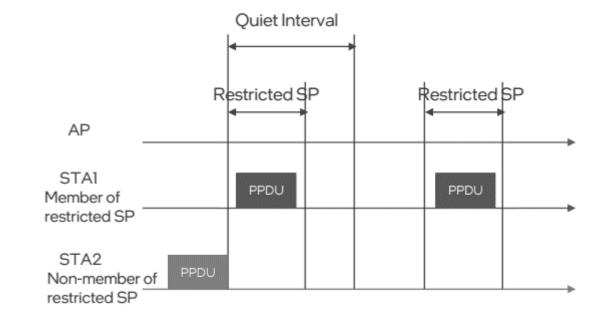

- Reuses time/freq resources via radiation nulls using coordinated Beamforming.
- AP1 and transmit to S1 but create a null for S2 and AP2 can transmit to S2 but create a null to S1, thus improving beamforming efficiency across BSSs

Hybrid Automatic Repeat Request (ARQ)


- In Normal ARQ, failed ACKs will trigger retransmissions using exponential backoff and reduced PHY rates, which results in poor medium utilization.
- In Hybrid ARQ approach, the receiver will keep the corrupted frames and combine them with the retransmitted frames to get an SNR gain of 4-6dB.
- This allows for the transmitter to use higher modulation rates even for the retransmissions and hence using the medium mode effectively.

Enhanced QoS – Restricted Service Periods

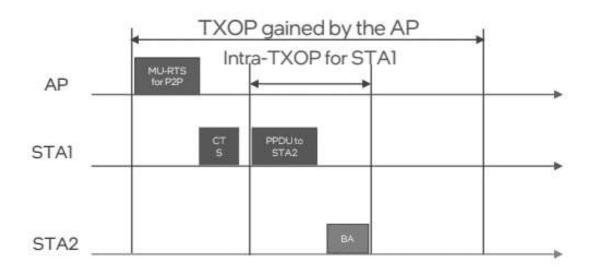
- Designed to provide deterministic low latency to applications and devices like Industrial IOT, AR/VR.
- First step is for the AP to understand the traffic patterns of the delay sensitive applications.
- EHT QoS AP MLD
- Based on this the AP will announce quiet intervals during will all STAs will refrain from accessing the medium.
- If there is any EHT- STA that has active transmissions, it will end its TXOP before the restricted service period.


SP

Latency

packets

sensitive


WI-FITECH

Triggered Peer-to-Peer Transmissions

- This feature allows for direct links between two STAs
- Example use cases are video casting applications, VR applications and other wireless file transfer applications.
- AP can broadcast an MU-RTS frame to trigger P2P transmission periods.
- P2P transmissions can happen during this period.

References

Future of Wireless Connectivity – Wi-Fi 7 and beyond https://www.youtube.com/watch?v=rGR-1QruLQc

Wi-Fi 7: All You Need to Know https://www.youtube.com/watch?v=hv4gA3TZiMc

IEEE 802.11be – Wi-Fi 7: New Challenges and Opportunities https://arxiv.org/pdf/2007.13401.pdf

WiFi Unleashed - WiFi7, 6GHz and Beyond

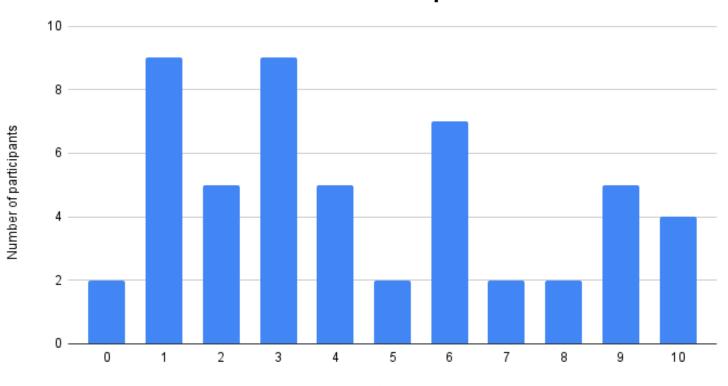
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-06/wi-fi-tutorial-long.pdf

WiF7 Data Rates https://www.youtube.com/watch?v=8fYD8KG-BMM

Wi-Fi 7 Heaven or Wi-Fi 7 Deadly Sins? https://www.youtube.com/watch?v=1geGT-x5M6A

Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9090146



Quiz 5c Results

Nikhitha Thashamshetty

Score distribution - quiz 5c

Correct responses

