
sales@candelatech.com
support@candelatech.com

+1 (360) 380-1618 [PST, GMT -8]
Network Testing and Emulation Solutions

LANforge Scripting Cookbook

The LANforge Scripting Cookbook provides a series of detailed examples of how to craft testing scripts for
unattended/automated operation. Each example intends to give the reader a runnable test script and a better
understanding of how to use the LANforge Scripting.

Places to Run CLI Commands

You do not need to operate scripts directly from the LANforge server, and this allows you to code scripts in your
preferred text editing environment. Likewise, you do not need to run a copy of LANforge Server on your desktop.
Scripts will create a plain-text connection to the LANforger server you specify.

Windows Desktop

You can install a copy of the LANforge Server on your windows desktop (without a license) so that you
have access to the Perl scripting libraries. Edit scripts and run them from your C:\Program Files\LANforge-
Server\scripts directory.

Linux Desktop

You can copy the LANforge scripts folder directly from your LANforge server to your Documents directory
with scp.

SSH or VNC connection to LANforge Server

Using vncviewer, rdesktop or ssh are all fine options to connect to the LANforge server to write and operate
scripts. The LANforge server comes with a basic Linux desktop and you can use emacs, vim, pluma, or
gedit text editors installed by default. When editing scripts on the LANforge server itself, be careful to back
up your work before you upgrade LANforge. The LANforge install process will over-write scripts of the same
name in the scripts directory.

Requirements for Scripts

Your desktop (or other computer) running CLI scripts needs to have a reliable (wired) connection to the
management port of your LANforge server. If you are engaging in long running tests, you might consider running
the scripts from the LANforge manager itself if your desktop machine needs to be powered off.

Script Libraries

CLI scripts are written using Perl. They require the libraries in /home/lanforge/scripts/LANforge Users may
write scripts in other programming languages, such as python, but in that case, they will not be able to
take direct avantage of the Perl scripts included in LANforge.

On Windows

LANforge is more fully featured on Linux, but basic support exists on Windows as well.

You can run CLI scripts from any Windows desktop as long as you have Perl installed. You can use
ActiveState Perl or Perl from the Cygwin project. We also highly suggest installing PuTTY ssh client to access
your LANforge server.

On Linux/OS X

Most Linux distributions come with and ssh client and Perl already installed.

LANforge Server Requirements

The following examples will create test scenarios that work on LANforge Linux systems running the LANforge
software with the LANforge kernel and a sufficient license. If you are running LANforge server using another
Linux kernel, you may not be able to operate some of the examples. (Features like Armageddon, operation
of WiFi-AC radios, and WanLinks all require drivers included only in Candela provided kernels.)

Please contact us at support@candelatech.com if you have any questions.

Before Starting LANforge-CLI Traffic Generation

Before attempting the examples below, ensure that you have successfully followed these software installation
guides:

LANforge-GUI Installation

LANforge Server Installation

It is also recommended that you back up your current running LANforge Server database so that you may safely
return to your current operating state.
For instance:

 su - root

http://www.candelatech.com/
mailto:sales@candelatech.com
mailto:support@candelatech.com
tel:+13603801618
http://www.activestate.com/activeperl/downloads
http://cygwin.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
mailto:support@candelatech.com
http://www.candelatech.com/lfgui_install.php
http://www.candelatech.com/lfserver_install.php
http://www.candelatech.com/mismatched_columns

 cd /home/lanforge
 tar -cvzf my_db_backup.tar.gz DB

LANforge-CLI Detailed Cookbook Examples
1. Perl: Perl CLI Scripts Introduction

2. Perl: Operating LANforge scripts from Windows

3. Perl: Monitor and Reset Ports with the portmod Script

4. Perl: Cross Connects and Endpoints Tutorial

5. Perl: Creating Connections with the FIREmod Script

6. Perl: Operating Endpoint Hunt Scripts with the CLI

7. Perl: Generating WiFi Traffic with the Associate Script

8. Perl: Changing Station WiFi SSID with the CLI API

9. CLI: Changing Station POST_IFUP Script with the CLI API

10. CLI: Scripting Attenuation with CSV data

11. Basics: LANforge Entity IDs

12. Basics: LANforge GUI Introduction

13. JSON: Querying the LANforge Client for JSON Data

14. CLI: Station CLI Operations

15. Perl: Generic Endpoint Scripts

16. Perl: Chamber View: Automated tests with script

17. Basics: LANforge Scripting Introduction

18. Python: Querying the LANforge JSON API using Python

19. Python: Managing WANlinks using JSON and Python

20. Perl: Control a chamber with the lf_chamber.pl Script

21. Perl: Emulating Video Transmission with Layer 3 connections

22. Python: Create Test Scripts With the Realm Class

23. Python: Create Layer 4 Test Scripts With Python

24. Python: Create Generic Test Scripts With Python

25. Python: Create VAP Test Scripts With Python

26. Python: Load Scenarios And Control Test Groups With Python

27. Python: Record the results of a test as CSV from the REALM monitor script

28. Python: Record the results of a test as an Excel file from the REALM monitor script

29. Python: Define and Demonstrate Docstring Usage in Candelatech Python Scripts

30. Python: Scan for SSIDs, BSSIDs, and Signals of wireless APs

31. Python: Probe Ports for Information

32. Suite: Start Here: Initial Setup to Run Scripts Test Suite for AP Testing

33. Getting Started: A Simple Script: sta_connect2.py

34. Getting Started: Basic: Layer 3 Traffic Generation: test_l3.py

35. Getting Started: Basic: Layer 4-7 HTTP Traffic Generation: test_l4.py

36. Getting Started: Basic: Layer 4-7 FTP Traffic Generation: test_l4.py

37. Getting Started: Configure and Run Dataplane Test

38. Multiplexed REST Access via Nginx Proxy

Introduction to CLI Scripts
Goal: You will be able to execute LANforge testing scripts from the command line from
Windows, Linux, remote desktop or ssh connection.
Traffic emulation may be run unattended and automated using Perl scripts provided
with the LANforge Server. These scripts can be run from within the LANforge server or
outside the LANforge Server (on a Windows or other desktop). The output of the scripts
should be redirected into a text file for you to process the results.

Where Do I Find Scripts?

On Windows

On most versions of windows, the LANforge Server installs scripts in

C:\Program Files (x86)\LANforge-Server\scripts

On Linux

https://www.candelatech.com/cookbook/cli/Perl_Perl_CLI_Scripts_Introduction
https://www.candelatech.com/cookbook/cli/Perl_Operating_LANforge_scripts_from_Windows
https://www.candelatech.com/cookbook/cli/Perl_Monitor_and_Reset_Ports_with_the_portmod_Script
https://www.candelatech.com/cookbook/cli/Perl_Cross_Connects_and_Endpoints_Tutorial
https://www.candelatech.com/cookbook/cli/Perl_Creating_Connections_with_the_FIREmod_Script
https://www.candelatech.com/cookbook/cli/Perl_Operating_Endpoint_Hunt_Scripts_with_the_CLI
https://www.candelatech.com/cookbook/cli/Perl_Generating_WiFi_Traffic_with_the_Associate_Script
https://www.candelatech.com/cookbook/cli/Perl_Changing_Station_WiFi_SSID_with_the_CLI_API
https://www.candelatech.com/cookbook/cli/CLI_Changing_Station_POST_IFUP_Script_with_the_CLI_API
https://www.candelatech.com/cookbook/cli/CLI_Scripting_Attenuation_with_CSV_data
https://www.candelatech.com/cookbook/cli/Basics_LANforge_Entity_IDs
https://www.candelatech.com/cookbook/cli/Basics_LANforge_GUI_Introduction
https://www.candelatech.com/cookbook/cli/JSON_Querying_the_LANforge_Client_for_JSON_Data
https://www.candelatech.com/cookbook/cli/CLI_Station_CLI_Operations
https://www.candelatech.com/cookbook/cli/Perl_Generic_Endpoint_Scripts
https://www.candelatech.com/cookbook/cli/Perl_Chamber_View_Automated_tests_with_script
https://www.candelatech.com/cookbook/cli/Basics_LANforge_Scripting_Introduction
https://www.candelatech.com/cookbook/cli/Python_Querying_the_LANforge_JSON_API_using_Python
https://www.candelatech.com/cookbook/cli/Python_Managing_WANlinks_using_JSON_and_Python
https://www.candelatech.com/cookbook/cli/Perl_Control_a_chamber_with_the_lf_chamber_pl_Script
https://www.candelatech.com/cookbook/cli/Perl_Emulating_Video_Transmission_with_Layer_3_connections
https://www.candelatech.com/cookbook/cli/Python_Create_Test_Scripts_With_the_Realm_Class
https://www.candelatech.com/cookbook/cli/Python_Create_Layer_4_Test_Scripts_With_Python
https://www.candelatech.com/cookbook/cli/Python_Create_Generic_Test_Scripts_With_Python
https://www.candelatech.com/cookbook/cli/Python_Create_VAP_Test_Scripts_With_Python
https://www.candelatech.com/cookbook/cli/Python_Load_Scenarios_And_Control_Test_Groups_With_Python
https://www.candelatech.com/cookbook/cli/Python_Record_the_results_of_a_test_as_CSV_from_the_REALM_monitor_script
https://www.candelatech.com/cookbook/cli/Python_Record_the_results_of_a_test_as_an_Excel_file_from_the_REALM_monitor_script
https://www.candelatech.com/cookbook/cli/Python_Define_and_Demonstrate_Docstring_Usage_in_Candelatech_Python_Scripts
https://www.candelatech.com/cookbook/cli/Python_Scan_for_SSIDs_BSSIDs_and_Signals_of_wireless_APs
https://www.candelatech.com/cookbook/cli/Python_Probe_Ports_for_Information
https://www.candelatech.com/cookbook/cli/Suite_Start_Here_Initial_Setup_to_Run_Scripts_Test_Suite_for_AP_Testing
https://www.candelatech.com/cookbook/cli/Getting_Started_A_Simple_Script_sta_connect2_py
https://www.candelatech.com/cookbook/cli/Getting_Started_Basic_Layer_3_Traffic_Generation_test_l3_py
https://www.candelatech.com/cookbook/cli/Getting_Started_Basic_Layer_4_7_HTTP_Traffic_Generation_test_l4_py
https://www.candelatech.com/cookbook/cli/Getting_Started_Basic_Layer_4_7_FTP_Traffic_Generation_test_l4_py
https://www.candelatech.com/cookbook/cli/Getting_Started_Configure_and_Run_Dataplane_Test
https://www.candelatech.com/cookbook/cli/Multiplexed_REST_Access_via_Nginx_Proxy

In the home directory for user LANforge:

/home/lanforge/scripts

How to Run Scripts

Starting a script on Windows:

1. Make sure that perl is in your PATH . (See Inspecting DOS PATH)

2. Open a CMD window (or a PowerShell window)

3. and change directory to C:\Program Files (x86)\LANforge-Server\scripts
4. Type perl .\script_name.pl ENTER to run the script.

Generally, the script will tell you that it needs more switches.

Finding Help

Most scripts have a -h or --help switch that explain what switches they expect.

Script Conventions

In general, scripts will expect you to tell them a few things, regardless of the script:

The manager IP address to connect to:--mgr 127.0.0.1 or --manager 192.168.100.1. This
often defaults to 127.0.0.1, but when connecting from outside the machine, please use the IP of
the LANforge management port (often eth0).

The manager port to connect to:--port 4001 or --mgr_port 4001. This often defaults to 4001.

Which resource to direct the command to. The manager is always resource 1. Resource 2
would be your second LANforge server. --resource 2. Some scripts use the older term card: --
card
If you need debugging output, turn off quiet mode: -q no or --quiet no. Some older scripts
want you to turn quiet on explicitly: --quiet 1
To capture the output, use the > operator to redirect the text output into a text file.

Scripts are often executed from within a shell script (or batch file). Often the formatting of the
commands includes '\' characters which indicate 'continue this command on the next line of
input.' Here is an example of formatting a single script command on multipl lines:

 $./lf_portmod.pl \
 --manager 192.168.100.1 \
 --card 3 \
 --show_port

Comments begin with '#'. They are lines ignored by the shell, and they are also comments in
perl.

Running on local LANforge manager

You can use ssh, VNC or Rdesktop to connect from your desktop to your LANforge manager server.
(When using VNC, assume display :1). From there, in a terminal, you will execute your script from the
/home/lanforge/scripts directory as shown in the example below:

 $ cd /home/lanforge/scripts
 $./lf_portmod.pl --help
#...help appears...
 $./lf_portmod.pl --manager 192.168.100.1 --card 1 --show_port
... displays port info

http://www.candelatech.com/cookbook.php?vol=misc&book=Quickly+Inspect+Your+DOS+PATH+Variable

Running on local LANforge resource

If you connect to a LANforge resource and want to run a script, you must direct the script at the LANforge
manager server and specify the resource you are interested in. For example, you might be on resource 2
(192.168.100.2) and desire to run tests on resource 3 (192.168.100.3):

 $ cd /home/lanforge/scripts
 $./lf_portmod.pl --manager 192.168.100.1 --card 3 --show_port
... displays port info

Running on a Linux Desktop to a Remote LANforge

A more detailed set of steps follows. When running LANforge CLI scripts on a Linux desktop, you normally
want to download and un-zip a copy of the LANforge-Server install file found on the Candela
Technologies downloads page. Use a link similar to:
http://www.candelatech.com/private/downloads/r5.3.2/LANforgeServer-5.3.2_Linux-F21-
x64.tar.gz. For best results, use the scripts packaged with the version of LANforge to which your scripts
will be connecting.

1. Open a terminal on your desktop, cd to your Downloads folder

2. use wget or curl to download the tar file:
 wget "http://guest:guest@www.candelatech.com/private/downloads/r5.3.2/LANforgeServer-5.3.2_Linux-F21-x64.tar.gz"

3. Create a scripts directory in your Documents folder:

 $ cd ~/Documents/scripts

4. Expand the tar file in your Downloads directory:

 $ tar xf LANforgeServer*tar.gz

5. Copy the scripts file into your Documents folder:

 $ cp -r LANforgeServer-5.3.2/scripts/. ~/Documents/scripts/

To use your scripts, in your terminal, change directories to ~/Documents/scripts and they will operate
similar to the above examples.

 $ cd ~/Documents/scripts
 $./lf_portmod.pl --manager 192.168.100.1 --card 3 --show_port

Running on a Windows Desktop to a Remote LANforge

The process for running CLI scripts on a Windows desktop is roughly similar, but involves running the
Windows LANforge Server installer. This process does not require a Windows license as we will not be
running the windows LANforge server. Perl is required to run Windows scripts. Start by installing that. You
can use the perl that comes with the Cygwin project or if you just want perl, install the ActiveState
ActivePerl package. ActivePerl should install update your environment %PATH% variable. If it does not
immediately, you might need to log out and log back in.

1. Download the Windows version of the LANforge Server installer using your browser:
http://www.candelatech.com/private/downloads/r5.3.2/LANforge-Server-5.3.2-
Installer.exe. Use username guest, password guest.

2. In your Downloads folder, double click and install the LANforge-Server-Installer.exe.

Do not configure it, do not run LANforgeServer.

http://www.cygwin.org/
http://www.activestate.com/activeperl/downloads

You will not need to be running the LANforge GUI to do this install.

3. The installation scripts folder will be system-protected, so you want to copy the folder over to
your desktop Documents directory.

4. Open a DOS terminal, either using Run→cmd Enter or Run→powershell Enter

5. Change to the new copy of the scripts directory, and then you can run scripts by giving them
to perl:
 C:> cd C:\Users\bob\Documents\scripts
 C:> perl .\lf_portmod.pl --manager 192.168.100.1 --card 3 --show_port --port_name eth1 --quiet 1

6. To capture output from a script, use the shell redirect operator: >. This example shows
redirecting and browsing the results with Notepad:
 C:> perl .\lf_portmod.pl --manager 192.168.100.1 --card 3 --show_port --port_name eth1 --quiet 1 > results.txt
 C:> notepad.exe results.txt

Operate LANforge Scripts from Windows.
Goal: Use an installation of LANforge and Perl on a Windows computer to operate tests and
manage connections on remote LANforge computers.
You do not need to connect to your LANforge manager using ssh or VNC to manage
connections or operate tests. In this cookbook, you will see an example of using the
lf_firemod.pl script which can give you port information. This example will require a
Windows desktop with Java, ActiveState Perl, the LANforge Server and the LANforge GUI
installed. You will not need to start the LANforge server on your Windows computer, so
no licenses will be required for operating on the Windows computer. This cookbook
assumes connectivity between the Windows computer and a running LANforge
manager computer.

1. Prepare your Windows computer:

2. Install LANforge Server

A. You do not need to configure or start this server. Only the perl scripts directory of this installation will
be used.

B. You can download it from our current releases page. For more information see LANforge Server
Installation

3. Install LANforge GUI

A. You can download it from the same location.

B. Make sure you can connect to your LANforge manager. In this example, the LANforge manager will
be at 192.168.100.26

C. Open the LANforge GUI

D. ... and click Discover

http://www.candelatech.com/downloads.php#releases
http://www.candelatech.com/lfserver_install.php

E. If you are able to connect you should be able to browse your ports and connections.

For more information see LANforge GUI Installation

4. Install ActiveState Perl

A. Please download it from the ActiveState downloads page.

B. Begin and press next...

C. ...press next...

D. ...press next...

http://www.candelatech.com/lfgui_install.php
http://www.activestate.com/activeperl/downloads

E. ...and then wait a few minutes...

F. Now, you are done, press Finish.

G. For advanced GUI scripting in Windows, you may also wish to view the Win32::GuiTest perl module
page.

5. Using scripts from Windows

A. The scripts installed on your Windows computer will communicate with the LANforge manager over
the management port (TCP 4001).

B. Open a cmd window. Click Start->Run, type cmd and press Enter

A.

B.

C. Change directory to C:\Program Files\LANforge-Server\scripts

D. List the script files: dir *.pl

http://search.cpan.org/~karasik/Win32-GuiTest-1.60/lib/Win32/GuiTest.pm

E. Your installation of Perl should have put it into your path variable (%PATH%). Please verify that it did
with this command: perl -v

F. If perl is not found (Command not found) then you might need to close your DOS window and open
a new one, or your Windows computer might need a reboot for the PATH variable to take effect.

G. Start the lf_firemod.pl script with the --help switch to see the options.

A. perl lf_firemod.pl --help

H. Open a second cmd window so that you can see the help text in the first window. Change directory
to C:\Program Files\LANforge-Server\Scripts

I. Use this command to list ports available on 192.168.100.26:

A. perl lf_firemod.pl --mgr 192.168.100.26 --resource 1 --action list_ports
B.

J. Most command output shows considerably more text than the output of the previous command.
You may want to pipe it to a file. In this example, the output is redirected to C:\tmp\port-vap0.txt
and shown with Notepad.

A. Query the port stats using: perl lf_firemod.pl --mgr 192.168.100.26 --resource 1 --
action show_port --port vap0 > c:\tmp\port-vap0.txt

B. Show the output with: notepad c:\tmp\port-vap0.txt

Inspecting Ports (Network Interfaces)
using lf_portmod

Goal: You will be able to report and reset ports on your LANforge server.
Port statistics can be programatically monitored using the script lf_portmod.pl. This
script can also reset ports, alter WiFi station settings, and pass arbitrary LANforge CLI
commands directly to the LANforge manager.

Ports of all kinds can be viewed with the lf_portmod.pl perl script. You can also do some limited manipulation
of ports as well.

Listing Ports

You can show statistic on a port with the --show_port argument:
 C:\> perl .\lf_portmod.pl --quiet 1 --manager jedtest --card 1 --port_name eth1 --show_port

i You can right-click to paste these commands into your DOS window

Produces:

Listing Port Attributes

Individual port attributes can also be shown, which often makes automating reporting easier.
perl .\lf_portmod.pl --manager jedtest --card 1 --quiet 1 --port_name eth1 --show_port "RxDrop,Rxp,IP"

Produces:

Consider that is a lot of text to type. If we want, we can reformat that command.

i Long DOS commands and be continued on the next line with the ^
character.

perl .\lf_portmod.pl --manager jedtest ^
 --card 1 --quiet 1 --port_name eth1 ^
 --show_port "RxDrop,Rxp,IP"

Produces the same output:

Loading a test scenario

Saved test scenarios are often referred to as 'databases'

lf_portmod.pl --load day_238

This matches the same database name seen in the Status tab database dropdown.

Admin-down a port

lf_portmod.pl --manager 192.168.1.101 --card 1 --port_name eth2 --set_ifstate down

Resetting a Port

Resetting a port forces a port to unload and reload its configuration.

lf_portmod.pl --manager 192.168.1.101 --card 1 --port_name eth2 --cmd reset

Sending a specific CLI command to the LANforge manager:

It is possible to directly pass a command to the LANforge manager:

lf_portmod.pl --manager 192.168.1.101 --cli_cmd "scan 1 1 sta0"

Cross Connects and Endpoints Tutorial
Goal: Gain a better understanding on how you will use Cross connects, Connections and
Endpoints to use the LANforge CLI scripts knowlegably.
Creating connections in the LANforgeGUI implies creating endpoints. These endpoint
entities are created with predictable names and are usually created in pairs.
Understanding these naming conventions and how they are created is fundamental to
your proficiency with creating connections with LANforge CLI scripts.

Most examples in our cookbooks assume a dual-ended connection, also known as a cross-connect or
abbreviated as CX.

Building Endpoints and Connections

Let's follow the creation of a Connection:

Using a terminal on the LANforge machine, we look at the /home/lanforge/DB/DFLT/endps.db file and inspect
the commands issued that create that connection:

That's a lot of commands. We will point out what is particularly necessary when using our Perl scripts.

Endpoints and Connections Naming Convention

The connection we created above is named tutorial-cx. Two endpoints also have names, tutorial-cx-A and
tutorial-cx-B. The A-side of a connection is always managed. A B-side endpoint may be unmanaged. When
you write CLI scripts that create connections, name your endpoints using a similar convention.

Endpoints are Created First

We can use the lf_firemod.pl script to create endpoints and a cross connect in this order:
$./lf_firemod.pl --action create_endp --endp_name tutorial2-cx-A \
 --speed 256000 --endp_type lf_tcp --port_name sta301

$./lf_firemod.pl --action create_endp --endp_name tutorial2-cx-B \
 --speed 256000 --endp_type lf_tcp --port_name eth1

$./lf_firemod.pl --action create_cx --cx_name tutorial2-cx \
 --cx_endps tutorial2-cx-A,tutorial2-cx-B

We can see the results of those script commands in our Layer-3 and L3 Endps tabs:

i Multiple Windows can be displayed using the Tear Offs menu.

i Clicking on the Layer-3 connection automatically highlights the two endpoints.

Starting and Stopping: Connections have State

When a connection is first created, it is STOPPED. When you start it, it becomes RUNNING. When you set a
connection to STOPPED, both endpoints immediately stop sending and recieving. That can have a
consequence of leaving unacknowledged packets in flight. The safest way is to QUIECE the connection,
which first stops the endpoints transmitting, waits a short time, and then stops the endpoints from recieving.

When there is just one Endpoint

Normally, if you see one endpoint, it should only be a multicast endpoint. A single endpoint can be seen in
these situations:

You have paused between creating the first and second endpoint for a connection. Continue
working.

Created by a script mistakenly, through a typo or other misconfiguration

Left over from an interrupted script that deleted the cross-connect and one of two endpoints

A single endpoint is not an illegal entity, but lonely endpoints can add confusion. If you find endpoints that do
not match any existing connections, we suggest deleting them.

A Cross-Connect can be one-sided, that is, have one unmanaged endpoint. The A side endpoint is a
LANforge managed port transmitting to another device that's not a LANforge machine. Some connection
types create this style of endpoint pairs, like File-endpoints and Layer 4-7 connections.

Multicast

Multicast endpoints are created differently both in the GUI and in the CLI scripting environment. This tutorial
does not focus on multicast, but see the section Creating Endpoints section of Creating Connections with
FIREMod Script and the chapter on WiFi Multicast Download.

Creating Connections with the FIREmod
Script

Goal: Create, destroy, start and stop connections and endpoints without needing to use the
LANforge GUI.
Traffic emulation can be run unattended and using automated tools without use of the
LANforgeGUI using Perl scripts provided with the LANforge Server. These scripts can be
run from within the LANforge server or outside the LANforge Server (on a Windows
desktop). The output of the scripts needs to be redirected into a text file for you to
process the results.

Script Capabilities

http://www.candelatech.com/cookbook.php?vol=cli&book=Creating+Connections+with+the+FIREmod+Script
http://www.candelatech.com/cookbook.php?vol=wifire&book=WiFi+Station+Multicast

The lf_firemod.pl script has a lot of options because endpoints have a lot of features. Basic actions:

Creating and Deleting Endpoints and Cross Connects: create_endp, delte_endp, create_cx,
delete_cx

Modifying an Endpoints TX Speed: set_endp

Listing and Monitoring Ports, Endpoints and Cross Connects: list_ports, show_endp, list_cx, show_cx

Reporting on Ports, Endpoints and Cross Connects: show_port, show_endp, show_cx

Controlling Traffic: do_cli, start_endp, stop_endp. To start bi-directional traffic, start both endpoints.

Pass direct CLI commands: do_cmd. Use this to help configure aspects of your testing scenario that
are options presented in this script. Like secondary IPs on a port.

Creating a basic cross connect requires two endpoints, and each endpoint requires a port (network
interface). Script options often begin by stating the manager, resource and action:

C:\> perl .\lf_firemod.pl --mgr 192.168.100.1 --resource 2 --action create_endp ...more options...

Script Actions, arguments to --action

Creating Endoints: create_endp

We use these parameters when creating and endpoint:

--endp_name

name this endpoint

--port_name

name of the port this endpoint uses

--speed

speed of the endpoint transmission in bps

--tos

type of service

--max_speed

Maximum port speed if different than minimum speed of port, in bps

--endp_type

Endpoint Types: tcp, udp, tcp6, udp6. To create multicast endpoint types, use mc_udp and mc_udp6.

--min_pkt_sz/--max_pkt_sz

Minimum and maximum packet sizes

--use_csums

Enable checksums

--ttl

packet Time To Live

--report_timer

the update interval for the endpoint

Example of creating a tcp connection endpoint with debugging:

Creating a multicast udp connection:

Create a connection with specific test-manager

Show Endpoint Stats: show_endp

By default, using the show_endp action shows all endpoints. It might be useful to place output like this right into
a file or to immediate use grep to find the rows you want.
 $./lf_firemod.pl --action show_endp --mgr cholla-f19

 RSLT: 0 Cmd: 'nc_show_endp'

FileEndp [e2#0-nfs-100] (NOT_RUNNING, WRITING, WRITE_RATE_BURSTY, CHECK_MOUNT, AUTO_MOUNT, UN_MOUNT, O_TRUNC)
 Shelf: 1, Card: 1 Port: 10 Endpoint: 1 Type: FILE_NFS Pattern: INCREASING
 MinWriteRate: 1544000bps MaxWriteRate: 0bps MinRead/WriteSz: 4096B MaxRead/WriteSz: 32768B
 MinReadRate: 1544000bps MaxReadRate: 1544000bps QuiesceAfterFiles: -1
 NumFiles: 2 MinFileSize: 26214400B MaxFileSize: 26214400B
 Directory: AUTO Prefix: AUTO Volume:
 Server-Mount: 10.41.0.1:/tank/tmp Mount-Dir: AUTO Mount-Options:
 RptTimer: 1000ms RunningFor: 0s StopIn: 0s Quiesce: 3
 LastRpt: 0.000 secs ago RealWriteRate: 0bps RealReadRate: 0bps
 RetryTimer: 1000ms InFailedIO: 0ms
 Buffers Read: Total: 0 Time: 0s Cur: 0 0/s
 Bytes Read: Total: 0 Time: 0s Cur: 0 0/s
 Files Read: Total: 0 Time: 0s Cur: 0 0/s
 Bytes Written: Total: 0 Time: 0s Cur: 0 0/s
 Buffers Written: Total: 0 Time: 0s Cur: 0 0/s
 Files Written: Total: 0 Time: 0s Cur: 0 0/s
 Read CRC Failed: Total: 0 Time: 0s Cur: 0 0/s

FileEndp [e2#0-nfs-101] (NOT_RUNNING, WRITING, WRITE_RATE_BURSTY, CHECK_MOUNT, AUTO_MOUNT, UN_MOUNT, O_TRUNC)
 Shelf: 1, Card: 1 Port: 12 Endpoint: 2 Type: FILE_NFS Pattern: INCREASING
 MinWriteRate: 1544000bps MaxWriteRate: 0bps MinRead/WriteSz: 4096B MaxRead/WriteSz: 32768B
 MinReadRate: 1544000bps MaxReadRate: 1544000bps QuiesceAfterFiles: -1
 NumFiles: 2 MinFileSize: 26214400B MaxFileSize: 26214400B
 Directory: AUTO Prefix: AUTO Volume:
 Server-Mount: 10.41.0.1:/tank/tmp Mount-Dir: AUTO Mount-Options:
 RptTimer: 1000ms RunningFor: 0s StopIn: 0s Quiesce: 3
 LastRpt: 0.000 secs ago RealWriteRate: 0bps RealReadRate: 0bps
 RetryTimer: 1000ms InFailedIO: 0ms
 Buffers Read: Total: 0 Time: 0s Cur: 0 0/s
 Bytes Read: Total: 0 Time: 0s Cur: 0 0/s
 Files Read: Total: 0 Time: 0s Cur: 0 0/s
 Bytes Written: Total: 0 Time: 0s Cur: 0 0/s
 Buffers Written: Total: 0 Time: 0s Cur: 0 0/s
 Files Written: Total: 0 Time: 0s Cur: 0 0/s
 Read CRC Failed: Total: 0 Time: 0s Cur: 0 0/s

You can redirect all output into a file:

 $./lf_firemod.pl --action show_endp --mgr cholla-f19 > /var/tmp/endp-stats.txt

It is possible to print out one-word attributes, such as MaxWriteRate tx_bps or rx_bps:

./lf_firemod.pl --mgr 127.0.0.1 --quiet 1 --action show_endp --endp_name cx_0-B --endp_vals tx_bps,rx_bps
Rx Bytes: 99938104
Tx Bytes: 99993112

Configure Endpoint: set_endp

This is for changing the attributes of an endpoint, such as endpoint TX rate.

 $./lf_firemod.pl --mgr cholla-f19 --action set_endp --endp_name cx_0-A --speed 2000000

Show Port Stats: show_port

This is pretty useful for getting transmit rate on ports during a connection while not having to use the lf_portmod
script. If you do not specify --port_name, all ports will be listed.

 $./lf_firemod.pl --action show_port --mgr cholla-f19 --port_name eth2#0

Shelf: 1, Card: 1, Port: 10 Type: MacVLAN Alias:
 Win32-Name: Win32-Desc: Parent/Peer: eth2 Rpt-Timer: 8000 CPU-Mask: 0
 Current: UP LINK-UP TSO UFO GSO GRO PROBE_ERROR
 Supported: UP SEND_TO_SELF
 Partner: UP
 Advertising: 10bt-HD 10bt-FD 100bt-HD 100bt-FD 1000-FD TSO-ENABLED UFO-ENABLED GSO-ENABLED GRO-ENABLED
 IP: 10.41.0.10 MASK: 255.255.255.0 GW: 0.0.0.0 VID: 0 ResetState: COMPLETE
 DNS Servers:
 IPv6-Global: DELETED
 IPv6-Link: fe80::a00:27ff:fe09:183d/64
 IPv6-Gateway: DELETED
 MAC: 08:00:27:09:18:3d DEV: eth2#0 MTU: 1500 TX Queue Len: 0
 LastDHCP: 0ms Driver: macvlan Tx-Rate: 1000000Kbps
 Bus-Speed: 0/0 Bus-Width: 0/0
 Bridge-Port-Cost: Ignore Prio: Ignore Aging: 0
 DHCP-Client-ID: NONE DHCP-Vendor-ID: NONE
 pps_tx: 0 pps_rx: 0 bps_tx: 0 bps_rx: 0
 Rxp: 5652 Txp: 21 Rxb: 1932984 Txb: 1826 RxERR: 0 TxERR: 0
 RxDrop: 0 TxDrop: 0 Multi: 5652 Coll: 0 RxLenERR: 0 RxOverFlow: 0
 RxCRC: 0 RxFrame: 0 RxFifo: 0 RxMissed: 0 TxAbort: 0 TxCarrier: 0
 TxFifo: 0 TxHeartBeat: 0 TxWindow: 0 RxBytesLL: 2068632 TxBytesLL: 2330

List Ports, action: list_ports

This is the same as --show_port without the port_name option.

Direct LANforge Command: do_cmd

In case you wanted to pass a CLI command directly in. Below is an example of setting the TOS flag for an
endpoint:

C:\> perl .\lf_firemod.pl --mgr 192.168.100.1 --action do_cmd \
 --cmd "set_endp_tos cx_01-A LOWDELAY 10"

See the LANforge CLI User Guide for more info.

Remove endpoint: delete_endp

Remember to remove the cross connect before removing the endpoint.

 $./lf_firemod.pl --action delete_endp --mgr cholla-f19 --endp_name cx-0-A

Create Cross-connect: create_cx

First you want to create two endpoints. You will add those endpoints to your cross connect. This example
below shows all three steps:
 $./lf_firemod.pl --action create_endp --mgr cholla-f19 --port_name eth2#0 \
 --endp_name cx_0-A --speed 1000000 --endp_type tcp --min_pkt_sz 1462 --report_timer 1000

 $./lf_firemod.pl --action create_endp --mgr cholla-f19 --port_name eth2#1 \
 --endp_name cx_0-B --speed 1000000 --endp_type tcp --min_pkt_sz 1462 --report_timer 1000

 $./lf_firemod.pl --action create_cx --mgr cholla-f19 --cx_name cx_0 \
 --cx_endps cx_0-A,cx_0-B --report_timer 1000

Below we see the endpoints created:

and the CX details screen:

http://www.candelatech.com/lfcli_ug.php

Show Cross Connects: list_cx

This shows the cross connects and their enpoints:

 $./lf_firemod.pl --action list_cx --mgr cholla-f19
CX cx_0, endpoint cx_0-A, endpoint cx_0-B

Show Cross Connect Stats: show_cx

The output of this command begins with the basic stats for the CX and includes the statistics of each endpoint.

$./lf_firemod.pl --action show_endp --mgr cholla-f19 --endp_name cx_0-A
 LANFORGE_TCP CX: cx_0 id: 12 type: LANFORGE_TCP DesiredState: UN_INITIALIZED RealState: STOPPED
 tx_endpoint: cx_0-A rx_endpoint: cx_0-B report_timer: 1.000000s TestMgr: default_tm

Endpoint [cx_0-A] (NOT_RUNNING, FIXED_PLD_SIZE, RATE_BURSTY, IP_PORT_AUTO)
 Shelf: 1, Card: 1 Port: 10 Endpoint: 11 Type: LANFORGE_TCP Pattern: INCREASING
 MinTxRate: 1000000bps MaxTxRate: 1000000bps MinPktSize: 1462B MaxPktSize: 1462B
 DestMAC: 08:00:27:69:1a:3d DestIpAddr: 10.41.0.11 DestIpPort: 0 Quiesce: 3
 SrcMAC: 08:00:27:09:18:3d SrcIp: 0.0.0.0 IpPort: 0-0 IpTOS: DONT-SET Priority: 0
 Role: CONNECT RptTimer: 1000ms RunningFor: 0s StopIn: 0s Avg-Jitter: 0ms
 Latency: 0 -:0:- 0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (1)
 Pkt-Gaps: 0 -:0:- 0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (1)
 Last-Rpt: 0.000 secs ago RealTxRate: 0bps RealRxRate: 0bps TTL: 0 Conn-Timeout: 10000
 FileName: SendBadCrc: 0 RcvBuf: 0 SndBuf: 0 CWND: 0 SND-MSS: 0
 RxDrop%-SEQ: 0.0000 RxDrop%-CX: 0.0000 Conn-Timer: -1-0ms Conn-Pause: 0-0ms
 PktsToSend: 0
 Multi-Conn: 0 Active-Connections: 0 Files-Played: 0
 RunningInGroup: NONE Script-steps-completed: 0 Steps-Failed: 0
 First-Rx: -1ms Mcast-Source: 0.0.0.0:0
 Rx Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Rx Pkts (On Wire): Total: 0 Time: 60s Cur: 0 0/s
 Rx Bytes: Total: 0 Time: 60s Cur: 0 0/s
 Rx Bytes (On Wire): Total: 0 Time: 60s Cur: 0 0/s
 Rx OOO Pkts: Total: 0 Time: 60s Cur: 0 0/s
 RX Wrong Dev: Total: 0 Time: 60s Cur: 0 0/s
 RX CRC Failed: Total: 0 Time: 60s Cur: 0 0/s
 RX Bit Errors: Total: 0 Time: 3s Cur: 0 0/s
 Rx Dropped Pkts: Total: 0 Time: 3s Cur: 0 0/s
 Cx Detected: 0
 Rx Duplicate Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Tx Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Tx Pkts (On Wire): Total: 0 Time: 60s Cur: 0 0/s
 Tx Bytes: Total: 0 Time: 60s Cur: 0 0/s
 Tx Bytes (On Wire): Total: 0 Time: 3s Cur: 0 0/s
 Tx Failed Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Tx Failed Bytes: Total: 0 Time: 60s Cur: 0 0/s
 Conn Established: Total: 0 Time: 30s Cur: 0 0/s
 TCP Retransmits: Total: 0 Time: 3s Cur: 0 0/s
 Conn Timeouts: Total: 0 Time: 30s Cur: 0 0/s

Endpoint [cx_0-B] (NOT_RUNNING, FIXED_PLD_SIZE, RATE_BURSTY, IP_PORT_AUTO)
 Shelf: 1, Card: 1 Port: 12 Endpoint: 12 Type: LANFORGE_TCP Pattern: INCREASING
 MinTxRate: 1000000bps MaxTxRate: 1000000bps MinPktSize: 1462B MaxPktSize: 1462B
 DestMAC: 08:00:27:09:18:3d DestIpAddr: 10.41.0.10 DestIpPort: 0 Quiesce: 3
 SrcMAC: 08:00:27:69:1a:3d SrcIp: 0.0.0.0 IpPort: 0-0 IpTOS: DONT-SET Priority: 0
 Role: ACCEPT RptTimer: 1000ms RunningFor: 0s StopIn: 0s Avg-Jitter: 0ms
 Latency: 0 -:0:- 0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (1)
 Pkt-Gaps: 0 -:0:- 0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (1)
 Last-Rpt: 0.000 secs ago RealTxRate: 0bps RealRxRate: 0bps TTL: 0 Conn-Timeout: 10000
 FileName: SendBadCrc: 0 RcvBuf: 0 SndBuf: 0 CWND: 0 SND-MSS: 0
 RxDrop%-SEQ: 0.0000 RxDrop%-CX: 0.0000 Conn-Timer: -1-0ms Conn-Pause: 0-0ms
 PktsToSend: 0
 Multi-Conn: 0 Active-Connections: 0 Files-Played: 0
 RunningInGroup: NONE Script-steps-completed: 0 Steps-Failed: 0
 First-Rx: -1ms Mcast-Source: 0.0.0.0:0
 Rx Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Rx Pkts (On Wire): Total: 0 Time: 60s Cur: 0 0/s
 Rx Bytes: Total: 0 Time: 60s Cur: 0 0/s
 Rx Bytes (On Wire): Total: 0 Time: 60s Cur: 0 0/s
 Rx OOO Pkts: Total: 0 Time: 60s Cur: 0 0/s
 RX Wrong Dev: Total: 0 Time: 60s Cur: 0 0/s
 RX CRC Failed: Total: 0 Time: 60s Cur: 0 0/s
 RX Bit Errors: Total: 0 Time: 3s Cur: 0 0/s
 Rx Dropped Pkts: Total: 0 Time: 3s Cur: 0 0/s
 Cx Detected: 0
 Rx Duplicate Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Tx Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Tx Pkts (On Wire): Total: 0 Time: 60s Cur: 0 0/s
 Tx Bytes: Total: 0 Time: 60s Cur: 0 0/s
 Tx Bytes (On Wire): Total: 0 Time: 3s Cur: 0 0/s
 Tx Failed Pkts: Total: 0 Time: 60s Cur: 0 0/s
 Tx Failed Bytes: Total: 0 Time: 60s Cur: 0 0/s
 Conn Established: Total: 0 Time: 30s Cur: 0 0/s
 TCP Retransmits: Total: 0 Time: 3s Cur: 0 0/s
 Conn Timeouts: Total: 0 Time: 30s Cur: 0 0/s

Remove Cross Connect: delete_cx

Remember to delete a cross connect before you delete its endpoints.

 $./lf_firemod.pl --action delete_cx --mgr cholla-f19 --cx_name cx_0

Controlling Traffic

You need to use do_cmd to control Unicast traffic.

By default, cross connects are created in the default_tm test manager. To control them, you want to specify
default_tm in your set_cx_state CLI command.

 ./lf_firemod.pl --mgr 127.0.0.1 --quiet 0 --action do_cmd --cmd "set_cx_state default_tm cx_0 RUNNING"

The format of the command is specified in the CLI User Guide: set_cx_state. Possible CX states include:

RUNNING

SWITCH

QUIECE

STOPPED

DELETED

For Multicast traffic, use start_endp/stop_endp

 $./lf_firemod.pl --mgr cholla-f19 --action stop_endp --endp_name cx_0-A

Multicast Endpoints

There are different options for creating multicast endpoints.

http://www.candelatech.com/lfcli_ug.php#set_cx_state

 $./lf_firemod.pl --action create_endp --endp_name mcast_xmit_1 \
 --endp_type mc_udp --speed 154000 \
 --mcast_addr 224.9.9.8 --mcast_port 9998 \
 --rcv_mcast NO --port_name eth1 \
 --min_pkt_sz 1072 --max_pkt_sz 1472 \
 --use_csums NO --ttl 32

Add secondary IPs to a Port

This is not a default script option, so we use the do_cmd action:

 C:\> perl .\lf_firemod.pl --mgr 192.168.100.1
 --action do_cmd "set_sec_ip 1 1 eth1 10.26.0.20-250/24"

See the LANforge CLI User Guide for more info.

Present Options

This is the output of lf_firemod.pl --help:
./lf_firemod.pl --action { create_endp | show_endp | set_endp | show_port | list_ports
 | do_cmd | start_endp | stop_endp | delete_endp
 | create_cx | list_cx | show_cx | delete_cx }]
 [--endp_vals {key,key,key,key}]
 # show_endp output can be narrowed with key-value arguments
 # Examples:
 # --action show_endp --endp_vals MinTxRate,DestMAC,Avg-Jitter
 # Not available: Latency,Pkt-Gaps, or rows below steps-failed.
 # Special Keys:
 # --endp_vals tx_bps (Tx Bytes)
 # --endp_vals rx_bps (Rx Bytes)
 [--mgr {host-name | IP}]
 [--mgr_port {ip port}]
 [--cmd {lf-cli-command text}]
 [--endp_name {name}]
 [--port_name {name}]
 [--resource {number}]
 [--speed {speed in bps}]
 [--tos { DONT-SET | LOWDELAY | THROUGHPUT | RELIABILITY | LOWCOST },{priority}]
 [--max_speed {speed in bps}]
 [--quiet { yes | no }]
 [--endp_type { lf_udp | lf_udp6 | lf_tcp | lf_tcp6 | mc_udp | mc_udp6 }]
 [--mcast_addr {multicast address, for example: 224.4.5.6}]
 [--mcast_port {multicast port number}]
 [--min_pkt_sz {minimum payload size in bytes}]
 [--max_pkt_sz {maximum payload size in bytes}]
 [--rcv_mcast { yes (receiver) | no (transmitter) }]
 [--use_csums { yes | no, should we checksum the payload }]
 [--ttl {time-to-live}]
 [--report_timer {miliseconds}]
 [--cx_name {connection name}]
 [--cx_endps {endp1},{endp2}]
 [--test_mgr {default_tm|all|other-tm-name}]

Example:
 ./lf_firemod.pl --action set_endp --endp_name udp1-A --speed 154000

 ./lf_firemod.pl --action create_endp --endp_name mcast_xmit_1 --speed 154000 \
 --endp_type mc_udp --mcast_addr 224.9.9.8 --mcast_port 9998 \
 --rcv_mcast NO --port_name eth1 \
 --min_pkt_sz 1072 --max_pkt_sz 1472 \
 --use_csums NO --ttl 32 \
 --quiet no --report_timer 1000

 ./lf_firemod.pl --action create_endp --endp_name bc1 --speed 256000 \
 --endp_type lf_tcp --tos THROUGHPUT,100 --port_name rd0#1

 ./lf_firemod.pl --action list_cx --test_mgr all --cx_name all

 ./lf_firemod.pl --action create_cx --cx_name L301 \
 --cx_endps ep_rd0a,ep_rd1a --report_timer 1000

Creating Endpoint Hunt Scripts with CLI API
Goal: Use the the CLI to operate the Endpoint Scripting features of the Layer-3 Endpoints you
create.
Layer-3 endpoints can manipulate their own transmission parameters using a variety of
internal scripts, known as Endpoint Scripts. Using the lf_endp_script.pl CLI script, you
can operate those internal endpoints behaviours.

This cookbook talks about Endpoint Scripts and CLI scripts at the same time. In this chapter, if
the term script is used, assume Endpoint Script. Additionally, the terms operating and running
can also be confusing. To keep the activities distinct, a LANforge user will operate a CLI script
from a terminal. The LANforge server will run the Endpoint Script. A CLI script is a user-space
perl script that issues CLI commands to a LANforge server. A CLI command is an instruction
obeyed by the LANforge server.

The Forces at Play

There are a number of subsystems running while we operate an automated Endpoint Script, so let's review
them:

http://www.candelatech.com/lfcli_ug.php#set_sec_ip

There will be Layer-3 connect constructed using lf_firemod.pl. (Don't forget: create the endpoints
before creating the cross connect.)

A managed endpoint of that connection will be configured with an Endpoint Script.

The attending engineer will operate a CLI script that changes state the Layer-3 connection to
Running

The Layer-3 connection starts both endpoints transmitting, one of them starts running it's Endpoint
Script that sets it's transmit parameters.

Remember: Endpoint Scripts run inside the LANforge server process. CLI scripts run from the client
side.

Let's Walk Thru Putting One Together

We recommend starting your first script off by the LANforge GUI to save an endpoint with an Endpoint Script.
Next, inspect the LANforge database on the server for the script parameters. Take those parameters and
adapt them to the operator's CLI script.

1. From the Layer-3 tab, open a connection tutorial-cx, and navigate to box 2. Click on the Script
button.

2. Name your script

3. Select your Script type, here we choose ScriptHunt

4. We immediately see the parameters for the script:

5. Let's modify the parameters to match our CLI command example below:

6. In a LANforge terminal, let's look at at /home/lanforge/DB/DFLT/endps.db We will search for bunny-
script and we'll inspect the resulting CLI command.

set_script tutorial-cx-A bunny-script 37120 ScriptHunt
 '5000 5000 100000,20000,100000,20,56000,30000,1,100000, 60,128,256,512,1024,1280,1460,1472,1514 1472 0,100,300,500,550,600,650,700,750,850,900,950 NONE' ALL 20

7. Now we can craft this command into a CLI script. In a CMD window, we can write the formatted CLI
script arguments:

C:\> .\lf_endp_script.pl --mgr jedtest --resource 1 ^
 --action set_script --script_type Hunt --script_name bunny-script ^
 --endp_name tutorial-CX-A -loops 1 --flags 37120 ^
 --private "5000 5000 100000,20000,100000,20,56000,30000,1,100000, 60,128,256,512,1024,1280,1460,1472,1514 1472 0,100,300,500,550,600,650,700,750,850,900,950 NONE"

i In the CMD window, use double-quotes " for quoted script arguments.
Using single-quotes will break your command.

In a Linux terminal, we can use double " or single ' quotes:

$./lf_endp_script.pl --mgr jedtest --resource 1 \
 --action set_script --script_type Hunt --script_name bunny-script \
 --endp_name tutorial-CX-A -loops 1 --flags 37120 \
 --private '5000 5000 100000,20000,100000,20,56000,30000,1,100000, 60,128,256,512,1024,1280,1460,1472,1514 1472 0,100,300,500,550,600,650,700,750,850,900,950 NONE'

8. We can start the connection and the Endpoint Script will immediately begin running:

lf_endp_script --mgr jedtest --resource 1 --action start_cx --cx_name tutorial-CX

9. If the number of loops is fixed, it will eventually quiesce and stop itself. If we need to stop it and let in-
flight packets come to rest, we can quiesce it:

lf_endp_script --mgr jedtest --resource 1 --action quiesce_cx --cx_name tutorial-CX

We could also use action stop_cx to immediately stop the connection.

10. If you have a LANforge GUI running, the Endpoint Script report will automatically display in a GUI
window as soon as the connection starts. To display it to the terminal, you need to enable debug
output:

lf_endp_script.pl --action show_report --endp_name tutorial-CX-A --quiet no

Or to save it to a text file:

lf_endp_script.pl --action show_report --endp_name tutorial-CX-A --quiet no > /home/lanforge/Documents/report.txt

11. To remove the script:

lf_endp_script.pl --action remove_script --endp_name tutorial-CX-A

At the CLI Command Level
Review of the set_script CLI command

We have covered creating endpoints in earlier cookbooks. The perl script lf_endp_script.pl was created to
modify endpoints and operate their Endpoint Scripts. That script is using the set_script CLI command
(documented here). A call to it looks like:

set_script tutorial-cx-A bunny-script 37120 ScriptHunt '...' ALL 20

Endpoint Scripting Uses Large Parameters

That vague '...' section is the private parameter which is a parameter list each script type requires. The
private parameter combines a series of constraints (sub-parameters). For the ScriptHunt, we might use:

run_duration pause_duration constraints payload_sizes_a payload_sizes_b attenuations attenuator
 5000 | | | | | |
 5000 | | | | |
100000,20000,100000,20,56000,30000,1,100000 | | | |
 | 60,128,256,512,1024,1280,1460,1472,1514 | | |
 | 1472 | |
 | 0,100,300,500,550,600,650,700,750,850,900,950 |
 v 1.1.14
 drops,jitter_us,latency_us,max_steps,start_rate,accuracy,is_bps,max_tx_slowdown

Accuracy is also Threshold, max_tx_slowdown is also Underrun. The result is a very long line that has to be
surrounded the the CLI level by one pair of single quotes:
'5000 5000 100000,20000,100000,20,56000,30000,1,100000, 60,128,256,512,1024,1280,1460,1472,1514 1472 0,100,300,500,550,600,650,700,750,850,900,950 NONE'

i Write these parameters very carefully! Your first mistake is likely going to involve
misplaced apostrophes.

Associating stations with the
lf_associate_ap script.

Goal: Create, destroy, start and stop virtual stations without needing to use the LANforge GUI.
Automated wireless traffic is possible using the lf_associate_ap.pl script. This script can
be run within the LANforge server or outside the LANforge Server (on a windows
desktop). The output of the script should be redirected to a text file if you want to review
the resuts. Use this file in conjunction with the lf_firemod.pl script to create traffic.
Requires a LANforge CT520 (or better) system and an access point.

Script Capabilities

The lf_assocatiate_ap.pl script has many options, but here are the basic actions:

Create stations and cross connects with them, running traffic for a specified amount of time (action:
step1)

Generate stress on the AP by repeatedly bringing up stations and taking them down (action: step2).

Before you begin
1. We assume you have a separate WiFi access point in routed mode. These examples can be used on

a CT523 (or better) system with more than one radio if you want to practice the techniques. You
would dedicate a radio to be a virtual AP (see cookbook).

2. For these examples, our AP will be open with no username or password, and the SSID will be jedtest

3. If you want to run scripts from your Windows desktop, you have ActivePerl installed.

Creating a virtual station with traffic
Using lf_associate_ap on Windows

1. In the LANforge GUI, we will inspect our wiphy0 radio.

http://www.candelatech.com/cookbook.php?vol=cli&book=Creating+Connections+with+the+FIREmod+Script
http://www.candelatech.com/lfcli_ug.php#set_script
http://www.candelatech.com/cookbook.php?vol=wifire&book=Routed+WiFi+VAP

And the radio should be set to channel -1 AUTO

i CMD window shortcut: ⊞ R cmd ↵

i LANforge Scripts are at C:\Program Files\LANforge-Server\scripts

2. cd C:\Program Files\LANforge-Server\scripts

3. perl .\lf_associate_ap.pl --help Will show you the script options.

4. We can create a virtual station with this command:

perl .\lf_associate_ap.pl --resource 1 --resource 1 --mgr jedtest ^
 --action step1 --radio wiphy0 --ssid jedtest ^
 --first_sta sta100 --num_stations 1 --duration 20 ^
 --first_ip DHCP --upstream eth1 --security wpa2 --passphrase jedtest1

i Long DOS commands and be continued on the next line with the ^
character.

5. We can see the port appear in the LANforge GUI:

and we can inspect it.

Using lf_associate_ap on Linux

1. Double click on your PuTTY icon and open a connection to your LANforge machine.

2. The lf_associate_ap.pl script is in the scripts sub directory.

3. Our command is basically the same.

i Long shell commands and be continued on the next line with the \
character.

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 1 --duration 20 \
 --first_ip DHCP --upstream eth1 --security wpa2 --passphrase jedtest1

4. We will see similar output:

More Traffic Examples

1. Creating Multiple stations that transm

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 20 \
 --first_ip DHCP --upstream eth1 --security wpa2 --passphrase jedtest1

2. Creating TCP/IP bursty traffic from 30Mbps to 450 Mbps

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security wpa2 --passphrase jedtest1 \
 --cxtype tcp --bps-min 30Mpbs \
 --bps-max 450Mbps

3. Capturing that report with redirection

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security wpa2 --passphrase jedtest1 \
 --cxtype tcp --bps-min 30Mpbs --bps-max 450Mbps &> report.txt

i Both DOS and Linux command output can be saved to a file with the &>
operator.

i Both DOS and Linux files can be viewed with the more command.

4. Creating steady UDP traffic to at 450Mbps

$./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security wpa2 --passphrase jedtest1 \
 --cxtype udp --bps-min 450Mpbs \
 --bps-max SAME &> report.txt
$ more report.txt

5. Associating to an open AP

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security open

6. Connecting a station at 802.11/abg speeds

./lf_associate_ap.pl --resource 1 --mgr localhost \

 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security open \
 --wifi_mode abg

7. Initializing your test secenario by pre-loading a database. The database is the same name as the
dropdown in the GUI Status tab.

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security open \
 --db_preload day_236

8. Saving your test state after completing a traffic run

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security open \
 --db_preload day_236 --db_save station_results

9. Cleaning out your scenario settings after completing a traffic run. We can do this by loading the
EMPTY database with the db_postload switch.

./lf_associate_ap.pl --resource 1 --mgr localhost \
 --action step1 --radio wiphy0 --ssid jedtest \
 --first_sta sta100 --num_stations 10 --duration 120 \
 --first_ip DHCP --upstream eth1 --security open \
 --db_preload day_236 --db_save station_results --db_postload EMPTY

Using lf_associate_ap to stress test an AP

We can have a series of stations associate and unassociate over and over. This can be quite a bit of exercise
for an AP. Below is a command that tests five clients connecting.

./lf_associate_ap.pl --mgr jedtest --action step2 \
 --ssid jedtest --first_sta sta100 --first_ip DHCP \
 --num_stations 10 --security wpa2 --passphrase jedtest1

This will create set of ten stations bring them up and then take them down.

Script Options

These might have been update since publication, please check --help output for your version of the script.

./lf_associate_ap.pl [--mgr {host-name | IP}]
 [--mgr_port {ip port}] # use if on non-default management port
 [--resource {resource}] # use if multiple lanforge systems; defaults to 1
 [--quiet { yes | no }] # debug output; -q

 ## AP selection
 [--radio {name}] # e.g. wiphy2
 [--ssid {ssid}] # e.g. jedtest
 [--security {open|wep|wpa|wpa2}] # station authentication type
 [--passphrase {...}] # implies wpa2 if --security not set
 [--wifi_mode {a|abg|abgn|abgnAC|an|anAC|b|bg|bgn|g}]

 ## station configuration
 [--num_stations {10}]
 [--first_sta {sta100}]
 [--first_ip {DHCP |ip address}]
 [--netmask {255.255.0.0}]

 ## connection configuration
 [--cxtype {tcp/tcp6/udp/udp6}] # use a tcp/udp connection, default tcp
 [--upstream {name|eth1}]
 # could be AP or could be port on LANforge
 # connected to WAN side of AP
 [--bps-min {10000000}] # minimum tx bps
 [--bps-max {SAME|bps-value}] # maximum tx bps, use SAME or omit for SAME
 [--duration {30}] # connection duration, seconds, default 60
 [--poll-time {5}] # nap time between connection displays
 [--action {step1,step2}]
 # step1: creates [num_stations] stations and L3 connections
 # step2: does bringup test

 [--traffic_type {separate|concurrent}]
 # for step1: separate does download then upload
 # concurrent does upload and download at same time

 [--db_preload {scenario name}]
 # load this database before creating stations
 # option intended as a cleanup step

 [--db_save {name}]
 # save the state of this test scenario after running the
 # connections, before --db_postload

 [--db_postload {scenario name}]
 # load this database after running connections,
 # option intended as a cleanup step

Changing Station WiFi SSID with the CLI
API

Goal: Programmatically change a stations SSID
Programatically creating LANforge virtual stations requires using the add_sta command.
If you already have a station and need to change the SSID, you still use the add_sta
command.

The general sequence of commands is:

1. if port is up, set port down with:

cur_flags=0x1 interest_flags=0x800002

2. issue add_port with changed SSID

3. issue set_port to bring it up with:

cur_flags=0x0 interest_flags=0x800002

We can create a station using this script command:
./lf_associate_ap.pl --action step2 --mgr jedtest \
 --resource 1 --radio wiphy0 \
 --ssid jedtest --first_sta sta100 \
 --num_stations 1 --first_ip=DHCP \
 --wifi_mode abgn --security wpa2 \
 --passphrase jedtest1 --quiet=0

The format of the add_sta command is listed in the CLI User's Guide. When we watch the debug output of the
lf_associate_ap script, we see this add_sta command executed:

'add_sta' '1' '1' 'wiphy0' 'sta100' '1024' 'jedtest'
 'NA' 'jedtest1' 'AUTO' 'NA' '00:E3:F7:91:4A:1A' '5' 'NA'
 'NA' 'NA' 'NA' 'NA' '1024' 'NA' 'NA' 'NA' 'NA'

Looking at an example in the lf_associate_ap.pl script we see it being formatted here:

 my $sta1_cmd = fmt_vsta_cmd($::resource, $::sta_wiphy, $sta_name,
 "$flags", "$::ssid", "$::passphrase",
 $mac_addr, "$flagsmask", $wifi_m);
 doCmd($sta1_cmd);

We format the parameters:

 return fmt_cmd("add_sta", 1, $resource, $sta_wiphy, $sta_name, "$flags",
 "$ssid", "NA", "$key", $ap, $cfg_file, $mac,
 $mode, $rate, $amsdu, $ampdu_factor, $ampdu_density,
 $sta_br_id, "$flags_mask");

Changing Station POST_IFUP field with the
CLI API

Goal: Programmatically change a station's POST_IFUP field.
Creating a series of scripts using the lf_associate_ap.pl script is not adequate for
negotiating a captive-portal environment, that script does not set the POST_IFUP
parameter for the station. However, stations can be modified to gain that field.

Creating a station that negotiates a Captive Portal environment requires the POST_IFUP field to name a script.
(Usually a portal-bot.pl script.) We can assign that port parameter with the set_wifi_extra2 command. At the
time of this writing, there are no perl scripts using this CLI command, but I will show an example here:

set_wifi_extra2,
 1, # resource number
 sta100, # port name
 0, # flush-to-kernel
 NA, # ignore probe
 NA, # ignore auth
 NA, # ignore assoc
 NA, # ignore_reassoc
 NA, # corrupt_gtk_rekey_mic
 NA, # radius_ip
 NA, # radius_port
 NA, # freq_24
 NA, # freq_5

 # post_ifup_script
 './portal-bot.pl --bot bp.pm --user "username" --pass "secret" --start_url "http://www.google.com/" --ap_url "http://localhost/" --login_form "login.php" --login_action "login.php" --logout_form "logout.php"',
 NA # ocsp

The above command would never actually be formatted in in the way it appears above. It would all appear
on one line without commentds.

In a perl script, the command could be formatted like:

my $cmd = fmt_cmd("set_wifi_extra2", 1,
 "sta100", # port name
 0, # flush-to-kernel

http://www.candelatech.com/lfcli_ug.php#add_sta
http://www.candelatech.com/lfcli_ug.php#set_wifi_extra2

 "NA", # ignore probe
 "NA", # ignore auth
 "NA", # ignore assoc
 "NA", # ignore_reassoc
 "NA", # corrupt_gtk_rekey_mic
 "NA", # radius_ip
 "NA", # radius_port
 "NA", # freq_24
 "NA", # freq_5
 qq(./portal-bot.pl --bot bp.pm) # post_ifup_script
 .qq(--user "username" --pass "secret")
 .qq(--start_url "http://www.google.com/")
 .qq(--ap_url "http://localhost/")
 .qq(--login_form "login.php")
 .qq(--login_action "login.php")
 .qq(--logout_form "logout.php"),
 "NA" # ocsp);

Important Notes
1. the LANforge server treats single-quotes (apostrophes, ') as command delimiters. Use only double-

quotes (") to quote the arguments to the script.

2. Do not use newlines (\n or carriage-returns (\r\n). That will truncate the command and LANforge
will process it immedately.

3. These parameters will be provided by the server:

--mgt The management FIFO

--ip4 The IP address of the port

--ip6 The IPv6 address of the port

--dnsv A comma-separated list of DNS addresses

--logout Signals logout

Generating a series of attenuations using
data in a CSV file.

Goal: Using the attenuator_series.pl script and a specially formatted csv file, you will be able
to re-play an arbitrary series of attenuations.
Playing back a series of WiFi attenuation levels using the
attenuator_series.pl and a CSV file of attenuations
make it possible to emulate the motion of a station (or
stations) moving among a series APs. Or it could emulate
interference in a crowd of moving people. Requires a
LANforge CT703 (or better) and a LANforge CT520 (or
better) system, and an access point.

Testing 1x1 with one attenuator

Our LANforge manager (resource 1.1) has an attenuator serial number 3 (resource 1.1.3) connected to the
Device Under Test. The attenuator will be 1.1.1.3. There will be station sta100 on LANforge resource 1 and
AP vap0 on LANforge resource 2. Cables connect the radios to the the attenator. The radios are configured in
1x1 mode. The corresponding channel on the attenuator is 1.1.3.0

[See LANforge Entity IDs for more on numbering.]

http://www.candelatech.com/cookbook.php?vol=cli&book=LANforge+Entity+IDs

Let's script it with a simple data file: /home/lanforge/atten_test1.csv

channels,1.1.3.0
delay,5000
attenuate,250
attenuate,320
attenuate,450
attenuate,520
attenuate,820

We run the script in our terminal:

$ cd /home/lanforge/scripts
$./attenuate_series.pl -f ../atten_test1.csv

Watching a Layer-3 connection in the Dynamic Display, we will see a dip, rise and dip at 10 second intervals.

Testing 2x2 with One Attenuator

Next we cable up the second channel (1.1.3.1). We can update the csv test file, by adding a new column
for the channel.

channels,1.1.3.0,1.1.3.1
delay,5000
attenuate,250,250
attenuate,320,250
attenuate,450,250
attenuate,520,520
attenuate,820,820

We can run the same command and watch the dynamic reports window to see a similar graph.

A 2x2 Example with Two Attenuators

The first radio on each LANforge is connected in 2x2 mode to both attenuators. This example is drawn to
illustrate how you design the connection of your channels independently of their radios. Obviously, you don't
need two attenuators for this scenario. However, if you had a CT523 with three radios and want to perform 2x2
testing with three client radios, it is possible to do so with only two CT703 attenuators.

We change the data file to specify the first channel on attenuator 14 (1.1.14.0):
/home/lanforge/atten_test3.csv

channels,1.1.3.0,1.1.14.0
delay,5000
attenuate,250,250
attenuate,320,320
attenuate,450,450
attenuate,520,520
attenuate,820,820

We can run the script once in our terminal:

$ cd /home/lanforge/scripts
$./attenuate_series.pl -f ../atten_test3.csv

Watching the port signal in the dynamic display we will see a rise and dip at 10 second intervals.

Connecting up Multiple Radios

There is no different in attenuator control whether you have one radio in 3x3 or three radios in 1x1 to control. If
you are testing multiple radios, you will be monitoring their RX Signal in the dynamic report.

File Format

Editing the test data file with a basic spreadsheet program than can save to CSV format is possible. You will
want to save with comma format, without double-quoting the cells. These directives are converted to lower-
case, so you can type them in UPPER-CASE or Mixed-Case if necessary.

The format of the CSV file allows you to specify many options that might also be specified on the command
line.

Directives

comments

Rows that begin with a comment sign (#, ;, !) will be entirely ignored. Cells in column B or beyond will be
ignored.

channels

Each cell following this directive specifies an attenuator channel to control.

sleep, nap

The following cell specifies a one-time wait time in milliseconds

delay, naptime

The following cell specifies a standard wait time in milliseconds between each attenuate command

attenuate, _, ,

The following cells specify an attenuation value for channels specified by the last channels command.

minimum, min

Sets the minimum attenuation permitted. Values below this will be set to the minimum directed.

maximum, max

Sets the maximum attenuation permitted. Values above this will be set to the maximum directed.

Attenuation Values

Inherently Positive Values, like 200 are absolute attenuation values, in deci-decibels. 200 means
20.0dB. The smallest unit of resolution is 0.5dB, so all your values will end in zero or five. E.G. (0, 5, 105,
200, 955). Values range between zero and 955.

Explicitly Positive Values, that begin with @+, ++, + are increments with respect to the last value set
on the channel.

attenuate,250
attenuate,@+50

Results in the channel at 30.0dB. Spreadsheets often omit signed values when saving, so @+ will force
a text type cell.

Explicitly Negative Values, that begin with @-, --, - are decrements with respect to the last value
set on the channel.

attenuate,300
attenuate,@-50

Results in the channel at 25.0dB. Spreadsheets often omit signed values when saving, so @- will force
a text type cell.

Basic Cell Math can be performed, but only against absolute cell values.

attenuate,500,400
attenuate,=B1+50,=C1-50, # results in 550, 350
attenuate,=B2+5,=C2-5, # fails: B2 and C2 were formulas.

This feature is unlikely to be as useful as it sounds, because pasting a column of forumae will be pretty
useless, since a spreadsheet processes them recursively. Also, most spreadsheets saved to CSV
typically don't save formulae by default, you probably will get the computed values in your CSV file.

Shortcuts include _, NA, and ,,. You can skip a computation on a cell by leaving a blank cell,
underscore, or 'NA'. Careful: the value +0 will likely be truncated to 0, and set the channel to 0.0dB
attenuation.

Script Options

The attenuate_series.pl script uses these arguments. They support long and short argument switch names:

 -m
 --mgr LANforge manager host, like localhost or 192.168.101.1

 -f
 --file CSV file with attenuation data

 -d
 --delay Override of DELAY variable, milliseconds between applying rows

 -l
 --loop Repeat indefinitely

 -c
 --channel Override of channels variable, eg: 1.2.3.1,2.3.4.3

 -i
 --min
 --minimum Set minimum attenuation value (not lower than zero)

 -x
 --max
 --maximum Set maximum attenuation value (not higher than 955)

 -n
 --dry
 --dryrun
 --dry_run Do not apply attenuation, just parse file, ignore nap times

Example CSV File

This CSV shows a working example that gives warnings.

1. # example csv

2. channels, 1.1.14.0, 1.1.14.1, 1.1.14.2, 1.1.3.0, 1.1.3.1, 1.1.3.2,

3. DELAY,2000,,,,,,

4. ATTENUATE,950,850,750,950,850,750,

5. attenuate,940,-10,-10,-10,-10,-10,

6. attenuate,930,-10,NA,-10,-10,,

7. attenuate,=B4-10,=C4+10,NA,-15,-15,,

8. attenuate,-15,_,-15,,NA,-15,

9. sleep,1000,,,,,,

10. attenuate,110,115,215,315,415,515,

11. _,=B10-20,=C10+20,=D10+20,=E10+20,=F10+20,=G10-20,

12. _,@+10,@+10,@-10,10,10,10,

13. # eof

Attenuators Tab

Here's the Attenuators tab used for the examples:

Opening and Saving CSV

Here are options used for the open dialog in LibreOffice Calc:

Here are the options used for the save dialog in LibreOffice Calc:

LANforge Entity IDs
Goal: Gain a better understanding of LANforge Entity IDs (EIDs)
Every port, radio, virtual port, endpoint and connection in LANforge has an ID known as
an EID. These are an internal notation that expresses the hierarchy of the physical and
virtual objects managed by LANforge realm.

Ports, Endpoints and Connections are Entities

Entity IDs (EIDs) are a dotted-decimal phrase. It expresses the Shelf, Resource Number, Port or Connection
number, and if it is an endpoint, it gains a fourth decimal. An example:

1.2.8.4 : EID
1 : shelf
 2 : resource
 8 : port
 4 : endpoint

For now, assume the shelf number will always be 1. The Resource number will refer to the LANforge machine ID
as reported on the Status tab. The Port ID is only unique within a LANforge machine. The Port ID also refers to
hardware in a machine: radios get a third decimal. The fourth decimal refers to either endpoints or
connections.

Only Some LANforge Entities Generate Connection Data

While some items with port numbers, notably radios and ports, do not generate traffic. Endpoints generate
traffic, and typically endpoints are transmitting to an opposite endpoint. The exception to this are multicast
endpoints.

EIDs Express Hierarchy

From the dotted-decimal perspective:

Physical or virtual ports reside below a resource, except:

...for VLANs: A virtual port does not reside below it's physical port

...for bridge ports:: A port of a bridge has to exist before the bridge is created

An endpoint resides below a physical or virtual port.

The formatting of the decimals might or might not be zero-padded. The picture below should convey how a
connection (Layer 3) relates to two endpoints, and two ports:

The exception is connections. Connections are numbered outside of this hierarchy.

Do I use EIDs in Scripts?

Usually not, for these reasons:

1. EIDs are generated at LANforge manager start time, and might depend on the detection order of

ports when the PCI bus on the host is enumerated at boot time.

2. New EIDs can be created by appending one database to another on non-conflicting devices

3. New devices can be hot-added to a LANforge resource, like a programmable attenuator or a USB-
Ethernet adapter, generating new Port IDs.

In scripts, it is legal to reference port numbers, but not advised to store them between sessions. If you reference
an EID, it should be from within your present LANforge session. If your resources tend to disappear off the
network and return (you had a machine reboot) those EIDs are not guaranteed to return.

i For ports, only the first two decimals (shelf and resource id) are actually stable
across machine reboots.

If you look into the saved scenarios (in /home/lanforge/DB/DFLT) you will notice that ports, endpoints, and
connections are refered to by name. Event though in the CLI Users's guide, where it states port number, use
names in your scripts:

CMD
| SHELF
| | RESOURCE
| | | PORT
| | | |
set_port 1 1 eth1 10.26.1.2 255.255.255.0 10.26.1.1

First-time User Introduction to LANforge:
Scripting and GUI

Goal: This outline is a rough and generic overview of our GUI. This outline, that references
other Candela Technologies documentation on our website, briefly covers basic GUI tasks
and traffic generation that may be shown to a new customer whom has never used the GUI
before, without overloading them with great detail.

1. Table of Contents

A. Basic GUI port manager layout and introduction

A. Editing the GUI tabs and Port Manager to display relevant information

B. Changing Columns in the Port Manager

B. LANforge GUI Tab Introduction

A. Status

B. Port Mgr

C. Layer-3, Layer-3 Endps

D. Layer 4-7

E. Resource Mgr

F. Messages, Warnings, Wifi Messages

G. Using Netsmith

C. Station Creation

A. Searching for Active SSIDs & Connecting to a Particular SSID

D. MAC-VLAN Creation

E. Bridge Creation

F. Virtual AP (VAP) Creation

G. Monitor Creation

H. Layer-3 Cross-Connection

I. Layer-4 Cross Connection

J. Introduction to Chamber View & Running Scripts in Chamber View

2. Basic GUI Port Manager layout and introduction:

After connecting the GUI, the interface will automatically open to the Status page. There are 28
tabs/pages that the GUI has, not including the Netsmith View and the Chamber View.

A. Editing the GUI tabs and Port Manager to display relevant information

Upon opening the GUI, several default GUI tabs open as well. Depending on what
upcoming WiFi testing must occur, more (or less) GUI tabs may need to be open than the
ones defaulted.

When running python scripts aimed to automate the GUI, the tabs that the actions in the
script are occuring in must be displayed in the GUI (unless the user is running the GUI in
headless mode).

A. To display tabs that are hidden:

Click on the + tab under Refresh in the top right hand corner. Then, select which
tabs to add to the GUI display.

B. To hide tabs that are currently displayed:

Right-click the mouse on any tab that is aimed to remove and click Hide. This is
will remove the tab from the GUI interface currently and will be placed under the
+ category.

B. Customization of Column Display in the Port Manager

A. In the second tab, Port Manager, comes downloaded with all the tab columns selected to
be displayed (73 columns). To change which columns are selected and displayed, Right-
click the mouse in any column space and select Add/Remove Table Columns. From that
point, select the necessary columns wished to be displayed in the Port Manager.

B. After selecting the columns that wish to be displayed, Right-click the mouse again in the
body/rows of the Port Manager and select Save-table Layout. This will make sure the
changes don’t revert the next time the GUI is opened and closed.

C. After resizing, one can also Right-click the mouse in the body/rows of the Port Manager
and select Auto-size, to auto-size the columns to make sure that all the words under each
column are in vision at first glance.

D. Tip: hot-keys are enabled throughout the entirety of the GUI. In some places in the GUI,
there are lines underneath some letters in buttons. To use the keyboard shortcut for that
button, press Alt + that letter underlined in the word to press the button. This also works for
drop-down menus when the shortcut is enabled via an underlined letter in a word. Note:
MAC users need to use key combo ctl+alt + letter to do shortcuts. Circled below are some
examples of hotkeys enabled.

3. LANforge GUI Tab Introduction

A. Status tab:

Please read the see also below (LANforge Manager) to read about the LANforge Status tab. This is
where information about the server is typically stored, configurations of the GUI are able to be
saved, and where the Netsmith is.

For more information see Step 2: LANforge Manager

B. Port Mgr tab:

The Port Mgr tab is where all the ports and representations of the radios, wifi objects, and ethernet
connections are located. The Port Mgr (or Port Manager) includes the location/appearance of all
further MAC-VLANs, 802.1Q-VLANs, Redirects, Bridges, Bonds, GRE Tunnels, WiFi Stations, WiFi VAPs,
WiFi Monitors and WiFi Virtual Radios. Please read more about the Port Mgr tab next to see-also
below

For more information see Ports (Interfaces)

C. Layer-3 tab, L3 Endps tab:

The Layer-3 tab are where Layer-3 WiFIRE traffic connections are made, started, stopped, modified,
and displayed. Each cross-connects have 2 endpoints each. These endpoints and the traffic/data
associated with them are found and elaborated under the L3 Endps tab in the GUI. Please visit the
introduction to Layer-3 Cross-Connects, linked below, for a general overview.

For more information see Layer-3 Cross-Connects (FIRE)

https://www.candelatech.com/lfgui_ug.php#status_pane
https://www.candelatech.com/lfgui_ug.php#port
https://www.candelatech.com/lfgui_ug.php#cx

D. Layer 4-7 tab:

The ‘Layer 4-7’ tab is currently where Layer-4 HTTP, HTTPS, FTP, FTPS, TFTP, SCP and SFTP endpoints are
made. These are stateful protocols that will communicate properly with third-party servers. FTP, FTPS,
TFTP, SCP and SFTP can upload and download, and the other protocols are only for downloading.
The Layer 4-7 tab is used to manage Layer 4-7 endpoints.

For more information see Layer 4-7

E. Resource Mgr tab:

The Resource Mgr tab displays information on all Resources discovered by the LANforge server and
provides the ability to perform system functions on selected machines (one or more). The definition
of a resource is a LANforge machine that belongs to a numbered realm. The realm 255 is always a
stand-alone realm while the realm resource 1 is the manager. The Resource Mgr tab displays
LANforge servers in the same realm. LANforge systems have to be manually numbered, two
LANforge systems with the same resource ID will confuse the manager resource. Please visit the link
below for more information on the Resource Mgr

For more information see Resources (Data Generator Machines)

F. Messages, Warnings, Wifi-Messages Mgr tab:

The Messages, Warnings and Wifi-Messages tab are all tabs that should be open at all times. All
these tabs contain important information about the LANforge GUI Interface. The Messages tab
displays detailed CLI command feedback from the LANforge Server. When scripting, command
failures can be shown here. If any one of these 3 tabs are highlighted/have a yellow background in
the tab bar, there is a new update in that yellowed tab.For information on any other tabs, besides
the ones mentioned above, please visit the link below LANforge-GUI User Guide: Tab Display
Preferences for further tab descriptions.

For more information see Tab Display Preferences

https://www.candelatech.com/lfgui_ug.php#l4
https://www.candelatech.com/lfgui_ug.php#card
https://www.candelatech.com/lfgui_ug.php#control

G. Using Netsmith tab:

In the LANforge GUI, on the Status page there is a small button named Netsmith. It is a tool used to
help visualize the relationships of ports and cross connects defined in the resource you are viewing.
There is a separate Netsmith view for each LANforge resource in your realm. There are several ways
to edit the GUI objects in Netsmith, display the different up-to-date connections in the GUI, and
what is shown in Netsmith. Please visit the link below to understand how to use Netsmith in greater
detail.

For more information see Netsmith: Virtual Network Configurator

4. Station Creation:

Please visit Step 1 of the following cookbook below to learn how to Create a Station in the LANforge-GUI.
Please visit the link at the bottom of this section on how to script a station in the GUI.

A. Searching for Active SSIDS & Connecting to a Particular SSID:

Often times, there may be an active network around, but the LANforge GUI does not have
the network registered as “able to be connected to”. To allow this network to be
recognized, one must scan in the GUI object’s settings to make sure that the object sees this
network.

See below for an example:

I. Double-click or select Modify on a station in the Port Mgr to pop up Configure
Settings window.

II. However, the GUI isn’t registering that as a proper network because selecting
Display Scan, Scan, and Sync in the Configure Settings shows no networks are
found and discovered in the GUI.

https://www.candelatech.com/lfgui_ug.php#vr

III. Type in the desired SSID, Key/Phrase, and select the appropriate Security to be
used (WPA/WPA2/WPA3… etc) located within the WiFi Settings panel (shown
below). Select Apply. Apply will trigger the LANforge GUI to start searching for
currentlyactive SSIDs.

IV. Then, select Display Scan in the bottom bar, as highlighted in the picture above.
Something similar to the Window in the picture below will pop up. Then click on
Scan (circled below) and Sync. Now, the most recent active networks should be
scanned and displayed in a similar window to below by the GUI. The example
below indicates that the radio (wiphy0) has now found current, active networks.
Also, the far right corner of the table displays the age of the networks, so if the
Age is too old after the recent scanning, it might be time to restart the network or
pick a new network.
Note: If there are no scan results, the radio is probably set to a specific channel.
The radio channel configuration may need to be changed or the object must be
created on a different radio.

V. . Now, close the two windows opened previously by selecting Close. Go back to
the Port Mgr tab and the desired object to be connected should be connected
to that SSID. In Wifi-Messages,there should have also been a message saying that
sta0 and wiphy0 are scanning for network SSIDs. This is another indication of the
LANforge scanning software retrieving local SSIDs. LANforge now concludes that it
can connect to the SSID by acquiring an AP and IP in the Port Mgr (see circled
below).

For more information see Station Creation : Step 1

https://www.candelatech.com/cookbook.php?vol=wifire&book=wifi+testing

For more information see Scripting a Station in the GUI (Step 3)

5. MAC-VLAN Creation:

Creating a MAC-VLAN on the LANforge-GUI is done in the Port Mgr.

Please visit Step 3 of the following cookbook on how to create a MAC-VLAN from the GUI. The following link
will inform how to program the GUI to create a MAC-VLAN

For more information see Creating a MAC-VLAN in the GUI(Step 3)

For more information see Scripting a MAC-VLAN in the GUI

6. Bridge Creation:

Creating a Bridge on the LANforge-GUI is done in the Port Mgr.

Please visit Step 2 of the following cookbook on how to create a Bridge in Netsmith.

For more information see Creating a Bridge in Netsmith (Step 2)

A. Create a bridge in Port Mgr:

A. Click on the Port Mgr tab and Create in the top right corner.

B. After a new window pops up, Select Bridge in Step 1 of the new window. In Step 2, select
the Shelf and Resource the bridge should use (from the drop down menus in each slot).
Step 3, select the Quantity of the bridges to be created. In Step 4, under the Basic Settings
tab, check the box if the bridge should be enabling DHCP-IPv4. If DHCP-IPv4 isn’t enabled,
give the bridge an IP Address and IP Mask. Lastly, give the bridge a name, Click Apply and
Cancel. The bridge is now in the Port Mgr.

https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction
https://www.candelatech.com/lfgui_ug.php#vr
https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction
https://www.candelatech.com/pdfs/cookbook_ice_Multiple_Layer_2_Switches.pdf

B. Adding a port to an existing bridge in Port Mgr:

A. To add a port, double click on the bridge you created or click once on the bridge in Port
Mgr and select Modify. A window Configure Settings should pop up. At the bottom of the
window, there is a small section that allows addition of ports.

B. In the text box under the Add Ports button (circled below), type in the port name (ex:
vap123, eth1, sta000) intended to be added to the bridge. In this example, eth1 to be
added to br17.

C. Select Add Ports (circled). This button will now categorize eth1 as a Configured Port. Then,
select Apply and Sync to now see eth1 also be listed under Current Ports. Lastly, click OK to
close the window. If the port inputted into the text box does not move to the Current Ports
category after selecting Sync, this may mean that the port is already in a configuration that
prevents it from being in a bridge (i.e. it may already be in a bridge…etc). To learn how to
script a bridge in the GUI, please visit the link below.

For more information see Scripting the GUI to create a Bridge (Step 6)

https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction

7. Virtual Creation (VAP):

Please visit Step 1 of the following cookbook to learn how to create a Virtual AP in the GUI. For more
information see Scripting the GUI to create a VAP (Step 7)

8. Monitor Creation:

Please visit Step 1 of the following cookbook to learn how to create a Monitor in the GUI. For more
information see Scripting the GUI to create a Monitor

9. Layer 3 Creation:

Layer-3 Cross-Connects represent a stream of data flowing through the system under test. A Cross-Connect
(CX) is composed of two Endpoints, each of which is associated with a particular Port (physical or virtual
interface). The Layer-3 tab displays connections 0-200 by default.

Separated below are important sections to getting to know the Layer 3 tab:

For more information see How to Create and Modify Cross-Connects & Cross-Connect Information

For more information see Interpreting the Layer-3 Endps tab: Layer-3 Cross Connect Endpoints &
Batch-Creating Cross-Connects

For more information see Scripting a Layer-3 Cross Connect (Step 8)

10. Layer 4-7 Traffic Generation:

The Layer 4-7 traffic is supposed to emulate curl commands. Endpoints can be created with the following
protocols: HTTP, HTTPS, FTP, FTPS, TFTP, SCP and SFTP. These are stateful protocols that will communicate
properly with third-party servers. FTP, FTPS, TFTP, SCP and SFTP can upload and download, and the other
protocols are only for downloading. The Layer 4-7 tab is used to manage Layer 4-7 endpoints.

Separated below are important sections to getting to know the Layer 4-7 tab:

For more information see Creating and Modifying Layer 4-7 Endpoints, L4 Endpoint Information,
Batch-Create Layer 4-7 Endpoints

For more information see Layer 4-7 Endpoint Display

For more information see Setting up a Simple HTTP Get/Download in the GUI

For more information see Scripting the GUI to create Layer 4-7 traffic (Step 9)

https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction
https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction
https://www.candelatech.com/lfgui_ug.php#cx_cr
https://www.candelatech.com/lfgui_ug.php#l3_cx_endps
https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction
https://www.candelatech.com/lfgui_ug.php#l4_mod
https://www.candelatech.com/lfgui_ug.php#l4_disp
http://www.candelatech.com/cookbook.php?vol=fire&book=Introduction+to+Layer+4-7+Traffic
https://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Scripting+Introduction

Querying the LANforge GUI for JSON Data
Goal: The LANforge GUI now has an embedded webserver and a headless mode of
operation. Read on for how to configure and query the client for JSON formatted data.

Updated 2019-11-21:New features in 5.4.1.

Some of the CLI API parameter names have changed. Notably:
nc_show_ports flags changed to probe_flags . Be aware that older scripts
might break on upgrade.

Updated 2018-07-24:New features in 5.3.8.

The LANforge GUI (as of release 5.3.6) can be configured to start an embedded web
server that can provide data about ports and layer-3 connections. This service can be
queried with with any browser or AJAX connection. We're going to increasingly refer to it
as the LANforge client. This feature provides these benefits:

More rapid polling: using CLI scripts to poll ports on the LANforge manager can
add stress and contention to the LANforge manager; polling the GUI will not
tax your test scenario.

Expanded array of data: the views found in the GUI, like Port Mgr and Layer-3
tabs, contain synthesized data columns not available through the CLI scripting
API. Most of these columns can be returned in JSON format.

Reduced effort when integrating with third party test libraries: many other
testing libraries expect JSON formatted input.

Web socket delivery of event data allows real-time reporting of interface
changes and station scan results. This is also a channel for querying additional
diagnostic data.

There is a /help web page that allows you to build POST commands.

A headless -daemon mode that will run the client without any GUI windows. This
requires much less memory and has been queried for weeks at a time without
crashing or memory leaks.

Present and potential drawbacks of the JSON feature:

Actively being developed: the JSON views/schema of the objects is at a
demonstation state. URLs and JSON structures have changed in 5.3.8.

Now no longer possible to create Groovy plugins to add JSON features if you
want to use the headless mode. JSON Features are compiled into the
LANforge GUI from Java sources.

In 5.3.8 we have limited the view of ports, have added URLs to post direct CLI
commands, and have applied HTML application/x-www-form-urlencoded
form posting submissions in name/value pairs. There is no multipart/form-
data JSON submission at this time.

Client Settings

The LANforge GUI is started using a script (lfclient.bash or lfclient.bat). From a terminal, we call that script
with the -httpd switch. By default the GUI will listen on port 8080:

$ cd /home/lanforge
$./lfclient.bash -httpd

You can specify the port to listen on:

$./lfclient.bash -httpd 3210

You can run the client headless with the -daemon switch as well:

$./lfclient.bash -httpd -daemon

There is a setting in the 5.3.8 Control→Preferences menu for setting a minimized mode and the HTTP port
number as well.

Making Queries

From the terminal we can query the port to find a basic message from the GUI:

$ curl -sq http://localhost:8080/

This first page (/) will give you a JSON list of the resource URLs available. Most URLs will provide JSON as their
default content type. Notably, /help defaults to HTML.

By default, most URLs will treat a default Accept: */* header as text/html . Compare the two techniques
below:

JSON Output

$ curl -sqv -H 'Accept: application/json' http://localhost:8080/resource/1/1
{"handler":"candela.lanforge.HttpResource$JsonResponse","uri":"resource","candela.lanforge.HttpResource":{"duration":"27"},"resources":[{"1.1":{"_links":"/resource/1/1","entity id":"NA","hostname":"idtest.candelatech.com"}},{"1.2":{"_links":"/resource/1/2","entity id":"NA","hostname":"hedtest"}},{"1.3":{"_links":"/resource/1/3","entity id":"NA","hostname":"ct524-debbie"}},{"1.4":{"_links":"/resource/1/4","entity id":"NA","hostname":"jed-apu2-a"}},{"1.5":{"_links":"/resource/1/5","entity id":"NA","hostname":"jed-apu2-b"}},{"1.6":{"_links":"/resource/1/6","entity id":"NA","hostname":"ct524-emily"}},{"1.7":{"_links":"/resource/1/7","entity id":"NA","hostname":"ct524-freya"}},{"1.8":{"_links":"/resource/1/8","entity id":"NA","hostname":"ct524-genia"}}]}

Clearly, the JSON output is difficult to read. We cover formatting output below.

HTML Output

Most of the queries to the client will return JSON by default. The notable exception is the /help URL. To get
HTML output in the terminal, you have to specify Accept: text/html to curl:

$ curl -sqv -H 'Accept: text/html' http://localhost:8080/port/1/1/1
<!DOCTYPE html>
<html>
<head><title>/port</title>
</head>
<body>
<table border='1'><thead><tr><th>EID</th><th>AP</th><th>Activity</th><th>Channel</th><th>Device</th><th>Down</th><th>IP</th><th>Parent Dev</th><th>Phantom</th><th>Port</th><th>SSID</th></tr></thead>
<tbody>
<tr><td>1.1.1</td><td></td><td>0.0</td><td></td><td>eth1</td><td>false</td><td>0.0.0.0</td><td></td><td>false</td><td>1.1.01</td><td></td></tr>
</table><hr />
</body>
</html>

Formatting Results

JSON formatted text is pretty difficult to read, there are a few different utilities that can help you look at it: jq,
json_pp, json_reformat, tidy, xmllint, yajl and jsonlint.

Example of installing formatters

On Fedora, install:

$ sudo dnf install -y jq perl-JSON-PP tidy libxml2 yajl

On Ubuntu, install:

$ sudo apt install -y jq libjson-pp-perl perltidy xmllint libxml2-utils yajl-tools

Now we can perform a query:

$ curl -sq /port/1/1/1
{
 "candela.lanforge.HttpPort" : {
 "duration" : "1"
 },
 "handler" : "candela.lanforge.HttpPort$JsonResponse",
 "interface" : {
 "stuff":...
 },
 "uri" : "port/:shelf_id/:resource_id/:port_id"
}

Notice that the URI object list paths with colon-tagged positions in them, e.g.: /cli-form/:cmd . These are
interpreted as URL parameters and not query string parameters, they cannot be moved into the query string.

Making your shell friendly

To save you typing, you might want to add this function to your .bash_aliases file:

function Json() {
 curl -sqv -H 'Accept: application/json' "http://localhost:8080${@}" \
 | json_reformat | less
}

Then you can make your calls this way:

$ Json /port/1/1/1

Browsing results in table format

We can view a URL in a browser as well:

Viewing Alerts and Events

You can both view and stream event data. Querying events and alerts are both quite similar:

$ Json /events
{
"handler" : "candela.lanforge.HttpEvents$FixedJsonResponder",
"events" : [
 {
 "2249259" : {
 "event" : "Connect",
 "_links" : "/events/2249259",
 "entity id" : "NA"
 }
 },

A busy LANforge system will generate hundreds of thousands of events. Only the last few thousand can be
recalled.

You can inspect a singular event:

$ Json /events/2249259
{
 "handler": "candela.lanforge.HttpEvents$FixedJsonResponder",
 "uri": "events/:event_id",
 "candela.lanforge.HttpEvents": {
 "duration": "0"
 },
 "event": {
 "eid": "1.3.21",
 "entity id": "NA",
 "event": "Connect",
 "event description": "sta3106 (phy #1): connected to 00:0e:8e:d5:fa:e6",
 "id": "2249259",
 "name": "sta3106",
 "priority": " Info",
 "time-stamp": "2018-07-24 14:39:33.776",
 "type": "Port"
 }
}

We can view /alerts similarly.

$ Json /alerts/92
{
 "handler" : "candela.lanforge.HttpEvents$FixedJsonResponder",
 "uri" : "alerts/:event_id",
 "alert" : {
 "name" : "wlan0",
 "time-stamp" : "2018-07-02 16:23:30.880",
 "entity id" : "NA",
 "id" : "92",
 "eid" : "1.1.5",
 "event description" : "Port wlan0 has no WiFi SSID Configured.",
 "event" : "WiFi-Config",
 "priority" : " Warning",
 "type" : "Port"
 },
 "candela.lanforge.HttpEvents" : {
 "duration" : "1"
 }
}

Streaming Events

Continually polling the /events URL is not as effective as streaming a websocket providing the same data. We
need a web socket client. Websockets are built into modern browsers and there are python and perl utilities
for the job as well. An easy to use python client is wsdump .

Installing wsdump

There is a useful python utility called wsdump (or wsdump.py). Try to install the python-websocket package to
get it. There are many similar matches, but there is not one dedicated package that provides it. On Fedora:

root@fedora$ dnf whatprovides `which wsdump`
root@fedora$ dnf install -y python3-websocket-client

root@ubuntu$ ls -l /usr/bin/wsdump
 /usr/bin/wsdump → /etc/alternatives/wsdump
root@ubuntu$ ls -l /etc/alternatives/wsdump
 /etc/alternatives/wsdump → /usr/bin/python2-wsdump
root@ubuntu$ dpkg-query -S /usr/bin/python2-wsdump
python-websocket: /usr/bin/python2-wsdump

root@ubuntu$ sudo apt install python-websocket

You might need to install pip, and that might be in the python3-pip package. Then you can install via:

$ sudo apt install python-pip # or sudo dnf install python-pip
$ sudo pip install --upgrade pip
$ pip search websocket
$ sudo pip install websocket-client

Streaming Using wsdump

Here's an example of wsdump below. Don't forget you are now using h the ws:// schema and not the http://
schema!

$ /usr/bin/wsdump ws://localhost:8081/

It might take a few second to start showing results if your system is not very active. You should be able to
prompt output by executing this message in the Messages tab: gossip hi ben!

Streaming Using javascript

You can also use a web page to follow events because websockets are built into modern browsers. This is a
screenshot of the

Data Views
URLs

/shelf

The /shelf/1/ URL provides a list of resources in your realm:

$ Json /shelf/1
{
 "handler": "candela.lanforge.HttpResource$JsonResponse",
 "uri": "shelf/:shelf_id",
 "candela.lanforge.HttpResource": {
 "duration": "0"
 },
 "resources": [
 {
 "1.1": {
 "_links": "/resource/1/1",
 "hostname": "idtest.candelatech.com"
 }
 },
 {
 "1.2": {
 "_links": "/resource/1/2",
 "hostname": "hedtest"
 }
 }
]
}

/resource

The /resource URL provides a digest of ports available at the requested resource.

$ Json /resource/1/1
{
 "handler" : "candela.lanforge.HttpResource$JsonResponse",
 "resource" : {
 "free swap" : 526332,
 "free mem" : 4634228,
 "load" : 0.4,
 "bps-rx-3s" : 7850,
 "sw version" : " 5.3.8 64bit",
 "entity id" : "NA",
 "tx bytes" : 40533976395,
 "phantom" : false,
 "eid" : "1.1",
 "hostname" : "idtest.candelatech.com",
 "hw version" : "Linux/x86-64",
 "mem" : 8057280,
 "cpu" : "Intel(R) Core(TM) i7-3555LE CPU (2137Mhz)(x4)",
 "max staged" : 50,
 "ctrl-ip" : "192.168.100.41",
 "ports" : "0 1 2 3 4 5 6 7 8 9 10 11 12 ",
 "gps" : "0.0N 0.0E 0m",
 "max if-up" : 15,
 "bps-tx-3s" : 1753832,
 "cli-port" : "4003",
 "sta up" : 12,
 "shelf" : "1",
 "rx bytes" : 606510139,
 "ctrl-port" : "4004",
 "swap" : 526332
 },
 "uri" : "resource/:shelf_id/:resource_id",
 "candela.lanforge.HttpResource" : {
 "duration" : "1"
 }
}/port

The /port URL provides a digest of ports and their state. You can request multiple ports by ID on this
resource by appending the port IDs with commas. You can list ports on a resource:

$ Json /port/1/5/list
{
 "handler" : "candela.lanforge.HttpPort$JsonResponse",
 "uri" : "port/:shelf_id/:resource_id/:port_id",
 "interfaces" : [
 {
 "1.5.b5000" : {
 "entity id" : "NA",
 "_links" : "/port/1/5/7",
 "alias" : "b5000"
 }
 },
 {
 "1.5.eth0" : {
 "alias" : "eth0",
 "_links" : "/port/1/5/0",
 "entity id" : "NA"
 }
 },
...
],
 "candela.lanforge.HttpPort" : {
 "duration" : "2"
 }
}

We can query multiple ports at a time by their number or their name by placing a comma between the
specifiers. Additionally, we can query for just the fields we desire. All field names are lower-case: ?
fields=tx+crr,rx+fifo.

$ Json '/port/1/5/wiphy0,wiphy1?fields=device,phantom,tx+bytes,mode'
{
 "interfaces" : [
 {
 "1.5.wiphy0" : {
 "tx bytes" : 401236186,
 "mode" : "802.11abgn",
 "device" : "wiphy0",
 "phantom" : false
 }
 },
 {
 "1.5.wiphy1" : {
 "phantom" : false,
 "device" : "wiphy1",
 "mode" : "802.11abgn",
 "tx bytes" : 403975812
 }
 }
],
 "candela.lanforge.HttpPort" : {
 "duration" : "1"
 },
 "uri" : "port/:shelf_id/:resource_id/:port_id",
 "handler" : "candela.lanforge.HttpPort$JsonResponse"
}

/cx

The /cx URL allows us to query Layer-3 connection information.

$ Json /cx
{
 "uri" : "cx",
 "handler" : "candela.lanforge.GenericJsonResponder",
 "connections" : [
 "41.1" : {
 "entity id" : "NA",
 "name" : "udp:r3r2:3000",
 "_links" : "/cx/41"
 },
 "50.1" : {
 "name" : "udp:r3r2:3009",
 "entity id" : "NA",
 "_links" : "/cx/50"
 }
]
}

And individual connections:

$ Json /cx/udp:r3r2:3000$ Json 'cx/udp:r3r2:3000'
{
 "uri" : "cx/:cx_id",
 "41.1" : {
 "drop pkts b" : 0,
 "type" : "LF/UDP",
 "rx drop % a" : 0,
 "rpt timer" : "1000",
 "pkt rx a" : 0,
 "avg rtt" : 0,
 "rx drop % b" : 0,
 "name" : "udp:r3r2:3000",
 "endpoints (a ↔ b)" : "udp:r3r2:3000-A <=> udp:r3r2:3000-B",
 "drop pkts a" : 0,
 "entity id" : "NA",
 "bps rx a" : 0,
 "eid" : "1.41",
 "state" : "Stopped",
 "pkt rx b" : 0,
 "bps rx b" : 0
 },
 "handler" : "candela.lanforge.GenericJsonResponder"
}

i Technically, colons in URLs need to be encoded as %3A , so the above URL
should be /cx/udp%3Ar3r2%3A3000 , but curl is pretty darned forgiving.

/endp

Endpoints may be listed and inspected:

$ Json /endp/
 {
 "uri" : "endp",
 "handler" : "candela.lanforge.HttpEndp$JsonResponse",
 "candela.lanforge.HttpEndp" : {
 "duration" : "4"
 },
 "endpoint" : [
 {
 "1.2.8.55.2" : {
 "_links" : "/endp/55",
 "entity id" : "NA",
 "name" : "sta3000-ep-B"
 }
 },
 {
 "1.2.8.57.1" : {
 "_links" : "/endp/57",
 "name" : "udp:r3r2:3000-B",
 "entity id" : "NA"
 }
 },
...
]
}

$ Json /endp/sta3000-ep-B
 {
 "candela.lanforge.HttpEndp" : {
 "duration" : "1"
 },
 "uri" : "endp/:endp_id",
 "endpoint" : {
 "rx rate ll" : 0,
 "pdu/s tx" : 0,
 "bursty" : false,
 "rx rate" : 0,
 "tx pkts ll" : 0,
 "rx bytes" : 0,
 "run" : false,
 "tcp rtx" : 0,
 "min pdu" : 1460,
 "pps rx ll" : 0,
 "ooo pkts" : 0,
 "cx to" : 0,
 "tx rate ll" : 0,
 "source addr" : "10.41.0.2 0",
 "name" : "sta3000-ep-B",
 "rx ber" : 0,
 "min rate" : 56000,
 "rx dup %" : 0,
 "max rate" : 56000,
 "tx rate (1 min)" : 0,
 "a/b" : "B",
 "destination addr" : "0.0.0.0 0",
 "dropped" : 0,
 "script" : "None",
 "jitter" : 0,
 "elapsed" : 0,
 "rx rate (1 min)" : 0,
 "tx rate" : 0,
 "1st rx" : -1,
 "tx bytes" : 0,
 "crc fail" : 0,
 "rx wrong dev" : 0,
 "tx pdus" : 0,
 "pattern" : "INCREASING",
 "rx drop %" : 0,
 "entity id" : "NA",
 "cwnd" : 0,
 "delay" : 0,
 "mng" : true,
 "cx estab" : 0,
 "rx pdus" : 0,
 "tcp mss" : "0/0",
 "dup pkts" : 0,
 "rcv buf" : "0/0",
 "pdu/s rx" : 0,

Creating Ports

It is possible to create ports and connections by using the CLI commands. Your LANforge test scenarios
(located in the /home/lanforge/DB/ directory) contain all the CLI commands that create your ports and
connections. You can submit those commands over HTTP in two ways:

/cli-json/$command An example of using the gossip command:

curl -X POST -H 'Content-type: application/json' \
 -d '{"message":"hello world"}' http://localhost:8080/cli-json/gossip

Then check your LANforge GUI messages.

/cli-form/$command An example of using the gossip command:

curl -X POST -d 'message=hello+world' http://localhost:8080/cli/gossip

Then check your LANforge GUI messages.

/cli/: use this method to submit a raw URL-encoded command. This might be useful if you are
copying commands directly out of a database:

curl -X POST -d 'cmd=gossip hello' http://localhost:8080/cli/

Except for /cli-json , these methods accept application/x-www-form-urlencoded content type submissions.
This is default for the NanoHttp library and default for curl .

These CLI commands do not return data, only a result code. All data that the Perl scripts would collect from
command line queries is sent directly to the GUI. Some CLI commands send data over the websocket, like the
diag command.

Command help

http://www.candelatech.com/lfcli_ug.php
http://www.candelatech.com/lfcli_ug.php

Commands are often complex and include a number of bitwise flags to set the state and features of ports.
There is presently no tag-substitution for port flags, but there is a help utility that can help you compute them.

http://localhost:8080/help/

Select a command to see the field helper screen:

http://localhost:8080/help/set_port

Type values into the field inputs and the CLI command will be refreshed:

Click the Parse Command button and the values in the command box will be displayed in the curl command
and the field inputs. (Notice this form is doing a GET request.)

You may find a list of flag fields that are organized by field names. The text area below the selection list is the
sum of the selected fields. Copy the flag values into the input field above to incorporate it into your command.

Creating a WiFi Station

Please refer to the scripts lf_associate_ap.pl and lf_vue_mod.sh for examples of how to produce lists of CLI
commands involved in creating stations. Please refer to:

1. Learn CLI Commands used to operate WiFi stations

2. and Changing Station WiFi SSID with the CLI API

These will provide ways of collecting the CLI commands in log files for you to place into the command /help/
page.

Use ssh to log into your LANforge manager. Use the lf_vue_mod.sh script to create a station:

$ cd scripts
$./lf_vue_mod.sh --mgr localhost --resource 3 --create_sta --name sta3101 \
 --radio wiphy1 --ssid idtest-1000-open --passphrase '[BLANK]' \
 --log_cli /tmp/clilog.txt

$ cat /tmp/clilog.txt
set_wifi_radio 1 3 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
add_sta 1 3 wiphy1 sta3101 1024 idtest-1000-open NA [BLANK] AUTO NA 00:0e:8e:c1:df:45 8 NA NA NA NA NA 1024
set_port 1 3 sta3101 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:c1:df:45 NA NA NA 8405038 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

1. Enter each command into the your browser toolbar by altering the command into a url:

1. http://localhost:8080/help/set_wifi_radio?cli=1 3 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA

Produces:

http://www.candelatech.com/cookbook.php?vol=cli&book=Station+CLI+Operations
http://www.candelatech.com/cookbook.php?vol=cli&book=Changing+Station+WiFi+SSID+with+the+CLI+API

alias enter udp1000-A

shelf 1

resource 2

port b2000

type select type.lf_udp

min_rate 1000000 (1 Mbps)

max_rate SAME

payload_pattern select payload_pattern.increasing

alias enter udp1000-B

shelf 1

resource 7

port sta7000

type select type.lf_udp

min_rate 54000 (54 Kbps)

max_rate SAME

payload_pattern select payload_pattern.increasing

$ echo 'shelf=1&resource=3&radio=wiphy1&channel=-1&flags=0x1' > /tmp/curl_data
$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
 http://localhost:8080/cli-form/set_wifi_radio

2. http://localhost:8080/help/add_sta?cli=1 3 wiphy1 sta3101 1024 idtest-1000-open NA [BLANK] AUTO NA 00:0e:8e:c1:df:45 8 NA NA NA NA NA 1024

Produces:

$ echo 'shelf=1&resource=3&radio=wiphy1&sta_name=sta3101&flags=1024&ssid=idtest-1000-open&key=[BLANK]&ap=AUTO&mac=00:0e:8e:c1:df:45&mode=8&flags_mask=1024
$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
 http://localhost:8080/cli-form/add_sta

3. http://localhost:8080/help/set_port?cli=1 3 sta3101 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:c1:df:45 NA NA NA 8405038 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

Produces:

$ echo 'shelf=1&resource=3&port=sta3101&ip_addr=0.0.0.0&netmask=255.255.0.0&gateway=0.0.0.0¤t_flags=2147483648&mac=00:0e:8e:c1:df:45&interest=8405038&report_timer=1000¤t_flags_msk=NONE
$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
 http://localhost:8080/cli-form/set_port

2. Verify with the LANforge GUI the changes you wish to make.

Creating Connections

Using the /cli-json/add_endp and /cli-json/add_cx URLs, it is possible to create Layer-3 connections.
Create the Layer-3 endpoints first, of course.

Create L3 Endpoints

Construct your command using the /help/add_endp page. For an example, use these parameters:

Click Parse Command and copy the resulting curl command into a text editor:

And for the B endpoint, choose a station:

alias udp1000

test_mgr default_tm

tx_endp udp1000-A

rx_endp udp1000-B

Click Parse Command and copy the resulting curl command into a text editor:

We'll save this file as a shell script: ~/create-endp.sh We can then run it from our terminal like so: bash -x
create-endp.sh

We should see the endpoints we've created in the LANforge GUI Endps tab:

Create L3 Connection

With the creation of two endpoints, we can proceed with creating a Layer 3 cross-connect. This is much
simpler, it really only takes the names of the two endpoints we created above. We'll choose default_tm for the
test manager.

Click the Parse Command button and copy the resulting curl command into your editor with the shell script.
Run the script again. It doesn't hurt to re-create the endpoints.

test_mgr default_tm

cx_name udp1000

cx_state RUNNING

Toggling the Connection

Cross connects have three good state: STOPPED, RUNNING, and QUIESCE. The command to change them is
set_cx_state. You will have no trouble creating the command:

Click Parse Command and then you can paste the resulting command into your editor.

Advanced Techniques

You can make JSON submissions and you can also submit Base64 encoded values in both form an and JSON
submission URLs.

Submitting Base64

Field names that end in -64 are interpreted as base64 encoded values. From a linux terminal, you can convert
text to base64 encoded value using the base64 command:

$ echo "RUNNING" | base 64
UlVOTklORwo=

Below is a CLI command example. You typically would not care to spend the effort doing this unless the data
you need to express is difficult to URL encode.

$ echo 'test_mgr-64=YW55Cg==&cx_name-64=dWRwMTAwMAo=&cx_state-64=UlVOTklORwo=' > /tmp/curl_data
$ curl -A 'Accept: application/json' -X POST -d @/tmp/curl_data http://host/cli-form?set_cx_state

Submitting JSON

Instead of posting to /cli-form , you can post to /cli-json and your submission will be parsed as a json
object. The parameter names stay the same. The base64 name extensions are also available! You need to
specify that your Content-type in the POST is application/json .

$ echo '{"test_mgr":"default_tm","cx_name":"udp1000","cx_state":"RUNNING"}' > /tmp/curl_data
$ curl -sq -H 'Content-type: application-json' -H 'Accept: application/json' \
 -X POST -d@/tmp/curl_data http://localhost:8080/cli-json/set_cx_state

Handling Mismatched Column Errors

(This should be fixed as of 2018/08/14) When the LANforge cliet is in GUI mode, the columns of data that are
returned match the GUI table columns displayed. You can use the Right-click→Add/Remove Table Columns
menu item to change this. We do not recommend doing this for querying JSON data though, because the
table columns definitions will not match up to the data the webserver expects to return.

$ curl -sq http://localhost:8080/port | json_pp
{
 "error_list" : [
 "names_to_col_ids map is not going to work:\n[tx abort][25 > 4]\n[cx time (us)][48 > 4]\n[bytes rx ll][33 > 4]\n[bps tx][14 > 4]\n[channel][39 > 4]\n[no cx (us)][47 > 4]\n[rx frame][22 > 4]\n[login-fail][58 > 4]\n[tx hb][28 > 4]\n[mode][40 > 4]\n[anqp time (us)][49 > 4]\n[rx pkts][8 > 4]\n[bytes tx ll][31 > 4]\n[key/phrase][56 > 4]\n[signal][42 > 4]\n[connections][44 > 4]\n[ipv6 gateway][68 > 4]\n[time-stamp][69 > 4]\n[entity id][70 > 4]\n[bps rx ll][32 > 4]\n[rx errors][16 > 4]\n[tx errors][17 > 4]\n[pps tx][13 > 4]\n[rx over][20 > 4]\n[ap][38 > 4]\n[mtu][63 > 4]\n[qlen][62 > 4]\n[beacon][54 > 4]\n[rx drop][18 > 4]\n[tx wind][29 > 4]\n[reset][34 > 4]\n[device][61 > 4]\n[status][37 > 4]\n[activity][41 > 4]\n[cx ago][46 > 4]\n[crypt][51 > 4]\n[rx crc][21 > 4]\n[ipv6 address][67 > 4]\n[logout-ok][59 > 4]\n[parent dev][6 > 4]\n[ssid][55 > 4]\n[tx-rate][35 > 4]\n[mac][66 > 4]\n[login-ok][57 > 4]\n[4way time (us)][50 > 4]\n[logout-fail][60 > 4]\n[rx miss][24 > 4]\n[rx fifo][23 > 4]\n[noise][43 > 4]\n[alias][5 > 4]\n[tx pkts][12 > 4]\n[tx crr][26 > 4]\n[rx length][19 > 4]\n[dhcp (ms)][45 > 4]\n[retry][52 > 4]\n[misc][53 > 4]\n[mask][64 > 4]\n[tx bytes][11 > 4]\n[tx fifo][27 > 4]\n[collisions][15 > 4]\n[pps rx][9 > 4]\n[gateway ip][65 > 4]\n[bps tx ll][30 > 4]\n[rx bytes][7 > 4]\n[bps rx][10 > 4]\n[rx-rate][36 > 4]"
],
 "status" : "INTERNAL_ERROR"
}

The terminal you started the LANforge client on will also give a similar error:

1532480073953: names_to_col_ids size:71
java.lang.IllegalArgumentException: names_to_col_ids map is not going to work:
1532480073953: lfj_table columns:10

Reset the Table Layout

1. Right-clicking the Port Mgr and selecting Add/Remove Table Columns will allow you to change this.

2. Clicking the Select All/None button and then Apply will get all the columns displayed, and returned
in your queries.

3. Make sure to Right-Click → Save Table Layout so that your next session will show all the data.

4. Restart the LANforge client

Learn CLI commands used to operate WiFi
stations.

Goal: Compare and learn script and CLI commands used when creating and operating
stations.
The LANforge perl scripts have always been able to print out the CLI commands used to
communicate with the LANforger manager. These examples show recent modifications
that allow you to collect the CLI commands more easily using the --log_cli switch.
(Not all scripts have this feature yet). The --log_cli switch prints CLI commands to your
console. You can collect those commands in a file using the switch with an argument of
the file name:
 $./lf_vue_mod.sh --log_cli /tmp/clilog.txt

It is possible to repeat these commands using the lf_firemod.pl script:
 $./lf_firemod.pl --mgr localhost --action do_cmd \
--cmd "set_port 1 2 sta200 NA NA NA NA 0 NA NA NA NA 8388610"

Requires a LANforge CT520 (or better) system and an access point.

Examples of CLI commands
1. Creating Stations

2. Using Open Authentication

3. Using WPA2 Authentication

4. Static IP Addresses

5. Station DHCP IP Address

6. Creating a Station with a MAC Address Pattern

7. Admin Down

8. Admin Up

9. Deleting a Station

10. Creating Connections and Running Traffic

11. Starting and Stopping Traffic

12. Create a Layer 3 TCP Connection

13. Create a Layer 3 UDP Connection

14. Create a Layer 4-7 Web Connection

Setting for Examples

This was done in a two-machine LANforge cluster, the manager named jedtest and the second resource
named kedtest. The CLI output of these CLI commands has been discarded as well as any show_port
commands.

The show_port commands are useful for inspecting the results of previous commands. Often there is useful wait
before issuing the show_port command to allow processing time on the manager. Please inspect the scripts in
the /home/lanforge/scripts directory for how and when they tend to sleep.

These commands are also found in the /home/lanforge/DB/DFLT directory files. You cannot run those DB files
directly, because they are executed in certain order. However, you can grep for connection- and station-
names in those files to find results of GUI commands.

Creating Stations
Using Open Authentication

xx

keep parent radio octet

*

randomize this octet

00 - ff

assign this value to the octet

This station is created with DHCP enabled. That is controlled via flags that are descibed in the add_sta
command.

Shell script:

./lf_vue_mod.sh --mgr jedtest --resource 2 --create_sta --name sta100 --radio wiphy0 --
security open --ssid jedtest

Perl script:

./lf_associate_ap.pl --mgr jedtest --resource 2 --quiet yes --action add --radio wiphy0 --
security open --ssid jedtest --passphrase --first_sta sta100 --first_ip DHCP --
num_stations 1

CLI command:

set_wifi_radio 1 2 wiphy0 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
add_sta 1 2 wiphy0 sta100 0 jedtest NA [BLANK] AUTO NA 00:0e:8e:8d:8d:e9 8 NA NA NA NA NA 0
set_port 1 2 sta100 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:8d:8d:e9 NA NA NA 8405038 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

Using WPA2 Authentication

This station is created with DHCP enabled. That is controlled via flags that are descibed in the add_sta
command.

Shell script:

 $./lf_vue_mod.sh --mgr jedtest --resource 2 --create_sta --name sta200 \
 --radio wiphy1 --security wpa2 --ssid jedtest --passphrase jedtest1 \
 --log_cli /tmp/clilog.txt

Perl script:

./lf_associate_ap.pl --mgr jedtest --resource 2 \
 --action add --radio wiphy1 --security wpa2 --ssid jedtest \
 --passphrase jedtest1 --first_sta sta200 --first_ip DHCP --num_stations 1

CLI command:

set_wifi_radio 1 2 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
add_sta 1 2 wiphy1 sta200 1024 jedtest NA jedtest1 AUTO NA 00:0e:8e:6f:01:62 8 NA NA NA NA NA 1024
set_port 1 2 sta200 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:6f:01:62 NA NA NA 8405038 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

Static IP Addresses

Here is an example of creating a virtual station with a static address: 10.26.2.14/255.255.254.0

Shell Script:

--

Perl Script:

./lf_associate_ap.pl --mgr jedtest --resource 2 --action add --radio wiphy1 --first_sta
sta203 --first_ip 10.26.2.4 --netmask 255.255.254.0 --ssid jedtest --security wpa2 --
passphrase jedtest1 --num_stations 1 --wifi_mode abgnAC --log_cli /tmp/clilog.txt

CLI Command:

set_wifi_radio 1 2 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
show_port 1 2 wiphy1
add_sta 1 2 wiphy1 sta203 1024 jedtest NA jedtest1 AUTO NA 00:0e:8e:63:50:62 8 NA NA NA NA NA 1024
set_port 1 2 sta100 10.26.2.4 255.255.254.0 0.0.0.0 NA 0 00:0e:8e:63:50:62 NA NA NA 8388654 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

Station DHCP IP Address

For the station to gain a DHCP IP address, you have to admin-up the station.

Creating a Station with a MAC Address Pattern

The lf_associate_ap script contains logic that parses a MAC address pattern and produces new MAC
addresses. This is not a feature of the LANforge Manager. Your CLI calls to the LANforge manager will not parse
the mask.

The pattern nomenclature of the LANforge GUI can also be used when specifying a MAC address for stations:

Shell script:

--

Perl script:

./lf_associate_ap.pl --mgr jedtest --resource 2 --action add --radio wiphy1 --first_sta
sta205 --first_ip 10.26.2.4 --netmask 255.255.254.0 --ssid jedtest --security wpa2 --
passphrase jedtest1 --num_stations 1 --mac-pattern '4e:xx:xx:xx:*:01' --log_cli
/tmp/clilog.txt

CLI command:

set_wifi_radio 1 2 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
show_port 1 2 wiphy1
add_sta 1 2 wiphy1 sta205 1024 jedtest NA jedtest1 AUTO NA 4e:0e:8e:43:f1:01 8 NA NA NA NA NA 1024
set_port 1 2 sta205 10.26.2.4 255.255.254.0 0.0.0.0 NA 0 4e:0e:8e:43:f1:01 NA NA NA 8388654 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

Admin Down

Shell script:

http://candelatech.com/lfcli_ug.php#add_sta
http://candelatech.com/lfcli_ug.php#add_sta

./lf_vue_mod.sh --mgr jedtest --resource 2 --down --name sta200 --log_cli /tmp/clilog.txt
--quiet 1

Perl script:

./lf_portmod.pl --manager jedtest --card 2 --port_name sta200 --set_ifstate down

CLI command:

set_port 1 2 sta200 NA NA NA NA 1 NA NA NA NA 8388610

Admin Up

Shell script:

./lf_vue_mod.sh --mgr jedtest --resource 2 --up --name sta200 --log_cli /tmp/clilog.txt --
quiet 1

Perl script:

./lf_portmod.pl --manager jedtest --card 2 --port_name sta200 --set_ifstate up

CLI command:

set_port 1 2 sta200 NA NA NA NA 0 NA NA NA NA 8388610

Delete Station

Shell script:

./lf_vue_mod.sh --mgr jedtest --resource 2 --delete_sta --name sta200 --log_cli
/tmp/clilog.txt --quiet 1

Perl script:

./lf_associate_ap.pl --mgr jedtest --resource 2 --action del --port_del sta200

CLI command:

rm_vlan 1 2 sta100

Creating Connections and Running Traffic

LANforge can create Layer-3 and Layer 4-7 connections using the lf_vue_mod.sh script. When connections
are created, they exist in a stopped state. Connections can then have their state changed to RUNNING to
start traffic.

Starting and Stopping Traffic

Layer-3 and Layer 4-7 connections both subject to the states STOPPED, RUNNING, and QUIECSE.

Shell script:

./lf_vue_mod.sh --mgr jedtest --start_cx --name tcp200 --log_cli /tmp/clilog.txt --quiet 1

./lf_vue_mod.sh --mgr jedtest --stop_cx --name tcp200 --log_cli /tmp/clilog.txt --quiet 1

Perl script:

./lf_firemod.pl --mgr jedtest --action do_cmd --cmd "set_cx_state default_tm tcp200 RUNNING"

./lf_firemod.pl --mgr jedtest --action do_cmd --cmd "set_cx_state default_tm tcp200 STOPPED"

CLI commands:

set_cx_state default_tm tcp200 RUNNING

set_cx_state default_tm tcp200 STOPPED

Create a Layer 3 TCP Connection

Shell script:

./lf_vue_mod.sh --mgr jedtest --resource 2 --create_cx --name tcp200 --tcp --sta sta200 --
port eth1 --bps 1000000 --log_cli /tmp/clilog.txt --quiet 1

Perl script:

./lf_firemod.pl --mgr jedtest --resource 2 --action create_endp --endp_name tcp200-A --speed 1000000 --endp_type lf_tcp --port_name sta200

./lf_firemod.pl --mgr jedtest --resource 2 --action create_endp --endp_name tcp200-B --speed 1000000 --endp_type lf_tcp --port_name eth1

./lf_firemod.pl --mgr jedtest --resource 2 --action create_cx --cx_name tcp200 --cx_endps tcp200-A,tcp200-B

CLI commands:

add_endp tcp200-A 1 2 sta200 lf_tcp -1 NA 1000000 1000000 NA -1 -1 increasing NO NA 0 0
set_endp_report_timer tcp200-A 5000
add_endp tcp200-B 1 2 eth1 lf_tcp -1 NA 1000000 1000000 NA -1 -1 increasing NO NA 0 0
set_endp_report_timer tcp200-B 5000
add_cx tcp200 default_tm tcp200-A tcp200-B
set_cx_report_timer default_tm tcp200 5000 NA

Create a Layer 3 UDP Connection

Shell script:

./lf_vue_mod.sh --mgr jedtest --resource 2 --create_cx --name upd200 --udp --sta sta200 --
port eth1 --bps 2000000 --log_cli /tmp/clilog.txt --quiet 1

Perl script:

./lf_firemod.pl --mgr jedtest --resource 2 --log_cli /tmp/clilog.txt --quiet 1 --action create_endp --endp_name udp200-A --speed 2000000 --endp_type lf_udp --port_name sta200

./lf_firemod.pl --mgr jedtest --resource 2 --log_cli /tmp/clilog.txt --quiet 1 --action create_endp --endp_name udp200-B --speed 2000000 --endp_type lf_udp --port_name eth1

./lf_firemod.pl --mgr jedtest --resource 2 --log_cli /tmp/clilog.txt --quiet 1 --action create_cx --cx_name udp200 --cx_endps udp200-A,udp200-B

CLI commands:

add_endp udp200-A 1 2 sta200 lf_udp -1 NA 2000000 2000000 NA -1 -1 increasing NO NA 0 0
set_endp_report_timer udp200-A 5000
add_endp udp200-B 1 2 eth1 lf_udp -1 NA 2000000 2000000 NA -1 -1 increasing NO NA 0 0
set_endp_report_timer udp200-B 5000
add_cx udp200 default_tm udp200-A udp200-B

set_cx_report_timer default_tm udp200 5000 NA

Create a Layer 4-7 Web Connection

Layer 4-7 connections are created with a one-sided technique, the curl command always operates on the A-
side and the B-side is unmanaged. The endpoint and connection naming does not follow the Layer-3
convention.

Shell script:

./lf_vue_mod.sh --mgr jedtest --resource 2 --create_l4 --name yh200 --sta sta200 --url
http://www.yahoo.com/ --utm 2400 --log_cli /tmp/clilog.txt --quiet 1

Perl script:

Commands are set using lf_firemod.pl --action do_cmd --cmd ...

CLI commands:

add_l4_endp yh200 1 2 sta200 l4_generic 0 10000 2400 'dl http://www.yahoo.com/ /dev/null' NA NA ca-bundle.crt NA 0 0 60 0 512 0.0.0.0
set_endp_tos yh200 DONT-SET 0
set_endp_flag yh200 L4Enable404 0
set_endp_report_timer yh200 5000
set_endp_flag yh200 ClearPortOnStart 0
set_endp_quiesce yh200 3
add_cx CX_yh200 default_tm yh200

Learn CLI commands used create
Generic endpoints.

Goal: Compare and learn script and CLI commands used when creating and operating
Generic endpoints.
Similar to the Layer3 perl script, lf_firemod.pl, the lf_generic_ping.pl script has been
enhanced to use curl or other commands with parameter expansions. The lf_curl.sh
script is a helper script that wraps curl commands and reports success or failure.

Introduced in LANforge 5.3.8.

Example Commands
1. Creating ports and MAC VLANs

2. Creating ping endpoints

3. Creating curl endpoints

4. Using parameters for endpoint options

5. Using the lf_curl.shscript

Setting for Examples

Generic endpoints are effectively one-legged connections. You can ping an IP or use curl to download web
content. Both of these types of connections can be pointed back at the LANforge itself. We can operate
these connections from redirect interfaces. The same techniques can apply to WiFi stations, of course.

Create Redirects

1. Create a bridge br0 including eth1
2. In Netsmith, select br0→Modify and enable DHCP

3. Create a redirect r1a, r1b
4. Add r1a to br0
5. Create 10 MAC VLANs based off r1b with DHCP enabled

6. After the MAC VLAN ports have addresses, you can verify that you can ping and download pages
from LANforge webserver:

1. In a terminal, begin by sourcing lanforge.profile :

/home/lanforge$. lanforge.profile

2. Ping the bridge from a MAC VLAN:

/home/lanforge$ ping -I 10.41.1.141 10.41.0.1

3. Grab the web page. (Apache is listening on all ports by default.)

/home/lanforge$ curl -sq --interface 10.41.1.141 http://10.41.0.1/

Creating ping endpoints

In the /home/lanforge/scripts directory, the lf_generic_ping.pl script creates a wrapped ping command
by default. There is another script, lfping , that reports ping results to LANforge. Here is an example of creating
1 ping endpoint:

/home/lanforge/scripts$./lf_generic_ping.pl --mgr localhost --resource 1 \
 --dest 10.41.0.1 --interface r1b#0 --name pingtest

Create a ping endpoint for every MAC VLAN parented by r1b:

 $./lf_generic_ping.pl --mgr localhost --resource 1 \
 --dest 10.41.0.1 --parent r1b

Create a ping endpoint for every virtual station parented by wiphy0 :

 $./lf_generic_ping.pl --mgr localhost --resource 1 \
 --dest 10.41.0.1 --radio wiphy0

Create a ping endpoint for every MAC VLAN beginning with r1b#1 (r1b#1, r1b#10):

 $./lf_generic_ping.pl --mgr localhost --resource 1 \
 --dest 10.41.0.1 --match 'r1b#1'

Creating curl endpoints

To use other commands with the script, you can create a --cmd parameter. You can use curl directly if desired,
but curl's output is not formatted well for LANforge to understand. By default, commands do not understand
what port or IP they should be interacting as. We need to provide special parameters to help.

Parameter expansion

The lf_generic_ping.pl script will look for these tokens in the --cmd parameter:

%i Expands to the IPv4 address of the port.

%d Expands to the destination hostname or address

%p Expands to the port name

The curl wrapper script

The scripts/lf_curl.sh script is a wrapper for curl that detects success or failure, and an operate the request
in a loop. Expandable parameters are expanded by lf_generic_ping.pl, not lf_curl.sh.

You can use lf_curl.sh from the command line to test it out:

 $./lf_curl.sh -i 10.41.1.141 -p r1b#1 -o /tmp/output -d http://example.com/

Executes:

curl -sqLk --interface 10.0.0.1 -o /tmp/output_r1b#1 http://example.com/

So it is best used from lf_generic_ping.pl to construct commands referencing this script:

./lf_generic_ping.pl --mgr localhost --resource 1 \
 --name curl_ex_ --match 'r1b#' --dest http://10.41.0.1/ \
 --cmd 'lf_curl.sh -o /tmp/curl_%p.out -i %i -d %d -p %p'

Uploading files with curl

It is possible to use the lf_generic_ping.pl script to create URL encoded form posts for uploading files.

1. If you don't have a file to upload, create one here:

cd /var/www/html ↵

echo 'file=' > data-2m.asc ↵

base64 < data_slug_2048k.bin >> data-2m.asc ↵

2. Create a series of Generic endpoints:

cd /home/lanforge/scripts
./lf_generic_ping.pl --name up \
 --match 'sta' \
 --dest http://192.168.48.1/ \
 --cmd 'curl -d @/var/www/html/data-2m.asc -o /tmp/curl_%p.out --interface %p --dns-ipv4-addr %i %d'

Automate WiFi Capacity and other GUI
tests.

Goal: Use a command-line script to have the LANforge-GUI run the WiFi Capacity test and
generate a pdf automatically.

In this test scenario, a script is used to bring up the WiFi Capacity test
with a pre-configured configuration. The capacity test is then started
and a report is generated. All of this is automated, and other tests
such as Dataplane are also supported. This feature requires
LANforge version 5.4.1 or higher.

1. Configure WiFi Capacity Test for automated run.

A. For this to work, the LANforge GUI must be started with the -cli-socket 3990 argument. This causes it
to open a socket to listen for text commands.

B. Open Chamber View by clicking on the 'Chamber View' button in the LANforge-GUI. Create an
appropriate scenario and DUT if you have not already done so. Other cookbook examples have
more details of how to do this, please see those if you are unfamiliar with Chamber View.

C. Select WiFi Capacity test, and click Run Test to configure it as desired.

D. Enter a name in the 'Save' field, click save, and make sure it shows up as a loadable configuration. In
this case, we are saving the configuration as 'udp-dl-120'

2. Use the lf_gui_cmd.pl script to launch the WiFi Capacity Test.

A. Open an ssh session or terminal window and log into the LANforge system, or some other system with
the LANforge scripts/ repository. On a LANforge system, this will usually be /home/lanforge/scripts In
this case, the directory name is called lf_scripts

B. Run the lf_gui_cli_cmd.pl script with appropriate arguments. Use --help for details. Once you run this,
the WiFi Capacity test should be automatically opened and the test will be started. The script will
end when the capacity test has completed. You may copy the results to some easily found location,
such as a web server directory.

C. For details on what GUI-CLI commands are supported, please see the screen-shot below and look at
the contents of the lf_gui_cmd.pl script.

Getting Started with Python scripting for
LANforge

Goal: After reading this, a user will know what python modules which are available to use
LANforge.

There are many python modules which control LANforge. These modules allow the user to automate many
tasks. This cookbook will introduce the initial steps to start LANforge automation, the libraries that need to be
imported to run Candela's python scripts, and how to create objects in python.

There are two options to run lanforge_scripts. If you are a programmer, you can clone the git repository locally
by using git clone https://github.com/greearb/lanforge-scripts in your command line into the
directory which the folder should be in.

i Candela supports Fedora 27+ and Python 3.7+. Older python versions are not
supported.

The advantage to cloning lanforge_scripts from git is that it is the latest code available, while the pip repository
will lag slightly behind the git repo. The advantage to using pip is that there might be occasional errors in the git
repository, which will be ironed out by the time we push it to the pip repository. The pip repository is always
close to the master branch of the git repo, lagging no more than a couple weeks. Pick the one which best suits
your needs.

i Please run Python as the LANforge user on your system.

If you run python as root, you might break your LANforge system. The LANforge Linux OS requires some certain
python packages and versions to operate and configure networking correctly. Candelatech does not
recommend updating python packages as root. Your package manager will automatically update these
dependencies when you run updates as well, which can overwrite your changes.

The safe way to run python scripts is as a non-root user. If you have python dependencies installed locally by
using pip --user , if a dependency breaks you can fix it without potentially harming files your operating
system needs to operate. Broken python dependencies on your system Python can break your operating
system. When your system updates, it might overwrite the changes you have made.

Users are responsible for making certain the version of Python running on their system is supported by the
Python Foundation. An up to date list can be found at Python Foundation support. Candela Technologies does
not support versions of Python which have been deprecated by the Python Foundation. Customers with a
support contract can contact support@candelatech.com to get support upgrading their LANforge systems.

https://www.python.org/downloads/
mailto:support@candelatech.com

1. Importing libraries:

Please visit the readme.md page in lanforge-scripts/py-scripts to make sure all the libraries that are needed
are imported.

2. Install necessary dependencies

A. In the root of lanforge_scripts, run pip3 install --user -r requirements.txt --upgrade

3. How to run a script from a git clone

A. We start in the /home/lanforge/lanforge-scripts/py-scripts directory on your lanforge system

B. On a Linux system, open your terminal and navigate to the py-scripts folder. You can run any python
script by typing
python3 your_script_here.py --your_flag
into your command line. After the script, put any flags you need in order to run your test.

4. How to run a script from pypi

A. In your terminal, run python3
B. In your python environment, run import lanforge_scripts

c. You can use dir(lanforge_scripts) to see all of the different classes you can use in lanforge_scripts.
This is useful if you want to make your own driver script which uses lanforge_scripts as a
dependency.

5. Station Creation

A. The create_station.py script creates wi-fi stations from your terminal.

B. Type
./create_station.py --radio wiphy0 --ssid lanforge --passwd password --
security wpa2
into your terminal. Please reemember to change the SSID, Passwd, and Security fields to match
your network credentials.

C. This will create 2 stations on your lanforge device off of your wiphy0 radio. You might need to wait
30 seconds for them to stop being phantom ports.

D. You can specify the following flags as well:

A. num_stations - Specify a different number of stations to create off of your antenna. The
default is 2.

B. debug - call this flag if you want detailed diagnostic information

6. Find available networks

A. You can find available WiFi networks on any Linux device by typing sudo iw dev wlan0 scan |
grep SSID into your command line

B. You can also find available WiFi networks by clicking on the station you created in the previous
step,

7. Associate to a specific BSSID:

If you want to connect to a specific MAC Address for your router (which is called the BSSID) you can specify
that on each station, you can do that in both the GUI and in the command line.

A. Connect via Command line

A. Each of your scripts has an optional AP tag where you can define the MAC address of
the router you want to connect to. To do so, simply append --ap to the end of the
command line argument you are running followed by the router's MAC Address.

B. Connect via GUI

A. When you double click on a Station there is an AP field inside WiFi Settings. Type the
MAC Address of your router in that box and everything will work assuming the MAC
Address is correct.

8. Bridge Creation

A. To create a bridge, you can use the create_bridge.py script in the py_scripts folder.

B. Type
./create_bridge.py --lf_mgr localhost --bridge_name br0 --target_device eth1 -
-no_cleanup
Into your terminal, remembering to change the ssid, passwd, and security fields to match your
network credentials.

C. create_bridge requires the following arguments:

A. bridge_name - Name of the bridge to create

B. target_device - which device the bridge is going to connect

D. It is not valid to add stations to a bridge, they don't work like you would expect. Bridges can have:
eth ports, redirects (rdd) ports, vaps, and qvlan ports. Ports in a bridge cannot have IP addresses.

9. VAP Creation

A. You can create a VAP from your terminal with the create_vap.py script.

B. Type
./create_vap.py --radio wiphy0 --security wpa2 --ssid lanforge --passwd
password
into your terminal, remembering to change the ssid, passwd, and security fields to match your
network credentials.

C. create_vap supports the following flags:

A. num_vaps - A user defined number of VAPs to create off of your antenna

B. upstream_port - if your ethernet cable to your router is not eth1, define it using this flag.
Eth1 is the default for this flag.

C. debug - call this flag if you want detailed diagnostic information

10. MAC-VLAN Creation

A. In the py-scripts folder, there is a script named create_macvlan.py, which creates a mac-vlan
based on the macvlan_parent , num_ports , first_macvlan_ip, netmask, and gateway input

11. Monitor Creation: Under Construction

12. Layer-3 Cross Connect

A. In your py-scripts, there is a create_l3 script which allows you to create stations in your terminal.

B. Type
./create_l3.py --radio wiphy0 --num_stations 0
into your terminal, remembering to change the ssid, passwd, and security fields to match your
network credentials.

C. This will create a layer3 cross connect between each station you already built on your lanforge
device and your wiphy0 radio. You might need to wait 30 seconds for them to stop being
phantom ports. If you do not specify num_stations 0 it would have created two stations by default
off your specified radio. You can change which port the cross connect will be connected to with
the --upstream_port option.

D. You can specify the following flags as well:

A. num_stations - Specify a different number of stations to create off of your antenna.

B. upstream_port - if your ethernet cable to your router is not eth1, define it using this flag.
Eth1 is the default for this flag.

C. debug - call this flag if you want to get error messages in case anything goes wrong.

E. Your port manager will look similar to this

F. Your Layer 3 connections will look similar to this

13. Layer-4 Cross Connect

A. In your py-scripts, there is a create_l4 script which allows you to create stations in your terminal.

B. Type
./create_l4.py --radio wiphy0 --ssid lanforge --passwd password --security
wpa2
into your terminal

C. This will automatically create 2 stations on your Lanforge device off of your wiphy0 radio and also
create a cross connect from each station to your eht1 port. You can change which port the cross
connect will be connected to with the --upstream_port option.

D. You can specify the following flags as well:

A. num_stations - Specify a different number of stations to create off of your antenna.

B. upstream_port - if your Ethernet cable to your router is not eth1, define it using this flag.
Eth1 is the default for this flag.

C. debug - call this flag if you want detailed diagnostic information

E. Your port manager will look similar to this

F. Your Layer 4 connections will look similar to this

G. Your Netsmith display will look similar to this. The connections on this picture have been oriented
for legibility.

14. Monitor and record an IPV4 variable time test. The purpose of this test is to detect whether your router is
able to keep a steady signal when being barraged by multiple users.

A. In the first part of this tutorial, you are going to connect various numbers of stations, record them
for 1 and 10 minutes, and then save as a CSV, excel, or pickle format. A station represents a
device which is connected to a network, LANforge creates representations of stations which
create real traffic on your network and then records statistics on that traffic. This module
determines whether your device is able to sustain a heavy load of traffic for an user defined
period of time. By recording the traffic it is then possible to go back and detect where any
problems occurred which allows a network manager to fix problems which could be facing your
network.

B. Navigate to the py-scripts folder and type the following command into your command line
./test_ipv4_variable_time.py --radio wiphy0 --security wpa2 --ssid lanforge --
password password --output_format csv
Replace the security, ssid, and password variables with the settings for the network you are
testing.This will create 2 wiphy stations by default, connect them to the network you are testing,
and report the results to a CSV file.You will find a file with a timestamp within the last 5 minutes in
the report_data folder in your home directory. If you are running this script from another machine
using the --mgr function, you will need to define the report_file variable.

C. test_ipv4_variable_time accepts the following flags:

A. output_format - The format you want to save your results to

B. col_names - Which columns should be saved in the output file

C. test_duration - how long you want the test to last.

D. report_file - where you want the results to be stored

D. Your port manager will look similar to this

E. Your Layer 3 connections will look similar to this

F. Your Layer 3 endpoints will look similar to this

G. You can view a dynamic report of the connectiosn creating traffic. It will look similar to this

Querying the LANforge JSON API using
Python

Goal: Use Python scripts to query the LANforge Client JSON API. (See Querying the LANforge
GUI for JSON Data) The provided Python scripts allow you the same API scope as the Perl
scripts.
LANforge now provides Python scripts that query the REST API that the LANforge
Client now exposes by default. This chapter steps through using each of the scripts.
At the end we show an example of how to write a Python script. Scripts encourage
Python 3. Requires LANforge 5.4.1 or later.

Client Settings

On your LANforge Server, the scripts directory is located at /home/lanforge/scripts. Under that directory, the
py-json directory contains Python scripts.

Script Purpose

__init__.py Defines the py-json module

show_ports.py
Simplest example of querying all ports. This is typical of querying any of the APIs
you browse from / or /help

create_sta.py Script creates a virtual station

LANforge/__init__.py Defines the py-json/LANforge module

LANforge/LFRequest.py
Use the LFRequest module to help make GET and POST requests to the LANforge
Client

LANforge/LFUtils.py Use the LFUtils module to help process JSON results

Getting Started

First, start the LANforge Client (LANforge GUI) and connect it to your LANforge Server. If you want to start the
client in headless mode, open a terminal, and from the LANforgeGUI_5.4.1 directory, start the script with the -
daemon argument:

$./lfclient -daemon -s localhost

Querying Ports
Running the script

In the /home/lanforge/scripts/py-json directory:

 $ python3 ./show_ports.py
{ '1.1.eth0': { '_links': '/port/1/1/0',
 'alias': 'eth0',
 'phantom': False,

 'port': '1.1.00'}}
{ '1.1.eth1': { '_links': '/port/1/1/1',
 'alias': 'eth1',
 'phantom': False,
 'port': '1.1.01'}}
{ '1.1.sta00500': { '_links': '/port/1/1/9',
 'alias': 'sta00500',
 'phantom': False,
 'port': '1.1.09'}}
{ '1.1.sta00501': { '_links': '/port/1/1/10',
 'alias': 'sta00501',
 'phantom': False,
 'port': '1.1.10'}}
{ '1.1.sta00502': { '_links': '/port/1/1/11',
 'alias': 'sta00502',
 'phantom': False,
 'port': '1.1.11'}}

Looking inside the script

This script is a way of pretty-printing the results of GET http://localhost:8080/port/1/1/list

lf_r = LFRequest.LFRequest("http://localhost:8080/port/1/1/list")
json_response = lf_r.getAsJson()
j_printer = pprint.PrettyPrinter(indent=2)
for record in json_response['interfaces']:
 j_printer.pprint(record)

Other variations of this you can try are:

/port/list

This is an abbreviation

/port/1/2/list

If you have a second LANforge resource

/port/1/2/eth0

Show a specific port

Example of Creating a Station
Running the script

[lanforge@ct524-debbie py-json]$ python3 ./create_sta.py
Example 1: will create stations sta0200,sta0201,sta0202
Ex 1: Checking for station : http://localhost:8080/port/1/1/sta0200
...
Ex 1: Next we create stations...
Ex 1: Next we create station sta0200...
Ex 1: station up sta0200...

Example 2: using port list to find stations
Ex 2: checking for station : sta0220
Ex 2: create station sta0220
Ex 2: set port sta0220

Example 3: bring ports up and down
Ex 3: setting ports up...
Ex 3: setting ports down...
...ports are down
Example 4: Modify stations to mode /a
using add_sta to set sta0200 mode

Example 5: change station encryption from wpa2 to wpa3...
using add_sta to set sta0200 wpa3

Example 7: alter TX power on wiphy0...

Looking inside the script

Create a station

Flags are a decimal equivalent of a hexadecimal bitfield you can submit as either 0x(hex) or (dec) a helper
page is available at http://localhost:8080/help/add_sta

You can watch console output of the LANforge GUI client when you get errors to this command, and you can
also watch the websocket output for a response to this command at ws://localhost:8081. Use $ wsdump
ws://localhost:8081/ to follow those messages.

Modes are listed at http://localhost/LANforgeDocs-5.4.1/lfcli_ug.html or at
https://www.candelatech.com/lfcli_ug.html

The MAC address field is a pattern for creation: entirely random mac addresses do not take advantage of
address mask matchin in Ath10k hardware, so we developed this pattern to randomize a section of octets:

XX

keep parent

*

randomize

chars [0-9a-f]

use this digit

If you get errors like "X is invalid hex character", this indicates a previous rm_vlan call has not removed your
station yet: you cannot rewrite mac addresses with this call, just create new stations.

The staNewDownStaRequest() creates a station in the Admin-Down state. This is a good way to efficiently
create batches of stations because it defers all the PHY layer activity which takes significant time when you do
it in a loop.

lf_r.addPostData(LFUtils.staNewDownStaRequest(sta_name, resource_id=resource_id, radio=radio, ssid=ssid, passphrase=passphrase))
lf_r.formPost()
sleep(0.05)

Sleeping for 50ms is not sufficient to interact with the station, but is a functional minimum to allow the LANforge
to start processing the command; this is a good value to use in a loop that creates stations. Follow with:

LFUtils.waitUntilPortsAppear(resource_id, desired_stations)

ws://localhost:8081
https://www.candelatech.com/lfcli_ug.html

Set station up

The LANforge API separates STA creation and Ethernet port settings. We need to revisit the stations we create
and amend flags to add things like DHCP or ip+gateway, admin-{up,down} for sta_name in desired_stations:

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_port")
data = LFUtils.portDhcpUpRequest(resource_id, sta_name)
lf_r.addPostData(data)
lf_r.jsonPost()
sleep(0.05)

Set station down

Change station mode

There is not a set_sta command. Many LANforge CLI commands do a default modify if the entity already
exists. This is how we can modify attributes of existing stations. For the mode values, see
http://www.candelatech.com/lfcli_ug.php#add_sta

for sta_name in desired_stations:
 lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_sta")
 lf_r.addPostData({
 "shelf":1,
 "resource": resource_id,
 "radio": radio,
 "sta_name": sta_name,
 "mode": 1, # 802.11a
 })
 lf_r.jsonPost()
 sleep(0.5)

Change station protocol

Flags for add_sta and set_port are actually 64-bit values. When the values in the command below are read
by the /help/add_sta page, Javascript cannot deal with integers greater than 32-bits long.

lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_sta")
lf_r.addPostData({
 "shelf":1,
 "resource": resource_id,
 "radio": radio,
 "sta_name": sta_name,
 "mode": 0, # mode AUTO

 # sets use-wpa3
 "flags": 1099511627776,

 # sets interest in use-wpa3, wpa2_enable (becomes zero)
 "flags_mask": 1099511628800
})
print("using add_sta to set %s wpa3"%sta_name)
lf_r.jsonPost()

Change radio power on radio wiphy0

Virtual stations do not have individual tx power states. You can set the radio transmit power. See
http://www.candelatech.com/lfcli_ug.php#set_wifi_radio. The txpower is set through iwconfig, so see man 8

iwconfig. Power is in dBm, auto or off.

Not all flags in a JSON request are actually LANforge CLI parameters. The suppress_preexec_method
parameter is a meta-flag tells the LANforge client to not check that the port exists before issuing the
command. You would use this to expedite a script, because a check-port command is synchronous, not
intended to be used in a loop.

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_wifi_radio")
lf_r.addPostData({
 "shelf":1,
 "resource":resource_id,
 "radio":radio,
 "mode":NA,
 "txpower": "auto",
 "suppress_preexec_method": "true"
})
lf_r.jsonPost()

Seeing Errors
Monitoring for Connection Errors

Use the wsdump utility on the LANforge to see the output of system errors and WiFi Events:

$ wsdump ws://localhost:8081/

The output will be mostly similar to what you see in the WiFi-Messages tab in the GUI:

< {"wifi-event":"1.1: IFNAME=sta0200 <3>CTRL-EVENT-SCAN-STARTED","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: IFNAME=sta0200 <3>CTRL-EVENT-NETWORK-NOT-FOUND","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: sta0200 (phy #1): scan started","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: sta0200 (phy #1): scan finished: 5745, \"\"","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: IFNAME=sta0220 <3>CTRL-EVENT-SCAN-STARTED","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: IFNAME=sta0220 <3>CTRL-EVENT-NETWORK-NOT-FOUND","timestamp":"2019-11-21T16:00:50.095Z"}

The message CTRL-EVENT-NETWORK-NOT-FOUND indicates that the SSID we are attempting to connect to is
unavailable.

Interpreting Python HTTP Error Output

It won't be uncommon to find errors similar to this:

Url: http://localhost:8080/cli-form/set_port
Error: <class 'urllib.error.HTTPError'>
Request URL:
'http://localhost:8080/cli-form/set_port'
Request Content-type:

http://www.candelatech.com/lfcli_ug.php#add_sta
http://www.candelatech.com/lfcli_ug.php#set_wifi_radio

'application/x-www-form-urlencoded'
Request Accept:
'application/json'
Request Data:
(b'shelf=1&resource=1&port=sta0200¤t_flags=2147483649&interest=75513858&r'
 b'eport_timer=8000')

The HTTPError exception is just some kind of 500 error and is often timing related. Perl scripts are subject to
similar timing issues. When LANforge is busy creating and destroying stations, it is modifying the network stack
during each modification...and this takes time.

You can decode this set_port request data by pasting the individual values into the /help/set_port page
provided by your LANforge client: http://localhost:8080/help/set_port.

shelf 1

resource 1

port sta0200

current_flags 2147483649

interest 75513858

report_timer 8000

For numerical flag fields, you can use the ♻ button to try and decode the values of the flags.

Using the Scripts on Your Laptop

You can copy the py-json directory to your laptop or workstation. You may also use git and clone the
LANforge-scripts repository: https://github.com/greearb/lanforge-scripts/.

i If you make a script on a Windows laptop and copy it back to your LANforge,
please run dos2unix on the script to change the line-ending characters: $
dos2unix myscript.py

Python Module Methods
LFRequest.py

Create a new LFRequest object to help create a request:

lf_r = LFRequest.LFRequest(base_url+"/port/1/1/wiphy0")
wiphy0_json = lf_r.getAsJson()

Your REST requests are discussed in the Querying LANforge GUI for JSON Data chapter.

formPost(show_error=true)

This method formats post data as application/x-www-form-urlencoded data. There should be no
significant differience between this and the jsonPost() method.

jsonPost(show_error=true)

This method formats post data as application/json data. There should be no significant differience
between this and the formPost() method.

get(show_error=true)

Use this method to do a GET request with 'Accept: application/json' headers. You get unformatted results.

getAsJson()

Formats the results of get() into Objects using json.loads()

LFUtils.py

def staNewDownStaRequest(sta_name, resource_id=1, radio="wiphy0", flags=ADD_STA_FLAGS_DOWN_WPA2, ssid="",
passphrase="", debug_on=False):

http://localhost:8080/help/set_port
https://github.com/greearb/lanforge-scripts/
http://www.candelatech.com/cookbook.php?vol=cli&book=Querying+the+LANforge+GUI+for+JSON+Data

For use with add_sta. If you don't want to generate mac addresses via patterns (xx:xx:xx:xx:81:*) you can
generate octets using random_hex.pop(0)[2:] and gen_mac(parent_radio_mac, octet) See
http://localhost:8080/help/add_sta

def portSetDhcpDownRequest(resource_id, port_name, debug_on=False):

Sets port admin down. See http://localhost:8080/help/set_port

def portDhcpUpRequest(resource_id, port_name, debug_on=False):

Sets port up and to use DHCP. See http://localhost:8080/help/set_port

def portUpRequest(resource_id, port_name, debug_on=False):

Sets port up. See http://localhost:8080/help/set_port

def portDownRequest(resource_id, port_name, debug_on=False):

Sets port down. Does not change the use_dhcp flag See http://localhost:8080/help/set_port

def generateMac(parent_mac, random_octet):

Helps generate a random mac address.

def portNameSeries(prefix="sta", start_id=0, end_id=1, padding_number=10000):

This produces a named series similar to "sta000, sta001, sta002...sta0(end_id)" The padding_number is
added to the start and end numbers and the resulting sum has the first digit trimmed, so f(0, 1, 10000) =>
{0000, 0001}

def generateRandomHex():

Use in conjuction with generateMac()

def portAliasesInList(json_list):

Return reverse map of aliases to port records. Normally, you expect nested records, which is an artifact
of some ORM that other customers expect:

[
 {
 "1.1.eth0": {
 "alias":"eth0"
 }
 },
 { ... }
]

Naturally, this is more difficult to digest. This method returns a more intuitive structure:

{
 "eth0" : {
 "1.1.eth0": {
 "alias":"eth0"
 },
 },
 "eth1": {},
 ...
}

def findPortEids(resource_id=1, port_names=(), base_url="http://localhost:8080"):

returns PortEID objects matching requested port_names. Use after set_port

def waitUntilPortsAdminDown(resource_id=1, port_list=()):

Sleep and query until all ports report admin down. Use after set_port

def waitUntilPortsAdminUp(resource_id=1, port_list=()):

Sleep and query until all ports report admin up. Use after set_port

def waitUntilPortsDisappear(resource_id=1, port_list=()):

Sleep and query until requested ports have entirely gone away. Use after rm_vlan

def waitUntilPortsAppear(resource_id=1, port_list=()):

Sleep and query until requested ports have appeared. Use after add_sta

Managing WAN Links Using LANforge
JSON API

Goal: Create and modify WAN Links Using LANforge JSON API. This cookbook provides
examples in Python. (See Querying the LANforge GUI for JSON Data) The provided Python
scripts allow you the same API scope as the Perl scripts.
This chapter steps through using Python scripts to create and manage WAN Links on a
LANforge. Scripts require Python 3. Requires LANforge 5.4.1 or later. Examples
require CT910, CT521a, or better.

Creating a WAN Link

We will start by creating a WAN Link between ports eth2 and eth5 on our ct522. Two Ethernet ports will be
involved in this example.

The create_wanlink.py Script

This script is located in /home/lanforge/scripts/py-json or on the lanforge-scripts github page. You can
copy this script to a new name and edit it to fit your enviroment. Remember, these JSON scripts will be
querying a LANforge Client (GUI or headless). The URL you will see being queried is going to be
http://localhost:8080/ for these exaples, assuming you are running the LANforge client on the same
machine you are running your script.

This script performs the basic tasks you might use to manage WANlink connections:

Listing existing WANlinks

Removing a WANlink if it exists.

https://github.com/greearb/lanforge-scripts/blob/master/py-json/create_wanlink.py

Creating WANlink endpoints. You want to create the endpoints before creating the connection.

Joining WANlink endpoints into a WANlink connection (CX)

Starting the WANlink

Modifying the WANlink. You can set endpoint tx rates and lossiness parameters while the endpoints
are running.

Stopping the WANlink

Listing WANlink endpoint stats

Script Sections Explained

1. Listing Wanlinks
Notice that when we get a listing response, we are looking for items in the response that are
dictionarys with a _links key/value pair. There are other key/values used for diagnostics, such as uri,
handler, warnings and errors.

base_url = "http://localhost:8080"
json_post = ""
json_response = ""
num_wanlinks = -1
see if there are old wanlinks to remove
lf_r = LFRequest.LFRequest(base_url+"/wl/list")
try:
 json_response = lf_r.getAsJson()

 # For debugging, this makes json response more legible:
 LFUtils.debug_printer.pprint(json_response)
 for key,value in json_response.items():
 if (isinstance(value, dict) and "_links" in value):
 num_wanlinks = 1
except urllib.error.HTTPError as error:
 num_wanlinks = 0;

JSON output
If there are no wanlinks, you will only see a warnings block telling you there are connections found
that don't apply as WANlinks:

{
"warnings" : [
 "HttpWl::selectColumnsFromRow: eid not in table: Cross-Connect cx_id: 17, type: 1, idx: -1",
 "HttpWl::myEvaluateGet: EidCx type 1 (LANforge / UDP) unavailable in WL table: 17.1",
 "HttpWl::selectColumnsFromRow: eid not in table: Cross-Connect cx_id: 18, type: 1, idx: -1",
 "HttpWl::myEvaluateGet: EidCx type 1 (LANforge / UDP) unavailable in WL table: 18.1"
],
"handler" : "candela.lanforge.GenericJsonResponder",
"uri" : "wl/:wl_id"
}

2. Removing a WANlink
If we found WANlinks, we can remove them by posting the data to the corresponding CLI command
URIs: /cli-json/rm_cx and /cli-json/rm_endp.

i Remember the naming convention: Layer-3 and WANlink endpoints end
with -A and -B . A WANlink named westin500 has endpoints named
westin500-A and westin500-B.

if (num_wanlinks > 0):
 lf_r = LFRequest.LFRequest(base_url+"/cli-json/rm_cx")
 lf_r.addPostData({
 'test_mgr': 'all', # could be 'default-tm', too
 'cx_name': 'wl_eg1'
 })
 lf_r.jsonPost()
 sleep(0.05)

The parameters for each command can be found via the help page:
http://localhost:8080/help/rm_cx. Notice that slight pause between commands: 50ms is a good idea
between deletion commands.

 lf_r = LFRequest.LFRequest(base_url+"/cli-json/rm_endp")
 lf_r.addPostData({
 'endp_name': 'wl_eg1-A'
 })
 lf_r.jsonPost()
 sleep(0.05)

 lf_r = LFRequest.LFRequest(base_url+"/cli-json/rm_endp")
 lf_r.addPostData({
 'endp_name': 'wl_eg1-B'
 })
 lf_r.jsonPost()
 sleep(0.05)

3. Creating WANLink Endpoints
Create the two endpoints first. Each side of a WANlink has its own transmission rate, buffer size and
corruption parameters. Each WANlink requires an ethernet port. Side A will be 128,000bps with 75ms
latency:

lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_wl_endp")
lf_r.addPostData({
 'alias': 'wl_eg1-A',
 'shelf': 1,
 'resource': '1',
 'port': 'eth3',
 'latency': '75',
 'max_rate': '128000',
 'description': 'cookbook-example'
})
lf_r.jsonPost()
sleep(0.05)

Side B will be 256,000bps with 95ms latency:

lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_wl_endp")
lf_r.addPostData({
 'alias': 'wl_eg1-B',
 'shelf': 1,
 'resource': '1',
 'port': 'eth5',
 'latency': '95',
 'max_rate': '256000',
 'description': 'cookbook-example'
})
lf_r.jsonPost()
sleep(0.05)

4. Create the WANlink
Creating the WANlink is simple, we will add it to the default test manager default-tm:

lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_cx")
lf_r.addPostData({
 'alias': 'wl_eg1',
 'test_mgr': 'default_tm',
 'tx_endp': 'wl_eg1-A',
 'rx_endp': 'wl_eg1-B',
})
lf_r.jsonPost()
sleep(0.05)

5. Start the WANLink
The LANforge server is very asynchronous. Before immediately changing the state on a connection or
endpoint, test to see that it exists.

Polling for the WANlink
Note how we can request fields by name, in this case name, state, and _links.

try:
 json_response = lf_r.getAsJson()
 if (json_response is None):
 continue

If there is no response, or we get a 400 error, the wanlink has probably not finished creating. Our
response will be None. In the reponse below, we're testing for dict entries that have the key _links
in them. If the name value matches, our WANlink has been created:

 for key,value in json_response.items():
 if (isinstance(value, dict)):
 if ("_links" in value):
 if (value["name"] == "wl_eg1"):
 seen = 1

It might be helpful to use these else clauses when getting started:

 #else:
 # print(" name was not wl_eg1")
 #else:
 # print("value lacks _links")
 #else:
 # print("value not a dict")

 except urllib.error.HTTPError as error:
 print("Error code "+error.code)
 continue

Change the WANLink State
Starting and stopping connections is done by changing the state:

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_cx_state")
lf_r.addPostData({
 'test_mgr': 'all',
 'cx_name': 'wl_eg1',
 'cx_state': 'RUNNING'
})
lf_r.jsonPost()

Polling the WANlink State
The connection might take a second to start. You can poll it similar to to how we polled it above:

running = 0
while (running < 1):
 sleep(1)
 lf_r = LFRequest.LFRequest(base_url+"/wl/wl_eg1?fields=name,state,_links")
 try:
 json_response = lf_r.getAsJson()
 if (json_response is None):
 continue
 for key,value in json_response.items():
 if (isinstance(value, dict)):
 if ("_links" in value):
 if (value["name"] == "wl_eg1"):
 if (value["state"].startswith("Run")):
 running = 1

 except urllib.error.HTTPError as error:
 print("Error code "+error.code)
 continue

6. Modifying the WANlink
The frequency fields below are in occurrance per million. Speeds are set in bits per second (bps).
Latencies are in milliseconds.

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_wanlink_info")
lf_r.addPostData({
 'name': 'wl_eg1-A',
 'speed': 265333, # bps
 'latency': 30, # 30 ms
 'reorder_freq': 3200, # 3200/1000000

 'drop_freq': 2000, # 2000/1000000
 'dup_freq': 1325, # 1325/1000000
 'jitter_freq': 25125, # 25125/1000000
})
lf_r.jsonPost()

7. Stopping the WANlink

Choose your Stop State
Stopping a WANlink is again, changing its state to either STOPPED or QUIESCE. The QUIESCE state
stops transmission on both endpoints but does not close the connection so that in-flight packets can
arrive. Choose QUIESCE if you want to make your accounting of packets the most accurate.

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_cx_state")
lf_r.addPostData({
 'test_mgr': 'all',
 'cx_name': 'wl_eg1',
 'cx_state': 'STOPPED'
})
lf_r.jsonPost()

Poll Untill Stopped
There might be a milliseconds to seconds of delay depending on how your connection is stopped.
You might have to wait for slightly longer than QUIESCE-TIME before the connections are closed
when using a QUIESCE stop. Polling the state of the connection is relatively simple:

running = 1
while (running > 0):
 sleep(1)
 lf_r = LFRequest.LFRequest(base_url+"/wl/wl_eg1?fields=name,state,_links")
 # LFUtils.debug_printer.pprint(json_response)

You might want to watch that debug output at first.

 try:
 json_response = lf_r.getAsJson()
 if (json_response is None):
 continue
 for key,value in json_response.items():
 if (isinstance(value, dict)):
 if ("_links" in value):
 if (value["name"] == "wl_eg1"):
 if (value["state"].startswith("Stop")):
 LFUtils.debug_printer.pprint(json_response)
 running = 0
 except urllib.error.HTTPError as error:
 print("Error code "+error.code)
 continue

JSON Output

8. Listing WANlink Endpoint Stats
Each of the endpoints will show the amount of packets transmitted:

 lf_r = LFRequest.LFRequest(base_url+"/wl_ep/wl_eg1-A")
 json_response = lf_r.getAsJson()
 LFUtils.debug_printer.pprint(json_response)

JSON Output
The key/value pairs are grouped for this example, but attribute order is not normally ordered.

{
 "endpoint" : {
 "name" : "wl_eg1-A",
 "buffer" : 19936, # bytes
 "corrupt 1" : 0, # these corruptions are per-wanpath
 "corrupt 2" : 0,
 "corrupt 3" : 0,
 "corrupt 4" : 0,
 "corrupt 5" : 0,
 "corrupt 6" : 0,
 "delay" : 30000,
 "dropped" : 0,
 "dropfreq %" : 0.200000002980232,
 "dup pkts" : 0,
 "dupfreq %" : 0.132499992847443,
 "eid" : "1.1.3.82",
 "elapsed" : 7,
 "extrabuf" : 17408,
 "failed-late" : 0,
 "jitfreq %" : 2.51250004768372,
 "maxjitter" : 0,
 "maxlate" : 606,
 "max rate" : 265333,
 "ooo pkts" : 0,
 "qdisc" : "FIFO",
 "reordfrq %" : 0.319999992847443,
 "run" : false,
 "rx bytes" : 0,
 "rx pkts" : 0,
 "script" : "None", # applicable if 2544 script has be applied
 "serdelay" : 45648.296875,
 "tx bytes" : 0,
 "tx drop %" : 0,
 "tx pkts" : 0,
 "tx rate" : 0,
 "tx-failed" : 0,
 # below is a to-string debug value
 "wps" : "TblJButton, eid: Shelf: 1 Resource: 1 Port: 3 Endpoint: 82 Type: WanLink",
 },
 "uri" : "wl_ep/:wl_ep_id",
 "candela.lanforge.HttpWlEndp" : {
 "duration" : "0"

 },
 "handler" : "candela.lanforge.HttpWlEndp$JsonResponse"
}

Control a Chamber with the
lf_chamber.pl Script

Goal: Monitor and manipulate a CT480a chamber
The CT840a chamber with rotating
platform contains an embedded
controller that is operated by the
modbus protocol. For manual control
of the turntable, the LANforge GUI
may be used. For automation, you will
want to use the lf_chamber.pl
script.The lf_chamber.pl script allows
you to monitor the door sensor, table
angle, light state and fan state. It also
provides control over lights, fans, and
table position. This script requires a
LANforge server version 5.4.1 or higher
to communicate with the chamber. A
CT521a or a virtual machine instance
is adequate for the task. These
instructions apply to the CT840a
chamber.

1. Configuring the CT840a
A. The CT840a requires a network connection. Plug an Ethernet cable into the Control LAN port at the

bottom rear of the chamber.
Depending on the date manufacture, these ports might be labeled differently.

A. The chamber controller and lights are powered via AC cords at the outside bottom rear of
the CT840a chamber.

B. The Chamber Power or DC port is for 12v or other power required by devices inside the
chamber. This runs below the turntable.

C. The Turnable Power or Plate DC port is for a 12v or other power required by the DUT on the
turntable. This is run up to the top of the turntable.

D. Accessories or DUTs can be cabled to the Device USB port, or USB port.

E. The USB camera has a dedicated USB port, Camera USB or Camera USB port.

F. Below the turntable is an Ethernet jack for the DUT to use. That comes out at the Turnable
Eth or Plate LAN port. It should be run up to the top of the turntable with the 12v power
cord.

G. The chamber controller is accessed on the network via the Chamber Eth or Control LAN
port.

http://www.candelatech.com/downloads.php#optional
http://www.candelatech.com/ct840a_product.php

B. Use the front touch screen to set an IP address

C. Make sure you can ping the chamber from your laptop and/or the machine running LANforge
server. The LANforge server will communicate over the network to the Chamber Eth port.

D. The rear ports are all accessory ports for the chamber.

A. 120v AC cord for internal power strip.

I. This power plug provides power to the chamber modbus controller and the
chamber lights.

II. The turn table power cord plugs into the power strip.

B. Pass-through DC barrel connectors. Use these for 12v (or other) power needed by devices
in the chamber.

C. SMA connectors. Seal these with terminators when not in use.

D. Ethernet ports

E. USB 3-A and USB C port

F. Type F Coax port. Seal this with terminators when not in use.

G. Fiber-optic pass-through. Seal this with screw-caps when not in use.

H. HDMI ports

2. Configuring the Chamber in LANforge
A. In the Chamber View window, right-click on the main window and select New Chamber

B. You will see the Create/Modify Chamber window.

C. Select the chamber and turntable type:

A. For Chamber Type, select 2D Large

B. For Turntable Type, select CT840A

C. For Turntable, put in the IP address of the chamber

D. Select your LANforge server resource that manages the turntable

E. Click OK

D. You will see a new chamber, C0 in the Chamber View window.

E. In the Chamber View window, right-click on the chamber C0 and select Modify

F. Use the Speed and Position fields to adjust the turntable.

G. Click Apply to send the configuration.

3. Scripting Chamber Operations
A. Connect to your LANforge system and open a terminal. An ssh connection is adequate.

B. Become root:
  $ sudo -s

C. The lf_chamber.pl script lives in /home/lanforge
  # cd /home/lanforge

D. To use the script, you must setup your environment variables located in
/home/lanforge/lanforge.profile:
  # source ./lanforge.profile

4. Now you may operate the script. Just using the script provides you a summary of options:
./lf_chamber.pl
Usage:
./lf_chamber.pl --angle 45 --speed 3 --targ 192.168.100.122
./lf_chamber.pl --adjust 5 --targ 192.168.100.122
./lf_chamber.pl --fan 1 --targ 192.168.100.122
./lf_chamber.pl --lights 1 --targ 192.168.100.122
./lf_chamber.pl --status 1 [--id foo --mgt_pipe /foo/bar] --targ 192.168.100.122

5. The following examples are going to use the example IP 10.0.0.9 for the chamber location on the network.

6. Chamber Status

A. Use the command ./lf_chamber.pl --targ 10.0.0.9 --status 1  
Current-Angle: 3598 Door-Open: 0 Table-Moving: 0 Lights: 0 Fan: 0 Jog-Speed: 3 Return-Speed: 3 Absolute-Speed: 3 Jog Angle: 449

B. If you see a lot more output, debugging has been enabled. You will see the individual mbpoll
commands: 
Current-Angle: mbpoll -a 1 -r 4139 -t 4 10.0.0.9 -1 
 Door-Open: mbpoll -a 1 -r 2094 -t 1 10.0.0.9 -1 
 0 Table-Moving: mbpoll -a 1 -r 3046 -t 1 10.0.0.9 -1 
 0 Lights: mbpoll -a 1 -r 1283 -t 1 10.0.0.9 -1 
 0 Fan: mbpoll -a 1 -r 1284 -t 1 10.0.0.9 -1 
 0 Jog-Speed: mbpoll -a 1 -r 4507 -t 4 10.0.0.9 -1 
 3 Return-Speed: mbpoll -a 1 -r 4509 -t 4 10.0.0.9 -1 
 3 Absolute-Speed: mbpoll -a 1 -r 4511 -t 4 10.0.0.9 -1 
 3 Jog Angle: mbpoll -a 1 -r 4513 -t 4 10.0.0.9 -1 

C. If a script is presently moving the table, you will see an error similar to:  
Current-Angle: /home/lanforge/local/bin/mbpoll: Connection failed: Operation now in progress.
COMM-FAIL

D. If there is a LANforge service currently engaging the chamber, you might see this error because   the
lanforge service polls the chamber frequently. If you want to stop the LANforge server, use the
command:
  sudo service lanforge stop

7. Controlling the Platform

A. Use the command ./lf_chamber.pl --targ 10.0.0.9 --angle 45 --speed 3 to rotate the
platform 45 degrees from zero.

B. You will see the Current-Angle and Jog Angle reported in tenths of degrees, so 450 is 45.0 degrees.#
./lf_chamber.pl --targ 10.0.0.9 --status 1  
Current-Angle: 450 Door-Open: 0 Table-Moving: 0 Lights: 0 Fan: 0 Jog-Speed: 3 Return-Speed: 3 Absolute-Speed: 3 Jog Angle: 450

C. Change argument --angle 45 to --adjust 5 to add five more degrees of rotation:

D. # ./lf_chamber.pl --targ 10.0.0.9 --adjust 5  
Adjust 5

E. # ./lf_chamber.pl --targ 10.0.0.9 --status 1  
 Current-Angle: 500 Door-Open: 0 Table-Moving: 0 Lights: 0 Fan: 0 Jog-Speed: 3 Return-Speed: 3 Absolute-Speed: 3 Jog Angle: 500

F. To return the plaform to zero rotation, use --angle 0 argument.

G. The --speed argument modifies the rate of rotation. Speed 1 is very slow; use speed 3 to save time.
Speed 6 might be too fast and your DUT might shift unexpectedly.

H. If you see output that says mbpoll , you may ignore those lines.

8. Controlling the Fans

A. Use the command ./lf_chamber.pl --targ 10.0.0.9 --fan 1 to turn fan on. 
Toggle fan  
 /home/lanforge/local/bin/mbpoll -a 1 -r 2074 -t 0 10.0.0.9 -1 0 > /dev/null  
 /home/lanforge/local/bin/mbpoll -a 1 -r 2074 -t 0 10.0.0.9 -1 1 > /dev/null

  # ./lf_chamber.pl --targ 10.0.0.9 --status 1  
Current-Angle: 3598 Door-Open: 0 Table-Moving: 0 Lights: 0 Fan: 1 Jog-Speed: 3 Return-Speed: 3 Absolute-Speed: 3 Jog Angle: 449

B. Change argument --fan 1 to --fan 0 to turn the fan off:

C. # ./lf_chamber.pl --targ 10.0.0.9 --fan 0  
Toggle fan  
 /home/lanforge/local/bin/mbpoll -a 1 -r 2074 -t 0 10.0.0.9 -1 0 > /dev/null  
 /home/lanforge/local/bin/mbpoll -a 1 -r 2074 -t 0 10.0.0.9 -1 1 > /dev/null

D. # ./lf_chamber.pl --targ 10.0.0.9 --status 1  
Current-Angle: 3598 Door-Open: 0 Table-Moving: 0 Lights: 0 Fan: 0 Jog-Speed: 3 Return-Speed: 3 Absolute-Speed: 3 Jog Angle: 449

E. If you see output that says mbpoll , you may ignore those lines.

9. Chamber Lights

A. Use the command ./lf_chamber.pl --targ 10.0.0.9 --lights 1 to turn lights on.

B. Use the command ./lf_chamber.pl --targ 10.0.0.9 --lights 0 to turn lights off.

C. The chamber lights are useful when setting up equipment but also for   viewing the equipment with
the USB camera.

10. USB Camera

A. The USB camera is directly controlled by the connected computer. In the video demonstrations the
LANforge system has a USB A-to-USB A cable connected to the chamber to use the camera. The
software to use the camera is installed on the LANforge system, it would be one of these: xawtv,
cheese or camorama. There is nothing special about the camera, any laptop should be able to use
it. For more information see USB Cable Types

B. If you want to browse the camera from any machine on the network, the simplest way to do that is
to  use vncviewer/rdesktop to browse the camera software running on the LANforge desktop.

C. You might notice that the default frame rate of the camera takes a lot of the LANforge CPU time.   It
should be possible to use v4l2-ctl to set the frame rate of the camera.

D. Please note that recording movies using the camera can be done but they will be very large files.  
We recommend doing timed frame captures every few seconds to save space.

E. See also: Video for Linux documentation.

http://www.candelatech.com/lf_tr398_testing.php
https://www.cablestogo.com/learning/connector-guides/usb
https://helpmanual.io/help/v4l2-ctl/

Emulate video streaming traffic with the
l3_video_em.pl Script

Goal: Emulate video stream traffic patterns using Layer-3 connections.
Using the l3_video_em.pl and the l3_vid_group.pl, we assemble two test groups of
connections, a group of Generic connections, and a group of Layer3 connections,
that emulate the bursty buffer filling pattern of traffic that video streaming tends to
resemble. Requires LANforge 5.4.2.

1. Begin with stations
A. Using a CT523c, we can create 16 stations, and for this script setup you probably do not want to

create more than that. These scripts poll LANforge every 200ms and that loads the server quickly. If
you are using a CT521a or CT522b, then consider starting with five or six stations.
There needs to be a continuously named series of stations.

For more information see Creating Stations

B. In this example we will use eth1 as our upstream port. We will be referring to that using the EID
format: 1.1.2 For more information see LANforge Entity IDs

2. Create Connections Using l3_vid_group.pl

http://www.candelatech.com/cookbook.php?vol=wifire&book=wifi+testing
http://www.candelatech.com/cookbook.php?vol=cli&book=Basics:+LANforge+Entity+IDs

A. The script l3_vid_group.pl has help examples. You can do four tasks with the script.

A. Create groups of video emulators

B. Start groups

C. Stop groups

D. Destroy groups

B. We will create a group of 16 connections on our stations. Use the command:
./l3_vid_group.pl --action create --endp_type tcp --first_sta sta000
 --num_cx 16 --test_grp sixteen --upstream 1.1.eth1

C. You will see two test group created. The group named _L3_sixteen contains the Layer-3 tcp
connections. The group named sixteen contains Generic connections that control the Layer-3
connections.

D. The Generic tab will have 16 connections.

E. The Layer-3 tab will have 16 connections.

F. When we inspect one of the Generic connections, we can see the command it uses.
/home/lanforge/scripts/l3_video_em.pl --mgr localhost --mgr_port 4001
 --cx_name _sixteen-0000 --max_tx 1000000000 --buf_size 3145728 --stream yt-sdr-360p30
 --tx_style bufferfill --quiet yes

You can paste this command into a shell prompt on your LANforge and use it. We discuss the
options in the following section.

G. You can highlight the command in the window and copy it with Ctrl-C

H. You can paste the command into the shell with Ctrl-Shift-V

I. When we inspect the Layer-3 connection, we see these aspects:

It is a TCP connection. This is optional, you can create UDP connections; the Android
YouTube app uses TLS over UDP (QUIC protocol) connections.

Both endpoints are set at 0 bps transmit. The Generic script will control the throttle on the B-
side of the connection.

The PDU size is auto. This doesn't have much bearing on TCP, but might have bearing on
UDP connections.

The Report Timer is set to three seconds. This value is too long to graph with much detail in
the Dynamic Report, but you can shorten it to 500ms if you desire to see more resolution in
the Dynamic Report graph. This Report Timer value directly impacts processor load, so use
it judiciously.

Auto-Helper is a new feature intended to reduce CPU load, it has little impact at the
moment.

Multi-con is not desired for this style of connection.

3. Exploring l3_video_em.pl

A. The options for l3_video_em.pl are available with --help. The most important options for tuning
video streaming emulation are:

tx_style: bufferfill is default and models present video playback

max_tx: this is the starting TX rate. The l3_vid_group script defaults this to 1Gbps, which is
unrealistic for common WiFi connections. The script will regularly poll the station side for a
TX-RATE value of the station to determine a more realistic upper bound for maximum rate.
The more stations that share the same channel, the less realistic this rate becomes. We
want to know this to some degree so that we can determine a realistic pause between
buffer fills at a given bit rate.

buf_size: observation of packet captures indicate that a video plugin on a browser buffers
three to four megabytes of video. Between this number and our max_tx rate, we can
calculate when to transmit to fill the video buffer before it empties.

stream_res: This is a list with broadly agreed upon estimates of video bitrates. When people
mention frame-rate, that is just part of the bitrate calculation; audio quality, color depth,
and resolution are all part of the bitrate value.

B. A table of stream resolutions are available when you use the --list option. By default, the
l3_vid_group.pl script uses the yt-sdr-1080p30 stream size. That name can be decoded like so:
yt: YouTube (but any popular stream, really)
sdr: Standard Dynamic Range color, hdr: High Dynamic Range color
1080: frame height
p: progressive, i: interlaced
30: 30 frames per second; smaller bitrates might be 29.9, 25, or 24

C. Running the command

D. When we run the l3_video_em.pl command that we copied and pasted into our terminal above,
we'll see regular output ever several seconds. Lets discuss whats going on:

A. Filling yt-sdr-1080p30 3072KB buffer: tells us our video bitrate, and our buffer size (3MB)

B. est 0.0503 sec: estimate of how long at 1Gbps filling the buffer will take

C. empties in 3.0016 sec: playback rate before buffer is fully played.

D. Random start delay: 3.304sec...: the script is waiting this long before starting. This is so that
we avoid a load spike, false detections of constant transmit, and more realistic transmit
pattern.

E. Likely overfill detected This warning appears when you transmit longer than your buffer fill
takes. Estimates are inaccurate at the start.

F. drain_wait_seconds is the computed time between stopping and restarting the next
transmission. This is our empty time minus our transmit time.

G. Actual fill: describes how long transmitting a full buffer took.

H. dev: the difference between estimated fill time and actual fill time.

I. Setting max_tx to 360000000: indicates we have detected our RX-Rate for our station was
detected, and estimates could be better in range. Estimates are only for an isolated
station.

4. Starting and Stopping Connections
A. You can use the LANforge GUI Test Groups tab or the l3_vid_group.pl script to start and stop

connections.

B. First, make sure you stations are associated. The scripts will not admin-up your stations.

C. Using the LANforge GUI

A. Highlight the Test Group holding the Generic connections. In our example that is the group
named sixteen

B. Press the Start button.

C. The Generic scripts will control the Layer-3 scripts in the _L3_sixteen group.

D. Stopping the test group will also stop the Layer-3 connections.

D. Using the l3_vid_group.pl script

A. Starting the groups uses the --action start argument:
./l3_vid_group.pl --test_grp sixteen --action start

B. Stopping the groups uses the --action stop argument:
./l3_vid_group.pl --test_grp sixteen --action stop

5. Observing Performance

A. You can observe the performance of the Layer-3 connections using the Dynamic Reports window.

B. First, use the Rpt Timer combo box to apply a 500ms report timer to the connection. Press Go to
apply

C. Next, right click the connection and select Dynamic Report (or press D)

D. Observe the bursts of transmission.

A. Use the Adjust button to adjust your time window:

B. Select 30 for max-time-ago

C. Select 0 for min-time-ago

D. Click Apply

Create Python Scripts Utilizing the Realm
Library

Goal: Create a python script to create stations and Layer-3 cross connects
Using the realm.py library we will write a script that will allow us to automate the creation of stations and Layer-
3 cross connects. We will also be able to start and stop traffic over the cross connects using the script. We will
be referencing the script, test_ipv4_variable_time.py, as an example throughout this cookbook. Requires
LANforge 5.4.2.

1. Starting the script

https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/test_ipv4_variable_time.py

A. Setting up inheritance for our object

A. In order for our script to be platform independent we will need to import sys . Then use
if 'py-json' not in sys.path:
 sys.path.append(os.path.join(os.path.abspath('..'), 'py-json'))

B. When creating our object we will need to import the LFCliBase module from the LANforge
module using from LANforge.lfcli_base import LFCliBase

C. After importing LFCliBase we can create our Class and inherit from LFCliBase

B. Setting up the main method

A. The main method will typically follow a pattern:

I. First, the creation of a list of stations. This can be done in many ways.
Example:
station_list = LFUtils.port_name_series(prefix_="sta",
 start_id_=0,
 end_id_=4,
 padding_number_=10000)

II. Following the station list, we can initialize our object:
 ip_var_test = IPV4VariableTime(lfjson_host, lfjson_port,
 number_template="00",
 sta_list=station_list,
 name_prefix="var_time",
 ssid="testNet",
 password="testPass",
 resource=1,
 security="wpa2",
 test_duration="5m",
 side_a_min_rate=256,
 side_b_min_rate=256)

III. After our object has been initialized we can begin the testing process. The
preferred order for running our tests is to:

i. Call cleanup() to prevent stations, cross-connects, and endpoints
within our list from having creation issues if anything exists with the same
name.

ii. Call the build() method in our class to setup the basic versions of the
stations, cross-connects, and endpoints.

iii. Call the start() method that will start the test itself, as well as any
bring up any stations and start traffic on cross-connects that need it.

iv. Call the stop() method to stop the traffic and bring down any stations
that are up.

v. Verify that the tests passed using our inherited passes() method.

vi. After verifying a pass we can then call our cleanup function again to
clean up everything we worked with.

C. Example Main Method
def main():
 lfjson_host = "localhost"
 lfjson_port = 8080
 station_list = LFUtils.portNameSeries(prefix_="sta", start_id_=0, end_id_=4, padding_number_=10000)
 ip_var_test = IPV4VariableTime(lfjson_host, lfjson_port, number_template="00", sta_list=station_list,
 name_prefix="var_time",
 ssid="testNet",
 password="testPass",
 resource=1,
 security="wpa2", test_duration="5m",
 side_a_min_rate=256, side_b_min_rate=256),
 ip_var_test.cleanup(station_list)
 ip_var_test.build()
 if not ip_var_test.passes():
 print(ip_var_test.get_fail_message())
 exit(1)
 ip_var_test.start(False, False)
 ip_var_test.stop()
 if not ip_var_test.passes():
 print(ip_var_test.get_fail_message())
 exit(1)
 time.sleep(30)
 ip_var_test.cleanup(station_list)
 if ip_var_test.passes():
 print("Full test passed, all connections increased rx bytes")

2. Test Methods Available With Realm
A. Using lfcli_base._pass() and lfcli_base._fail()

A. Since our class is inheriting lfcli_base.py, we have access to methods that will help us keep
track of passes and fails during our tests. We can access them using self._pass() or
self._fail(). They will take two parameters, a string message and an optional boolean
print_pass and print_fail for _pass() and _fail() respectively. If print_pass or
print_fail are set to True, they will write the message to stdout whenever the functions
are called.

B. lfcli_base will add a "PASSED: message" or "FAILED: message" to a list when the tests pass
or fail. This list can be accessed using the methods
get_result_list()
get_failed_result_list()
get_fail_message()
get_all_message()

B. Using lfcli_base to check test success

A. passes() will return a boolean depending on whether or not there were any fails in the
test. If it finds a fail message it will return False, if none are found it will return True.
get_result_list() will return all logged pass/fail messages as a list.
get_failed_result_list() will return a list of only fail messages.
get_fail_message() will return a list of string of fail messages separated by newlines
get_message() will return a list of string of all messages separated by newlines

https://github.com/greearb/lanforge-scripts/blob/master/py-json/LANforge/lfcli_base.py

3. Building a Station
A. Build Method

A. We will need to do a number of things to setup our build method.

I. To begin we will set the security type of our stations using
station_profile.use_security()

II. We will then use station_profile.set_number_template() to name our
stations

III. After this we can set our command flags and parameters using
self.station_profile.set_command_flag("add_sta","create_admin_down",1)
self.station_profile.set_command_param("set_port","report_timer",1500)
self.station_profile.set_command_flag("set_port","rpt_timer", 1)

IV. Once our parameters and flags are set, we can pass a list of stations to
station_profile.create() and cx_profile.create(). Our build function could
look like this:
for station in range(len(self.sta_list)):
 temp_sta_list.append(str(self.resource)+"."+self.sta_list[station])
self.station_profile.create(resource=1, radio="wiphy0", sta_names_=self.sta_list, debug=False)
self.cx_profile.create(endp_type="lf_udp", side_a=temp_sta_list, side_b="1.eth1", sleep_time=.5)
self._pass("PASS: Station build finished")

i The naming convention for the sides will look like foo-A for
side_a and foo-B for side_b. foo will be set based on the
names in the list of stations given.

B. StationProfile

A. The preferred method for creating a station_profile is to use the factory method
new_station_profile() found in realm

I. We will need to assign some variables for the creation of our stations before we
can call create().

i. self.station_profile.use_security(security_type, ssid,
passwd) is the preferred method to use when setting the security type,
ssid, and password variables
Example:
self.station_profile.use_security("wpa2", "testNet", "testPass")

ii. self.station_profile.number_template_ is the numerical prefix for
stations. Using a number_template of "00" will have stations look like
sta01, sta02...sta10
Example:
self.station_profile.number_template_="00"

iii. self.station_profile.mode determines the wifi mode used by the
stations. See here for available modes
Example:
self.station_profile.mode=0

4. Cross Connects
A. Starting and Stopping Traffic

A. In order for us to be able to start traffic, our stations will need to be admined up,
associated, and with an IP. We can bring them up using station_profile.admin_up().
We can then use realm.wait_for_ip(resource, sta_list) to wait for our stations, as well
as eth1, to get an IP address.

B. Once we are sure all of our stations have ip addresses, we can use
cx_profile.start_cx() to start the traffic for our cross-connects. When we decide to stop
the traffic we can just as easily use cx_profile.stop_cx() to stop traffic.

B. L3CXProfile

A. self.local_realm.create_new_l3_cx_profile() is the preferred method for creating a
new Layer 3 CX Profile.

I. We will need to assign some variables for the creation of our stations before we
can call create().

i. self.cx_profile.name_prefix will be used to specify the name prefix
for the cx. Assigning self.cx_profile.name_prefix to "test_" would
produce cross-connects named test_sta00 with the numbers being
dependent on station_profile's number_template.
Example:
self.cx_profile.name_prefix="test_"

ii. Set the _min_bps to the desired amount. _max_bps can be set but
typically defaults to 0 which sets it to the same as the minimum bps.
Example:
self.cx_profile.side_a_min_bps=56000
self.cx_profile.side_b_min_bps=56000

5. Using TTLS
A. TTLS setup requires a few pieces of information to work correctly. StationProfile has a

set_wifi_extra() method for setting the relevant variables. See here for the available options

https://github.com/greearb/lanforge-scripts/blob/master/py-json/realm.py
https://www.candelatech.com/lfcli_ug.php#add_sta
https://github.com/greearb/lanforge-scripts/blob/master/py-json/realm.py
https://www.candelatech.com/lfcli_ug.php#set_wifi_extra

B. We will need a key management type (key_mgmt), an EAP method (eap), an EAP identity string
(identity), an EAP password string (passwd), an 802.11u realm (realm), an 802.11u domain
(domain), and an 802.11u HESSID (hessid)
Example:
key_mgmt="WPA-EAP"
eap="TTLS"
identity="testuser"
passwd="testpasswd"
realm="localhost.localdomain"
domain="localhost.localdomain"
hessid="00:00:00:00:00:01"

We can then use these variables to call the set_wifi_extra() method
Example:
station_profile.set_wifi_extra(key_mgmt, eap, identity, passwd, realm, domain, hessid)

6. Cleaning Up
A. Cleanup stations and cross connects

A. We have two options for cleaning up everything once we finish:

I. The preferred method to cleanup is to use the individual cleanup methods found
in StationProfile and L3CXProfile . These are
station_profile.cleanup(resource, desired_station_list) and
cx_profile.cleanup(). These methods are preferred because they will only
delete stations, cross-connects, and endpoints created during the test while
leaving others untouched.This is useful if you are running other scripts in the
background.

II. The other method for cleanup is to use Realm 's remove_all_stations(),
remove_all_endps(), and remove_all_cxs() methods. These will remove all
stations, cxs, and endpoints that exist. These are good for doing a full cleanup,
and it is recommended to use them in the order of cx, endpoint, station to
prevent potential issues or missed deletions.

7. Debugging Stations
A. Debug information for station creation can be output by setting _debug_on=True in

StationProfile.create()
A. There are a few important debug outputs to pay attention to:

I. This is the debug output that appears when using the add_sta command. This is
used frequently in StationProfile.create() . This debug output will allow you to
troubleshoot any flags or other information that is being set when creating your
stations. It will output the name at the top and the raw JSON data will follow.

- 381 - sta0000- - - - - - - - - - - - - - - - - -
{'flags': 132096,
'flags_mask': 68719608832,
'key': 'testPass',
'mac': 'xx:xx:xx:xx:*:xx',
'mode': 0,'
radio': 'wiphy0',
'resource': 1,
'shelf': 1,
'ssid': 'testNet,
'sta_name': 'sta0000'}

II. The next bit of debugging output comes from using the set_port command. We
are able to see all of the JSON data that is posted, and can use this to check our
flags and other info.

{'current_flags': 2147483649,
'interest': 8437762,
'port': 'sta0000',
'report_timer': 1500,
'resource': 1,
'shelf': 1}
<LANforge.LFRequest.LFRequest object at 0x7f13dbc56850>
-~381 - - - - - - - - - - - - - - - - - - -

B. There are a few steps we can take to make validating the information we get through debugging
easier.

A. We can use the help page available on the address of the machine LANforge is running
on. http://127.0.0.1/help/ will take us to a page containing all of the commands we can
get help with.

https://www.candelatech.com/lfcli_ug.php#add_sta
https://www.candelatech.com/lfcli_ug.php#set_port
http://127.0.0.1:8080/help/

B. Using http://127.0.0.1/help/add_sta will bring us to a page specific to the add_sta
command.

C. Here we can enter all of the data we got from our debugging output into the correct
areas.

D. Flag fields have a button next to them that will calculate and highlight relevant flags in the
right hand column of the page. This can be useful for checking that the correct flags are
being set.

http://127.0.0.1:8080/help/add_sta

E. After we have done this, we can click the parse command button towards the top of the
data inputs. We can then enter this command into LANforge's messages tab in the input
box.

Create Python Scripts To Test Layer 4
Traffic

Goal: Create a script to test Layer 4 traffic using Realm
Using the realm.py library we will write a script that will allow us to automate the creation of stations and Layer
4 cross connects. We will also be able to start and stop traffic over the cross connects using the script. Station
and Cross Connect creation is covered in the Realm Scripting Cookbook. Requires LANforge 5.4.2.

1. Creating The Profile
A. We will use the factory method self.local_realm.new_l4_cx_profile() to create our profile

object.

B. After we have done this we can set a few variables for our traffic:

A. l4_cx_profile.requests_per_ten will set our rate of requests per ten minutes. Setting
requests_per_ten = 600 will set our URL request rate to 1 per second. There is no limit to
what can be used as the rate but common rates are:

600 : 1/s

1200 : 2/s

1800 : 3/s

2400 : 4/s

B. l4_cx_profile.url is the URL to be used in the requests. We will also need to specify the
direction (dl/ul) and a absolute path for the destination. See syntax here.
Example:
l4_cx_profile.url = "dl http://10.40.0.1 /dev/null"

C. Example Layer 4 profile init:
class IPV4L4(LFCliBase):
 def __init__(self, host, port, ssid, security, password, url, requests_per_ten, station_list,
 target_requests_per_ten=600, number_template="00000", resource=1, num_tests=1,
 _debug_on=False,
 _exit_on_error=False,
 _exit_on_fail=False):
 super().__init__(host, port, _debug=_debug_on, _halt_on_error=_exit_on_error, _exit_on_fail=_exit_on_fail)
 self.host = host
 self.port = port
 self.ssid = ssid
 self.security = security
 self.password = password
 self.url = url
 self.requests_per_ten = requests_per_ten
 self.number_template = number_template
 self.sta_list = station_list
 self.resource = resource
 self.num_tests = num_tests
 self.target_requests_per_ten = target_requests_per_ten

 self.local_realm = realm.Realm(lfclient_host=self.host, lfclient_port=self.port)
 self.cx_profile = self.local_realm.new_l4_cx_profile()
 self.cx_profile.url = self.url
 self.cx_profile.requests_per_ten = self.requests_per_ten

 # Station Profile init

2. Starting Traffic
A. When running traffic, if you plan to measure the rate of requests, it is recommended to do so in 10

minute increments. An example of this can be seen here: test_ipv4_l4_urls_per_ten.py. To start the
traffic we can use the l4_cx_profile.start_cx() method. To stop the traffic we can use the
l4_cx_profile.stop_cx() method.

https://www.candelatech.com/cookbook.php?vol=cli&book=Python:+Create+Test+Scripts+Using+Realm
https://www.candelatech.com/lfcli_ug.php#add_l4_endp
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/test_ipv4_l4_urls_per_ten.py

B. Example start and build method:
def build(self):
 # Build stations
 self.station_profile.use_security(self.security, self.ssid, self.password)
 print("Creating stations")
 self.station_profile.create(resource=1, radio="wiphy0", sta_names_=self.sta_list, debug=self.debug)
 temp_sta_list = []
 for station in range(len(self.sta_list)):
 temp_sta_list.append(str(self.resource) + "." + self.sta_list[station])

 self.l4_profile.create(ports=temp_sta_list, sleep_time=.5, debug_=self.debug, suppress_related_commands_=None)

def start(self, print_pass=False, print_fail=False):
 temp_stas = self.sta_list.copy()
 temp_stas.append("eth1")
 cur_time = datetime.datetime.now()
 interval_time = cur_time + datetime.timedelta(minutes=1)
 passes = 0
 expected_passes = 0
 self.station_profile.admin_up(1)
 self.local_realm.wait_for_ip(self.resource, temp_stas)
 self.l4_profile.start_cx()
 print("Starting test")
 for test in range(self.num_tests):
 expected_passes += 1
 while cur_time < interval_time:
 time.sleep(1)
 cur_time = datetime.datetime.now()

 if self.l4_profile.check_errors(self.debug):
 if self.__check_request_rate():
 passes += 1
 else:
 self._fail("FAIL: Request rate did not exceed 90% target rate", print_fail)
 break
 else:
 self._fail("FAIL: Errors found getting to %s " % self.url, print_fail)
 break
 interval_time = cur_time + datetime.timedelta(minutes=1)
 if passes == expected_passes:
 self._pass("PASS: All tests passes", print_pass)

3. Examining The Results
A. We can use http://localhost:8080/layer4/list to check our Layer 4 endpoints. Adding a ,,?fields to the

end of the URL will allow us to specify what we want to look at. We can separate fields by commas
to show more than one at a time.
Example: http:/localhost:8080/layer4/list?fields=name,urls/s,total-urls

Using total-urls will show us the total requests made.

Using urls/s will show us the average URL rate per second.

Using rx rate and tx rate will show us the rates of received and transeferred traffic.

We can also use the url http://localhost:8080/layer4/all to see all of the available fields.

B. When checking our results for Layer 4 tests we might want to check for common URL related errors:

acc. denied will show us the number of times we got an access denied error.

bad-url will show us the number of times a request was made with an invalid URL.

nf (4xx) will count the number of 400 errors recieved when making requests to our URL.

Create Python Scripts To Test Generic
Traffic

Goal: Create a script to test Generic traffic using Realm
Using the realm.py library we will write a script that will allow us to automate the creation of stations and
generic cross connects. We will also be able to start and stop traffic over the cross connects using the script.
Station and Cross Connect creation is covered in the Realm Scripting Cookbook. Requires LANforge 5.4.2.

1. Creating The Profile
A. We will use the factory method self.local_realm.new_generic_cx_profile() to create our profile

object.

http://localhost:8080/layer4/list
http://localhost:8080/layer4/all
https://www.candelatech.com/cookbook.php?vol=cli&book=Python:+Create+Test+Scripts+Using+Realm

B. After we have done this we can set a few variables for our traffic:

A. gen_cx_profile.type will determine the type of command to execute.
Example: self.cx_profile.type = "lfping"

B. gen_cx_profile.dest is the destination IP address for the command.
Example: self.cx_profile.dest = "127.0.0.1"

C. gen_cx_profile.interval sets the interval at which the command is run in seconds.
Example: self.cx_profile.interval = 1

D. Example Generic profile init:
class GenTest(LFCliBase):
 def __init__(self, host, port, ssid, security, password, sta_list, name_prefix, upstream,
 number_template="00000", test_duration="5m", type="lfping", dest="127.0.0.1",
 interval=1, radio="wiphy0",
 _debug_on=False,
 _exit_on_error=False,
 _exit_on_fail=False):
 super().__init__(host, port, _debug=_debug_on, _halt_on_error=_exit_on_error, _exit_on_fail=_exit_on_fail)
 self.host = host
 self.port = port
 self.ssid = ssid
 self.radio = radio
 self.upstream = upstream
 self.sta_list = sta_list
 self.security = security
 self.password = password

 self.number_template = number_template
 self.name_prefix = name_prefix
 self.test_duration = test_duration

 self.local_realm = realm.Realm(lfclient_host=self.host, lfclient_port=self.port)
 self.cx_profile = self.local_realm.new_generic_cx_profile()
 self.cx_profile.type = type
 self.cx_profile.dest = dest
 self.cx_profile.interval = interval

 # Station Profile init

2. Starting Traffic
A. To start the traffic we can use the gen_cx_profile.start_cx() method. To stop the traffic we can

use the gen_cx_profile.stop_cx() method.

B. Example start and build method:
def build(self):
 self.station_profile.use_security(self.security, self.ssid, self.password)
 self.station_profile.set_number_template(self.number_template)
 print("Creating stations")
 self.station_profile.set_command_flag("add_sta", "create_admin_down", 1)
 self.station_profile.set_command_param("set_port", "report_timer", 1500)
 self.station_profile.set_command_flag("set_port", "rpt_timer", 1)
 self.station_profile.create(radio=self.radio, sta_names_=self.sta_list, debug=self.debug)
 self.cx_profile.create(ports=self.station_profile.station_names, sleep_time=.5)
 self._pass("PASS: Station build finished")

def start(self, print_pass=False, print_fail=False):
 self.station_profile.admin_up()
 temp_stas = self.sta_list.copy()
 temp_stas.append(self.upstream)
 if self.local_realm.wait_for_ip(temp_stas):
 self._pass("All stations got IPs", print_pass)
 else:
 self._fail("Stations failed to get IPs", print_fail)
 exit(1)
 cur_time = datetime.datetime.now()
 passes = 0
 expected_passes = 0
 self.cx_profile.start_cx()
 time.sleep(15)
 end_time = self.local_realm.parse_time("30s") + cur_time
 print("Starting Test...")
 while cur_time < end_time:
 cur_time = datetime.datetime.now()
 gen_results = self.json_get("generic/list?fields=name,last+results", debug_=self.debug)
 if gen_results['endpoints'] is not None:
 for name in gen_results['endpoints']:
 for k, v in name.items():
 if v['name'] in self.cx_profile.created_endp and not v['name'].endswith('1'):
 expected_passes += 1
 if v['last results'] != "" and "Unreachable" not in v['last results']:
 passes += 1
 else:
 self._fail("%s Failed to ping %s " % (v['name'], self.cx_profile.dest), print_fail)
 break
 time.sleep(1)
 if passes == expected_passes:
 self._pass("PASS: All tests passed", print_pass)

3. Examining The Results

A. For lfping we can use the last results of the endpoint to determine if the test was successful. An
example of this can be seen in our start method. The most common errors for lfping will either be
a blank last result or Destination Host Unreachable. Either of these results indicate a failed ping.
Successful pings will look like:
64 bytes from 10.40.0.1: icmp_seq=1 time=4.55 ms *** drop: 0 (0, 0.000) rx: 1 fail: 0 bytes: 64

Results can also be seen in the generic tab in the LANforge Manager:

Double-clicking on an endpoint will allow you to see more specific results as well as the command
used by the endpoint. Using the sync button will allow you to see updated results.

Automate The Creation of VAPs With The
Realm Python Library

Goal: Create a python script to create VAPs
Using the realm.py library we will write a script that will allow us to automate the creation of VAPs. Requires
LANforge 5.4.2

1. Building a VAP
A. VAPProfile

A. The preferred method for creating a vap_profile is to use the factory method
new_vap_profile() found in realm

I. We will need to set the name of our vap using vap_profile.vap_name
Example:
vap_profile.vap_name = "TestNet"

II. vap_profile.use_security(security_type, ssid, passwd) is the
preferred method to use when setting the security type, ssid, and password
variables. Available security types are wpa, wpa2, wpa3, wep, and open.
Example:
vap_profile.use_security(type="wpa2", ssid="testNet", passwd="testPass")

III. We can change the mode at any time before calling create() by modifying the
vap_profile.mode variable. Changing the mode will allow us to specify the
802.11 wireless standard the VAP uses. See here for available modes.
Example:
vap_profile.mode = 1

IV. The channel to be used by the VAP can be set with the channel parameter of
the create() method.
Example:
vap_profile.create(resource=1, radio="wiphy0", channel=36, up_=True)

2. Bringing VAPs Up/Down

https://www.candelatech.com/lfcli_ug.php#add_vap

A. vap_profile.admin_up() and vap_profile.admin_down() can be used to bring the VAP up or
down, as necessary.

3. Using TTLS
A. TTLS setup requires a few pieces of information to work correctly. VAPProfile has a

set_wifi_extra() method for setting the relevant variables. See here for the available options

B. We will need a key management type (key_mgmt), an EAP method (eap), an EAP identity string
(identity), an EAP password string (passwd), an 802.11u realm (realm), an 802.11u domain
(domain), and an 802.11u HESSID (hessid)
Example:
key_mgmt="WPA-EAP"
eap="TTLS"
identity="testuser"
passwd="testpasswd"
realm="localhost.localdomain"
domain="localhost.localdomain"
hessid="00:00:00:00:00:01"

We can then use these variables to call the set_wifi_extra() method
Example:
vap_profile.set_wifi_extra(key_mgmt, eap, identity, passwd, realm, domain, hessid)

4. Cleaning Up
A. vap_profile.cleanup() can be used to remove any VAPs that were created by the profile

Load Scenarios And Control Test Groups
With Python

Goal: Using a python script to load scenarios and start, stop, and quiesce test groups
This cookbook will demonstrate how we can use json to load DB scenarios and control test groups using
python. We will be referencing the script scenario.py. Requires LANforge 5.4.2.

1. Running The Script

https://www.candelatech.com/lfcli_ug.php#set_wifi_extra
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/scenario.py%20target=

A. Setting up

A. For this example we are using a database called fio_test_group. It has two stations that
each have a read-only and write-only file-io endpoint attached to them.

Each pair of file-io endpoints are in a group. One group is named test-group-ro and the
other is test-group-wo.

2. Script Examples
A. The Command and Available Options

A. The script is located in lanforge-scripts/py-scripts/. From that directory we can use
./scenario.py to run the script.

B. The available options are:

1. --load db_name | This will load the database named db_name

2. --action (overwrite, append) | Optional argument to be used with --load,
will specify an action to take when loading the database. The default action is to
overwrite. The append option is more difficult to use and its use is discouraged.
See here for more info.

3. --clean_dut | Optional argument to be used with --load, will cleanup DUTs on
load. See here for more info.

4. --clean_chambers | Optional argument to be used with --load, will cleanup
Chambers on load. See here for more info.

5. --start group_name | This will start the cross-connects in the specified group

6. --stop group_name | This will stop the cross-connects in the specified group

7. --quiesce group_name | This will quiesce the cross-connects in the specified
group

https://www.candelatech.com/lfcli_ug.php#load
https://www.candelatech.com/lfcli_ug.php#load
https://www.candelatech.com/lfcli_ug.php#load

B. Examples of Running the Script

Loading fio_test_group with overwrite

Starting test-group-ro

Stopping test-group-ro

Quiescing test-group-wo

Record the results of a test as CSV from
the REALM monitor script

Goal: Record the results of a LANforge test as a CSV file.
Some scripts in the LANforge library have a monitor function built in.
We are going to be using the test_ipv4_variable_time script for this
demonstration.
This is useful for running a test and then analyzing the results afterwards.

1. Start LANforge GUI. It is recommended to run this script on a fresh LANforge configuration with no stations
loaded.

2. Make sure you have lanforge-scripts on your device.
If lanforge-scripts is already installed on your device, skip this step
Navigate to py-scripts in the lanforge-scripts folder. If your LANforge device doesn't have this open source
software yet you can clone them from Github
To install lanforge-scripts paste git clone https://github.com/greearb/lanforge-scripts into your
terminal.

3. Type the following command into your command line
./test_ipv4_variable_time.py --radio wiphy0 --security wpa2 --ssid lanforge --password
password --output_format csv
Replace the security, ssid, and password variables with the settings for the network you are testing.
This will create 2 wiphy stations by default, connect them to the network you are testing, and report the
results to a CSV file.You can change the following fields in the Realm Monitor function:

4. This creates a default file in your report-data folder under your home directory. The name will be in the
format with today's timestamp and the name of the test you ran. It's a normal Excel file which you can use
however you want..

https://github.com/greearb/lanforge-scripts

5. There are multiple commands you can use with this function, here is a list of the flag and what each of them
mean:

A. report_file: Name the full path of the file you want to save results to. Default will save to your report-
data folder.

B. duration_sec: how long you want to run the test

C. output_format: The output format you want your file in. The following formats are supported:

A. xlsx DEFAULT

B. pickle
HINT: pickle is recommended if you are going to be manipulating data in python since it
preserves formatting and can be quickly loaded into a Pandas DataFrame without any
manipulation required

C. csv

D. json

E. pdf
WARNING: PDF is hard to export data from without an Adobe Acrobat license

F. png
WARNING: png is going to export an image, do not use this if you are planning on
manipulating your data because it does not preserve the numbers recorded

G. html

H. hdf

I. parquet

J. stata

D. ssid: REQUIRED Name of the network you are connecting to

E. password: REQUIRED Password to the network

F. radio: REQUIRED The radio which you are going to create stations from.

G. security: Match the security protocol of your router.

H. test_duration: Default is 60 seconds, write in a any number if you need. You can also use minutes or
hours notation in this command, so for 42 minutes write 42m and for 8 hours write 8h.

I. upstream_port: Most users won't need to use this option, but it tells the program where to connect to
the router

J. created_cx: List of the cross connects you are going to be analyzing. If you are starting with no
stations created, you won't need to use this option.

Record the results of a test as an Excel file
from the REALM monitor script

Goal: Record the results of a LANforge test as an Excel file.
Some scripts in the LANforge library have a monitor function built in.
We are going to be using the test_ipv4_variable_time script for this
demonstration.
This is useful for running a test and then analyzing the results afterwards.

1. Start LANforge GUI. It is recommended to run this script on a fresh LANforge configuration with no stations
loaded.

2. Make sure you have lanforge-scripts on your device.
If lanforge-scripts is already installed on your device, skip this step
Navigate to py-scripts in the lanforge-scripts folder. If your LANforge device doesn't have this open source
software yet you can clone them from Github
To install lanforge-scripts paste git clone https://github.com/greearb/lanforge-scripts into your
terminal.

3. Type the following command into your command line
./test_ipv4_variable_time.py --radio wiphy0 --security wpa2 --ssid lanforge --password
password --output_format excel
Replace the security, ssid, and password variables with the settings for the network you are testing.
This will create 2 wiphy stations by default, connect them to the network you are testing, and report the
results to an Excel file.

4. This creates a default file in your report-data folder under your home directory. The name will be in the
format with today's timestamp and the name of the test you ran. It's a normal Excel file which you can use
however you want..

5. There are multiple commands you can use with this function, here is a list of the flag and what each of them
mean:

A. report_file: Name the full path of the file you want to save results to. Default will save to your report-
data folder.

B. duration_sec: how long you want to run the test

https://github.com/greearb/lanforge-scripts

C. output_format: The output format you want your file in. The following formats are supported:

A. xlsx DEFAULT

B. pickle
HINT: pickle is recommended if you are going to be manipulating data in python since it
preserves formatting and can be quickly loaded into a Pandas DataFrame without any
manipulation required

C. csv

D. json

E. pdf
WARNING: PDF is hard to export data from without an Adobe Acrobat license

F. png
WARNING: png is going to export an image, do not use this if you are planning on
manipulating your data because it does not preserve the numbers recorded

G. html

H. hdf

I. parquet

J. stata

D. ssid: REQUIRED Name of the network you are connecting to

E. password: REQUIRED Password to the network

F. radio: REQUIRED The radio which you are going to create stations from.

G. security: Match the security protocol of your router.

H. test_duration: Default is 60 seconds, write in a any number if you need. You can also use minutes or
hours notation in this command, so for 42 minutes write 42m and for 8 hours write 8h.

I. upstream_port: Most users won't need to use this option, but it tells the program where to connect to
the router

J. created_cx: List of the cross connects you are going to be analyzing. If you are starting with no
stations created, you won't need to use this option.

Define and Demonstrate Docstring Usage
in Candelatech Python Scripts

Goal: Use PEP 257 standards to properly document python scripts

This cookbook will demonstrate the proper method for documentation in Candelatech created test scripts
using PEP 257 guidelines.

Any docstrings occurring after the attribute docstring will be referred to as “additional docstrings“. Docstrings in
Python are defined as a string literal that is the first statement in a module, function, class or method definition.
Such string literals are referred to as “attribute docstrings” and will become the __doc__ attribute of the
module, function, class, or method in which they are used.

PEP 257 establishes a standard for docstring usage. In order to keep consistency, triple double quotes should
be used for all docstrings. Single-line docstrings should be contained entirely on one line. In the example given,
a docstring for a function should briefly describe its purpose and specify the return type.

Example taken from PEP 257 page:

def function(a, b):
 """Do X and return a list."""

Multi-line docstrings should consist of a brief one line summary, followed by a blank line, and finally followed by
a more elaborate description. The summary line may either be inline with the opening quotes or on the next
line and the whole docstring should be on the same line of indentation as the opening and closing quotations.
Closing quotes should exist on their own line, if part of a multi-line docstring, to prevent confusion.

Example taken from PEP 257 page:

def complex(real=0.0, imag=0.0):
 """Form a complex number.

 Keyword arguments:
 real -- the real part (default 0.0)
 imag -- the imaginary part (default 0.0)
 """
 if imag == 0.0 and real == 0.0:
 return complex_zero
 ...

Implementing Docstring Conventions With Candelatech Script Template

Candelatech scripts will follow PEP 257 specifications for module, function, class or method definitions. To keep
things standardized the following example will cover the preferred format for module level docstrings.

https://www.python.org/dev/peps/pep-0257/

#!/usr/bin/env python3
"""Module overview/one line description

More detailed summary of module, elaborate on when to use module/
test coverage of full script (Pass/ Fail conditions, columns/ information tested)

External scenario requirements:

Cookbook: http://www.candelatech.com/cookbook.php?vol=cli&book=_______

Copyright 2021 Candela Technologies Inc
License: Free to distribute and modify. LANforge systems must be licensed.
"""

Automated scanning of SSID, BSSID, and
Signal of available wireless APs

Goal: Create a station and scan for SSID, BSSID, and Signal of available wireless APs
We will learn how to use a script to create a station and scan for available APs. We will then look at the
/scanresults/ URI and the info we can get from a scan through JSON. Please refer to sta_scan_test.py as an
example script.

1. Using the Script
A. Command Line Options

A. --sta_name nameOfStation

Specifies the name of the station to be created, if this option is used, the name will default
to sta0000.

B. --ssid nameOfNetwork

Specifies the name of the network to connect to.
This value must be used, however, the SSID does not have to exist and a fake name can be
used.

C. --security {WEP, WPA, WPA2, WPA3, Open}

Specifies the security type of the network to connect to.
This value must be used, however, if a fake SSID is used the type should be open.

B. Running the script

A. As an example, we can run the script using:
./sta_scan_test.py --sta_name sta0000 --ssid fake_ssid --security open --radio wiphy0

B. This will produce output that looks like this:
BSS Signal SSID
08:36:c9:e3:d4:da -32.0 Logan-Test-Net
10:56:11:0c:04:02 -80.0 :)
22:56:11:0c:04:02 -79.0 xfinitywifi
32:56:11:0c:04:02 -80.0 NA

This script produces limited output, for more detail we can look at the webpage hosted by
LANforge.

2. The /scanresults/ URI
A. In order to view this page we will need to create a station and start a scan.

A. First we will create the station (Make sure to click on a radio in the Port Mgr tab first):

https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/sta_scan_test.py

B. Next we will create the station, the default values can be used or a specific number for the
station can be given:

C. After creating the station, we will give the an SSID to connect to. (This doesn't have to be a
real AP):

D. Clicking on Display Scan at the bottom of the station settings window will bring us to the
Scan window:

E. Finally we'll be able to start the scan and see the results. Clicking on Scan and waiting a
few seconds will show all of the APs availble to the station:

3. JSON Response from /scanresults/
A. Another way of viewing the same information is to use the /scanresults/ URI. This URL can be found at

your LANforge ip using port 8080. Ex: 192.168.10.20:8080/scanresults. We will also need the shelf
number, the resource number, and the station name. The final URL would look like this
192.168.10.20:8080/scanresults/1/1/sta0000

B. The scan results can be viewed through JSON by using cURL on the same URL as before. The
response will look like this:
{"handler":"candela.lanforge.HttpStationScan$FixedJsonResponder","uri":"
scanresults/:shelf_id/:resource_id/:port_id","candela.lanforge.HttpStationScan":
{"duration":"1"},"scan-results":[{"1.1.4.08:36:c9:e3:d4:da":{"age":"2238","auth":"WPA2",
"beacon":"200","bss":"08:36:c9:e3:d4:da","channel":"44","entity id":"1.1.4",
"frequency":"5220","info":"3x3 MCS 0-9 AC","signal":"-32.0","ssid":"Logan-Test-Net"}}]}

4. Accessing and Printing JSON Response with Python

A. We will use sta_scan_test.py as an example for a start() method

A. First, we'll need to send a JSON post using realm. Use this cookbook as reference for getting
started with realm. Our JSON will look something like this:
data = {
"shelf": 1,
"resource": 1,
"port": self.sta_list
}

B. We can then use json_post to send the request. We'll need to wait about 15 seconds to
give the scan time to happen
self.json_post("/cli-json/scan_wifi", data)
time.sleep(15)

C.
Next, we'll create a variable with the results from the scan using
scan_results = self.json_get("scanresults/1/1/%s" % ','.join(self.sta_list))

D. Finally, we'll create a loop to iterate through the JSON response and print some nicely
formatted output
print("{0:<23}".format("BSS"), "{0:<7}".format("Signal"), "{0:<5}".format("SSID"))
for result in scan_results['scan-results']:
 for name, info in result.items():
 print("%s\t%s\t%s" % (info['bss'], info['signal'], info['ssid']))

B. Final Results

A. Our final function will look like this:
def start(self):
 self.station_profile.admin_up()
 print(self.sta_list)
 print("Sleeping 15s while waiting for scan")
 data = {
 "shelf": 1,
 "resource": 1,
 "port": self.sta_list
 }
 self.json_post("/cli-json/scan_wifi", data)
 time.sleep(15)
 scan_results = self.json_get("scanresults/1/1/%s" % ','.join(self.sta_list))

 print("{0:<23}".format("BSS"), "{0:<7}".format("Signal"), "{0:<5}".format("SSID"))
 for result in scan_results['scan-results']:
 for name, info in result.items():
 print("%s\t%s\t%s" % (info['bss'], info['signal'], info['ssid']))

B. Our formatted output should look like this:
BSS Signal SSID
00:0e:8e:52:4e:82 -33.0 test-net
08:36:c9:e3:d4:db -31.0 Logan-Test-Net
08:36:c9:e3:d4:dc -27.0 Logan-Test-Net

Automated Probing of Ports for
information

Goal: Probe a port for information on that port.
We will learn how to use a script to probe a port for more information.We will also look at the ouput from the
GUI, JSON response, and the script itself. Use the port_probe.py script as a reference.

1. Using the Script
A. Command Line Options

A. --port_eid portEID
Specifies the eid of the port to be probed, if this option is used, the name will default to
1.1.eth0.

B. Running the script

A. As an example, we can run the script using:
./sta_probe_test.py --port_eid 1.1.wlan1

This example will probe the existing wlan1 port

2. Probe Results From the GUI

https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/sta_scan_test.py
https://www.candelatech.com/cookbook.php?vol=cli&book=Python:+Create+Test+Scripts+Using+Realm
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/port_probe.py

A. In order to view this page we will need to choose a port to use and start probing.

A. First we will open the configure settings window for our chosen port:

B. Next we will click the probe button at the bottom of the window and another window will
popup with the probe information:

This information is the formatted version of the probe. The other methods of accessing
probe results will be unformatted JSON.

3. JSON Response from /probe/
A. Another way of viewing the same information is to access the /probe/ page from LANforge. This can

be done by going to the page at your LANforge ip using port 8080. Ex: 192.168.10.20:8080/probe. We
will also need the shelf number, the resource number, and the port name.
The final URL would look like this: 192.168.10.20:8080/probe/1/1/wlan1 and the page will look similar
to this:

Basic CICD AP Testing with LANforge
Goal: Set up Basic CICD a LANforge system, Regression Automation and Reporting with data
from previous runs.

The LANforge CICD
framework provides an
ability to execute a suite of
tests and report results.

1. The following steps are discussed

A. Set Up CICD Controller and Environment

B. Set Up The JSON Configuration Files

C. Test Execution

D. Test Results

2. Set Up CICD Controller and Environment

A. clone lanforge-scripts from https://github.com/greearb/lanforge-scripts
B. run /lanforge-scripts/py-scripts/update_dependencies.py to install python packages for

generating output

C. Install web server:
  The web server is to allow for viewing of results from User Terminals
  The CICD - Controller is not dependent on a web server, results may be viewed locally on CICD -
Controller

A. LANforge LANforge installation using kinstall.pl installs a web server on LANforge
  LANforge installation installs an httpd server, LANforge may be used for storing and
displaying results.
  For the following example a separate LANforge system (Fedora) was used as the CICD -
Controller and httpd web server.

B. Fedora

 install httpd and configure server $ sudo dnf install httpd ↵

C. Ubuntu

 install apache2 and configure server $ sudo apt install apache2 ↵

D. Install mail service for email of links to results
  For the example below Linux mailx program was used
  Installation of mail services is dependent on the environment in which the CICD - Controller is
installed.
  The CICD - Controller is not dependent on email services

E. Install database sqlite3

A. Fedora

 $ sudo dnf install sqlite3 ↵

B. Ubuntu

 $ sudo apt-get update ↵ $ sudo apt-get install sqlite3 ↵

F. Create a html-reports directory. On lanforge /home/lanforge/html-reports

G. Determine sqlite3 database name and location, sqlite3 db will be created. ./tools/qa_sqlite3.db

3. Set Up The JSON Configuration Files

A. There are three JSON configuration input files described below.   For all the JSON configuration files
the CAPITALIZED parameters allow for a value to be entered into  one location and used in multiple
areas of the CICD framework.  For example in ssid_indx=1 the SSID_USED is set to asus11ax-5. For the
test suite below the SSID_USED  may be entered instead of asusu11ax-5, thus if the SSID changes, the
SSID will need to be modified in ct_AX88U_dut,  the ct_tests.json will remain untouched. This reduces
the need to modify the ct_test.json for SSID changes  that would affect multiple tests

A. --json_rig test_rig.json this JSON file describes LANforge test rig, Example ct_test_rig.json  
The test_rig.json describes the LANforge system and test parameters for the CICD -
Controller

http://www.candelatech.com/examples/cb_eg_cv_view_basic_cicd_ap_testing/ct_test_rig.json

B. --json_dut ct_AX88U_dut.json this JSON file describes the AP, Example ct_AX88U_dut.json  
the ct_AX88U_dut.json describes the device under test parameters, DUT_SET_NAME:
DUT_NAME ASUSSRT-AX88U for example is used by Chamberview Tests

C. --json_test ct_tests.json this JSON file describes the tests, Example ct_tests.json  
The tests may use the CAPITALIZED variables or may be entered with the command line
arguments as they would be entered on the command line.  
The tests are not limited to only python tests

B. test_rig.json
{
 "test_rig":{
 "Notes":[
 "This JSON file describes LANforge system and test run configuration"
]
 },
 "test_rig_parameters":{
 "TEST_BED": "CT-TEST-001",
 "TEST_RIG": "CT-TEST-001",
 "DATABASE_SQLITE": "./tools/qa_sqlite3.db",
 "LF_MGR_IP": "192.168.100.116",
 "LF_MGR_PORT": "8080",
 "LF_MGR_USER": "lanforge",
 "LF_MGR_PASS": "lanforge",
 "UPSTREAM_PORT":"1.1.eth2",
 "TEST_TIMEOUT": 600,
 "EMAIL_LIST_PRODUCTION": "support@candelatech.com",
 "EMAIL_LIST_TEST": "support@candelatech.com",
 "EMAIL_TITLE_TXT": "Lanforge QA Testing",
 "EMAIL_TXT": "Lanforge QA Testing"
 }
}

C. ct_AX88U_dut.json
{
 "ct_AX88U_dut":{
 "Notes":[
 "The device undertest configuration is contained in this file"
]
 },
 "test_dut":{
 "DUT_SET_NAME": "DUT_NAME ASUSRT-AX88U",
 "USE_DUT_NAME": "ASUSRT-AX88U",
 "wireless_network_dict":{
 "ssid_idx=0":{"ssid_idx":"0","SSID_USED":"asus11ax-2","SSID_PW_USED":"hello123","BSSID":"3c:7c:3f:55:4d:60","SECURITY_USED":"wpa2"},
 "ssid_idx=1":{"ssid_idx":"1","SSID_USED":"asus11ax-5","SSID_PW_USED":"hello123","BSSID":"3c:7c:3f:55:4d:64","SECURITY_USED":"wpa2"}
 }
 }
}

http://www.candelatech.com/examples/cb_eg_cv_view_basic_cicd_ap_testing/ct_AX88U_dut.json
http://www.candelatech.com/examples/cb_eg_cv_view_basic_cicd_ap_testing/ct_tests.json

D. ct_tests.json
{
 "ct_tests_001":{
 "Notes":[
 "This JSON file describes tests to be run by LANforge system"
]
 },
 "test_suites":{
 "suite_wc":{
 "create_chamberview_dut_wc":{
 "enabled":"TRUE",
 "load_db":"skip",
 "command":"create_chamberview_dut.py",
 "args":"",
 "args_list":[
 " --lfmgr LF_MGR_IP --port LF_MGR_PORT --dut_name DUT_NAME",
 " --ssid 'ssid_idx=0 ssid=SSID_USED security=SECURITY_USED password=SSID_PW_USED bssid=BSSID'",
 " --ssid 'ssid_idx=1 ssid=SSID_USED security=SECURITY_USED password=SSID_PW_USED bssid=BSSID'",
 " --sw_version DUT_SW --hw_version DUT_HW --serial_num DUT_SERIAL --model_num DUT_NAME"
]
 },
 "create_chamberview_wc":{
 "enabled":"TRUE",
 "load_db":"skip",
 "command":"create_chamberview.py",
 "args":"",
 "args_list":[
 " --lfmgr LF_MGR_IP --port LF_MGR_PORT --delete_scenario",
 " --create_scenario scenario_wpa2_wc",
 " --raw_line \"profile_link 1.1 STA-AC 19 'DUT: DUT_NAME Radio-1' NA wiphy7,AUTO -1 NA\" ",
 " --raw_line \"profile_link 1.1 upstream-dhcp 1 NA NA UPSTREAM_PORT,AUTO -1 NA\""
]
 },
 "wifi_capacity":{
 "enabled":"TRUE",
 "timeout":"600",
 "iterations":"1",
 "load_db":"skip",
 "command":"lf_wifi_capacity_test.py",
 "args":"",
 "args_list":[
 " --mgr LF_MGR_IP --port LF_MGR_PORT --lf_user LF_MGR_USER --lf_password LF_MGR_PASS --instance_name scenario_wpa2_wc",
 " --upstream UPSTREAM_PORT --batch_size 1,10,19 --loop_iter 1 --protocol UDP-IPv4 --duration 6000",
 " --pull_report --local_lf_report_dir REPORT_PATH --test_tag 'wpa2_wc'",
 " --test_rig TEST_RIG",
 " --set DUT_SET_NAME"
]
 },
 "lf_qa":{
 "enabled":"TRUE",
 "timeout":"600",
 "load_db":"skip",
 "command":"./tools/lf_qa.py",
 "args":"",
 "args_list":[
 " --path REPORT_PATH --store --png --database DATABASE_SQLITE"
]
 }
 }
 }
}

E. sample command with above data:  
./lf_check.py --json_rig ct_test_rig.json \ 
 --json_dut ct_AX88U_dut.json \ 
 --json_test ct_tests.json \ 
 --suite "suite_wc" \ 
 --path '/home/lanforge/html-reports/ct_results_directory'

4. Set Up The JSON Configuration Files

A. The lf_check.py is run form the lanforge-scripts/py-scripts/tools directory

B. lf_check.py uses three JSON files as input:
  For Example:
  ct_test_rig.json - describes the LANforge test rig configuration
  ct_AX88U_dut.json - describes the device under test
  ct_tests.json -describe the tests to be run.
 

5. lf_check.py execution, simple command example

A. ./lf_check.py --json_rig ct_test_rig.json \ 
 --json_dut ct_AX88U_dut.json \ 
 --json_test ct_tests.json \ 
 --suite "suite_wc" \ 
 --path '/home/lanforge/html-reports/ct_results_directory'

6. Sample email sent on run

7. lf_check.py: sample lf_check.py Report

http://www.candelatech.com/examples/cb_eg_cv_view_basic_cicd_ap_testing/2021-10-13-06-18-12-lf_check.pdf

8. lf_qa.py
lf_qa.py: process kpi.csv, produces html/pdf results, produces plotly png and interactive graphs from test run
kpi
sample command:
./lf_qa.py --path /home/lanforge/html-reports/ct_results_directory/(results dir of lf_check.py)\
 --store \
 --png \
 --database ./tools/qa_aqlite3.db

9. lf_qa.py: sample lf_qa.py Report

10. Sample lf_heck.py Output example lf_check Report

11. Test Control Inputs in Test Suite JSON

http://www.candelatech.com/examples/cb_eg_cv_view_basic_cicd_ap_testing/2021-10-13-06-21-11-lf_qa.pdf
http://www.candelatech.com/examples/cb_eg_cv_view_basic_cicd_ap_testing/2021-10-13-06-18-12-lf_check.pdf

A. "enabled":"TRUE"
  Allows for individual test enable and disable of the test.

B. "load_db":"CUSTOM_DATABASE"
  Allows for loading a LANforge database prior to the test run.

C. "timeout":"300"
  Allows for test to have individual timeout other then default.

D. "iterations":"2"
  Allows for test to run multiple iterations.

Start Here: Introduction to Executing
Python Script on LANforge

Goal: Run First Python Script on LANforge

Each LANforge system has
Python scripts preinstalled at
/home/lanforge/scripts to
configure the LANforge and
run Traffic Emulation. Goal is
to execute sta_connect2.py,
one of the pre-installed
python scripts located at

/home/lanforge/scripts/py-script/sta_connect2.py

The Script sta_connect2.py will create a station, create TCP and UDP traffic, run traffic for a short amount of
time, and verify whether traffic was sent and received. It also verifies the station connected to the requested
BSSID if bssid is specified as an argument. The script will clean up the station and connections at the end of the
test. An html and pdf or the results will be generated and placed in /home/lanforge/html-reports directory The
script will clean up the station and connections at the end of the test.

1. Start the LANforgeGUI if GUI not running:
To start the LANforgeGUI navigate to : /home/lanforge/LANforgeGUI_5.4.5
Execute : ./lfclient.bash
Select 'Connect' to connect to: localhost:4002 Local Machine Address

2. Where Do I Find Scripts?
Preinstalled Python Scripts Location on LANforge: /home/lanforge/scripts/py-scripts
Example script sta_connect2.py location: /home/lanforge/scripts/py-scripts/sta_connect2.py

3. Initial Information to gather as input to sta_connect2.py script:
 Note: An example of a Device Under Test is an Access Point
 The DUT information is used in report generation. The DUT information may be optional.

A. The LANforge manager IP address: --mgr [localhost]

B. The LANforge upstream port: --upstream_port [eth port]

C. The LANforge radio: --radio [radio]

D. The Device Under Test ssid: --dut_ssid [ssid]

E. The Device Under Test passwd: --dut_passwd [passwd]

F. The Device Under Test security: --dut_security [security]

G. The Device Under Test Model Number: --dut_model_num [model]

H. The Device Under Test Hardware Version: --dut_hw_version [hw version]

I. The Device Under Test Software Version: --dut_sw_version [sw version]

J. The Device Under Test Serial Number: --dut_serial_num [serial number]

BE Best Effort

BK Background

VI Video

VO Video

4. Example Command for sta_connect2.py:
./sta_connect2.py --mgr localhost --upstream_port 1.1.eth2
 --radio 1.1.wiphy1 --dut_ssid axe11000_5g --dut_passwd lf_axe11000_5g --dut_security wpa2
 --dut_model_num GT-AXE11000 --dut_hw_version 1.0 --dut_sw_version V3.0.0.4.386.0000
 --dut_serial_num M32A

5. Results for sta_connect2.py located in /home/lanforge/html-reports:

6. Results for sta_connect2.py located in /home/lanforge/html-reports:
Script produces both html and pdf results
Sample sta_connect2.py Script HTML Output: example of html output
Sample sta_connect2.py Script pdf Output: example of pdf output
Other script options may be shown by typing ./sta_connect2.py --help

Basic: Layer3 Traffic Generation: test_l3.py
Goal: Use Python Script test_l3.py to Generate Layer3 Traffic

Each LANforge system has
Python scripts installed at
/home/lanforge/scripts.
You can find it at

/home/lanforge/scripts/py-script/test_l3.py

The script test_l3.py will:

create stations (on multiple radios),

create TCP and UDP cross connects

run traffic at specified data rates for a specified time.

The traffic prioritization is configurable:

The upload and download statistsics are recorded at the end of each polling interval. The script will verify
whether traffic is sent and received. The script cleans up the station and connections at the end of the test. An
HTML and PDF report of the results will be generated and placed in the /home/lanforge/html-reports
directory.

1. Start the LANforgeGUI if GUI not running:
To start the LANforgeGUI navigate to : /home/lanforge/LANforgeGUI_5.4.5
Execute : ./lfclient.bash

Click the Connect button to connect to: localhost:4002 Local Machine Address

http://www.candelatech.com/examples/lanforge_scripts/sta_connect2/2022-06-21-05-14-39-sta_connect2.html
http://www.candelatech.com/examples/lanforge_scripts/sta_connect2/2022-06-21-05-14-39-sta_connect2.pdf

2. Where Do I Find Scripts?
Preinstalled Python Scripts Location on LANforge: /home/lanforge/scripts/py-scripts

Example script test_l3.py location: /home/lanforge/scripts/py-scripts/test_l3.py

3. Initial Information to Gather as input to test_l3.py script:
Note: An example of a Device Under Test is an Access Point. The DUT information is used in report
generation. The DUT information may be optional.

A. The LANforge manager IP address: --lfmgr [localhost]
B. The LANforge upstream port: --upstream_port [eth port]
C. The LANforge end point type: --endp_type 'lf_udp,lf_tcp'
D. The LANforge type of service: --tos 'BK,VI'
E. The side 'a' tx bit rate (upload) --side_a_min_bps [bits per second]
F. The side 'b' tx bit rate (download) --side_b_min_bps [bits per second]

G. The LANforge radio information :
--radio 'radio==[radio] stations==[number] ssid==[ssid] ssid_pw==[password]
security==[security]'

H. The Test Durations : --test_duration [value] (s - seconds, m - minutes, h - hours)

I. The Polling Interval : --polling_interval [value] (s - seconds, m - minutes, h - hours)

J. The Test Rig: --test_rig [test system id]
K. The Test Tag: --test_tag [unique test id]
L. The Device Under Test Model Number: --dut_model_num [model]

M. The Device Under Test Hardware Version: --dut_hw_version [hw version]
N. The Device Under Test Software Version: --dut_sw_version [sw version]
O. The Device Under Test Serial Number: --dut_serial_num [serial number]

4. Example Command for test_l3.py:
 ./test_l3.py --lfmgr 192.168.0.103 \
--upstream_port 1.1.eth2 \
--endp_type 'lf_udp,lf_tcp' \
--tos 'BK,VI' \
--side_a_min_bps 256000 \
--side_b_min_bps 102400000 \
--radio 'radio==wiphy1 stations==1 ssid==asus_5g ssid_pw==lf_asus_5g security==wpa2' \
--test_duration 30s \
--polling_interval 5s \
--test_rig CT_LAB_104 \
--test_tag Layer_3_Example \
--dut_model_num RT-AX88U \
--dut_hw_version A1.1
--dut_sw_version 3.0.0.4.384 \
--dut_serial_num M1IAHP000003

5. Results for test_l3.py located in /home/lanforge/html-reports:

bytes-rd monitor the bytes read

urls monitor the url's per
second

6. Results for test_l3.py is located at /home/lanforge/html-reports:
Script produces both HTML and PDF results:

example of HTML output

example of PDF output

example of kpi.csv output

Other script options may be show by typing ./test_l3.py --help

Basic: Layer4 HTTP Traffic Generation:
test_l4.py

Goal: Use Python Script test_l4.py to Generate Layer4 HTTP Traffic

Each LANforge system has
Python scripts installed at
/home/lanforge/scripts.
You can find test_l4.py at

/home/lanforge/scripts/py-script/test_l4.py

The script test_l4.py will:

Create stations (on the specified radio).

Create Layer 4-7 endpoints.

Monitor the bytes-rd attribute of the created endpoints.

The test type attribute is configurable:

The monitored Layer 4-7 attribute statistics are recorded at the end of each polling interval. Test_l4.py will
monitor the urls/s, bytes-rd, or bytes-wr attribute of the layer 4-7 endpoints. These attributes can be tested over
FTP using a --ftp flag. If the monitored value does not continually increase, this test will not pass. The script
cleans up the stations and connections at the end of the test. An HTML and PDF report of the results will be
generated and placed in the /home/lanforge/html-reports directory.

1. Start the LANforgeGUI if the GUI is not running:
To start the LANforgeGUI navigate to : /home/lanforge/LANforgeGUI_5.4.5
Execute : ./lfclient.bash

Click the Connect button to connect to: localhost:4002 Local Machine Address

http://www.candelatech.com/examples/lanforge_scripts/test_l3/2022-08-01-06-03-52-test_l3.html
http://www.candelatech.com/examples/lanforge_scripts/test_l3/2022-08-01-06-03-52-test_l3.pdf
http://www.candelatech.com/examples/lanforge_scripts/test_l3/kpi.csv

2. Where Do I Find Scripts?
Preinstalled Python Scripts Location on LANforge: /home/lanforge/scripts/py-scripts

Example script test_l4.py location: /home/lanforge/scripts/py-scripts/test_l4.py

3. Initial Information to Gather as input for the test_l4.py script:
Note: An example of a Device Under Test is an Access Point. The DUT information is used in report
generation. The DUT information may be optional.

A. The LANforge manager IP address: --mgr [localhost]
B. The LANforge upstream port: --upstream_port [eth port]
C. The LANforge radio information :

--radio 'radio==[radio] stations==[number] ssid==[ssid] ssid_pw==[password]
security==[security]'

D. The LANforge station creation amount: --num_stations [2]
E. The AP SSID name: --ssid [SSID]
F. The AP security type: --security [open, wpa, wpa2, wpa3]

G. The AP SSID password: --passwd [password]
H. The Test Duration : --test_duration [value] (s - seconds, m - minutes, h - hours)

I. The Test URL: --url "dl http://upstream_port_ip /dev/null"
J. The Test Type: --test_type [bytes-rd, urls]
K. The Service Request Interval: --requests_per_ten [600]
L. The Test Rig: --test_rig [test system id]

M. The Test Tag: --test_tag [unique test id]
N. The Device Under Test Model Number: --dut_model_num [model]
O. The Device Under Test Hardware Version: --dut_hw_version [hw version]
P. The Device Under Test Software Version: --dut_sw_version [sw version]
Q. The Device Under Test Serial Number: --dut_serial_num [serial number]

4. Example Command for a downloaded bytes-rd HTTP test with test_l4.py:
 ./test_l4.py --lfmgr localhost \
--upstream_port 1.1.eth1 \
--radio 1.1.wiphy0 \
--num_stations 2 \
--ssid AP_SSID \
--security wpa2 \
--passwd password \
--test_duration 1m \
--url "dl http://upstream_port_ip /dev/null" \
--test_type bytes-rd \
--requests_per_ten 600 \
--test_rig CT_LAB_L4 \
--test_tag Layer_4_Example \
--dut_model_num RT-AX88U \
--dut_hw_version A1.1 \
--dut_sw_version 3.0.0.4.384 \
--dut_serial_num M1IAHP000003

5. Example Command for a downloaded url's/s HTTP test with test_l4.py:
 ./test_l4.py --lfmgr localhost \
--upstream_port 1.1.eth1 \
--radio 1.1.wiphy0 \
--num_stations 2 \
--ssid AP_SSID \
--security wpa2 \
--passwd password \

--test_duration 1m \
--url "dl http://upstream_port_ip /dev/null" \
--test_type urls \
--requests_per_ten 600 \
--test_rig CT_LAB_L4 \
--test_tag Layer_4_Example \
--dut_model_num RT-AX88U \
--dut_hw_version A1.1 \
--dut_sw_version 3.0.0.4.384 \
--dut_serial_num M1IAHP000003

6. Results for test_l4.py are located in /home/lanforge/html-reports:

7. Results for test_l4.py are located in /home/lanforge/html-reports:
The script produces both HTML and PDF results:

example of HTML output

example of PDF output

example of kpi.csv output

Additional script options may be shown by typing ./test_l4.py --help

http://www.candelatech.com/examples/lanforge_scripts/test_l4/2022-08-04-13-03-15-test_l4.html
http://www.candelatech.com/examples/lanforge_scripts/test_l4/2022-08-04-13-03-15-test_l4.pdf
http://www.candelatech.com/examples/lanforge_scripts/test_l4/kpi.csv

bytes-rd monitor the bytes read

bytes-wr monitor the bytes write

urls monitor the url's per
second

Basic: Layer4 FTP Traffic Generation:
test_l4.py

Goal: Use Python Script test_l4.py to Generate Layer4 FTP Traffic

Each LANforge system has
Python scripts installed at
/home/lanforge/scripts.
You can find test_l4.py at

/home/lanforge/scripts/py-script/test_l4.py

The script test_l4.py will:

Create stations (on the specified radio).

Create Layer 4-7 endpoints.

Monitor the bytes-rd attribute of the created endpoints.

The test type attribute is configurable:

The monitored Layer 4-7 attribute statistics are recorded at the end of each polling interval. Test_l4.py will
monitor the urls/s, bytes-rd, or bytes-wr attribute of the layer 4-7 endpoints. These attributes can be tested over
FTP using a --ftp flag. If the monitored value does not continually increase, this test will not pass. The script
cleans up the stations and connections at the end of the test. An HTML and PDF report of the results will be
generated and placed in the /home/lanforge/html-reports directory.

1. Start the LANforgeGUI if the GUI is not running:
To start the LANforgeGUI navigate to : /home/lanforge/LANforgeGUI_5.4.5
Execute : ./lfclient.bash

Click the Connect button to connect to: localhost:4002 Local Machine Address

2. Where Do I Find Scripts?
Preinstalled Python Scripts Location on LANforge: /home/lanforge/scripts/py-scripts

Example script test_l4.py location: /home/lanforge/scripts/py-scripts/test_l4.py

3. Initial Information to Gather as input for the test_l4.py script:
Note: An example of a Device Under Test is an Access Point. The DUT information is used in report
generation. The DUT information may be optional.

A. The LANforge manager IP address: --mgr [localhost]
B. The LANforge upstream port: --upstream_port [eth port]
C. The LANforge radio information :

--radio 'radio==[radio] stations==[number] ssid==[ssid] ssid_pw==[password]
security==[security]'

D. The LANforge station creation amount: --num_stations [2]
E. The AP SSID name: --ssid [SSID]
F. The AP security type: --security [open, wpa, wpa2, wpa3]

G. The AP SSID password: --passwd [password]
H. The Test Duration : --test_duration [value] (s - seconds, m - minutes, h - hours)

I. The FTP Test Switch: --ftp [enables FTP testing]
J. The Test URL: --url "dl ftp://upstream_port_ip /dev/null"

K. The Test Type: --test_type [bytes-rd]
L. The Service Request Interval: --requests_per_ten [600]

M. The Test Rig: --test_rig [test system id]
N. The Test Tag: --test_tag [unique test id]
O. The Device Under Test Model Number: --dut_model_num [model]
P. The Device Under Test Hardware Version: --dut_hw_version [hw version]
Q. The Device Under Test Software Version: --dut_sw_version [sw version]
R. The Device Under Test Serial Number: --dut_serial_num [serial number]

4. Example Command for a downloaded bytes-rd FTP test with test_l4.py:
 ./test_l4.py --lfmgr localhost \
--upstream_port 1.1.eth1 \
--radio 1.1.wiphy0 \
--num_stations 2 \
--ssid AP_SSID \
--security wpa2 \
--passwd password \
--test_duration 1m \
--ftp \
--url "dl ftp://upstream_port_ip /dev/null" \
--test_type bytes-rd \
--requests_per_ten 600 \
--test_rig CT_LAB_L4 \
--test_tag Layer_4_Example \
--dut_model_num RT-AX88U \
--dut_hw_version A1.1 \
--dut_sw_version 3.0.0.4.384 \
--dut_serial_num M1IAHP000003

5. Example Command for a downloaded url's/s FTP test with test_l4.py:
 ./test_l4.py --lfmgr localhost \
--upstream_port 1.1.eth1 \
--radio 1.1.wiphy0 \
--num_stations 2 \
--ssid AP_SSID \
--security wpa2 \
--passwd password \
--test_duration 1m \
--ftp \
--url "dl ftp://upstream_port_ip /dev/null" \
--test_type urls \
--requests_per_ten 600 \
--test_rig CT_LAB_L4 \
--test_tag Layer_4_Example \
--dut_model_num RT-AX88U \
--dut_hw_version A1.1 \
--dut_sw_version 3.0.0.4.384 \
--dut_serial_num M1IAHP000003

6. Results for test_l4.py are located in /home/lanforge/html-reports:

7. Results for test_l4.py are located in /home/lanforge/html-reports:
The script produces both HTML and PDF results:

example of HTML output

example of PDF output

example of kpi.csv output

Additional script options may be shown by typing ./test_l4.py --help

Customize and Run the Python Dataplane
Script

Goal: Edit and run the bash script that runs both Python Dataplane and Create Chamberview
scripts according to a customized LANforge Setup.
This cookbook describes how to edit a bash script, cv_dataplane_script.sh, that executes the 'Create Chamber
DUT', 'Create Chamberview' and the 'Dataplane' test python scripts (create_chamberview_dut.py,
create_chamberview.py, lf_dataplane_test.py). These 3 python scripts are broken up into sections within this
one bash script, that have their own arguments passed into each python script. The python scripts will run in
consecutive order within the bash script and the LANforge GUI will reflect when each python script runs.
Requires LANforge 5.4.2.

1. Open the bash script and edit the variables at the top of the script. Also, understand a little
bit about this bash script.

A. This bash script, 'cv_dataplane_script.sh, is comprised of 3 different python scripts, broken up into
their own sections. This cookbook explains how to run these 3 different python scripts.

B. In this code, when executing a python script, the arguements are denoted by a '--' in front of them.
This is then followed by the arguement name, a equals sign, and then the actual arguement (user
input). The format: '--argument_name_1=[USER INPUT ARGUMENT 1] --argument_name_2=[USER
INPUT ARGUEMENT 2]. Only 1 space must be between the end of an argument input and next
arguement name. Never include a space between the equal sign and arguement/arguement
name.

C. Variables are denoted at the top in the format 'VARIABLE_NAME=YOUR_VALUE' When the variables
are used in the script, the format is '${VARIABLE_NAME}'. More or less variables can be added and
removed from the script if used in this format.

D. Throughout the script, there are backslashes at the end of the line if the arguments are continuing
over to the next line. The backslashes indicate the code to combine both lines together when
running.

E. Lastly, to see any further detail about scripts, run the script in the same format as the bash code: go
to the py-scripts directory and run the --help arguement. In the create_chamberview_dut python
script this would look like: './create_chamber_dut.py --help'. This --help argument gives more detail
about the script.

2. Create the DUT: edit the arguments to pass into create_chamberview_dut.py

http://www.candelatech.com/examples/lanforge_scripts/test_l4_ftp/2022-08-05-12-54-54-test_l4.html
http://www.candelatech.com/examples/lanforge_scripts/test_l4_ftp/2022-08-05-12-54-54-test_l4.pdf
http://www.candelatech.com/examples/lanforge_scripts/test_l4_ftp/kpi.csv
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/cv_dataplane_script.sh
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/create_chamberview_dut.py
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/create_chamberview.py
https://github.com/greearb/lanforge-scripts/blob/master/py-scripts/lf_dataplane_test.py

A. First, the argument names --lf_mgr, -o (port) and --dut_name are all passed in from the top (and they
are all required). DUT Flags are flags used by the server, below is a screenshot of all the flags. To
calculate the number for all the flags needed, t

B. Next, add the ssid lines. Each --ssid argument is followed by a string with several individual
arguments. ssid_idx is the number which ssid it is. This number is just a sequential number, the first one
is 1, second one is 2, etc. 'ssid' is ssid from the AP. This is the same for password, security, BSSID.
Multiple securities example for a SSID is shown in the second --line for ssid_idx 2.

3. Create the Chamber View scenario: edit the flags to pass into create_chamberview.py
The image below highlights the section of the script to be edited.

A. As shown in the example, the first line comprises of the following flags: --mgr (lanforge IP address), --
mgr_port (the port through which this script will use), --delete_scenario, and --cs (name under which
this new scenario will be saved under in the database).The mgr and mgr_port are passed in through
the variables at the top of this bash script and the scenario name can be anything. If the scenario
name passed in as --create_scenario is already in the GUI, using the '--delete_scenario' flag will
override that already created scenario.

B. The next arguments, '--line' are the lines that show up in the GUI if the scenario is created manually.
These lines will translate in the GUI after the command is executed. After the '--line' is the actual line,
a string. The string has details of the objects of the dataplane test (such as amount, radio, etc.),
some required, some not. In the example is used a 'station' line, 'upstream-dhcp' line, and 'uplink-nat'
line (as all these are objects in our dataplane test).1st, 'Resource' (required) is resource number the
object is located on. The first number will most likely always be 1 (Shelf) and the second number is
Resource (in this case, also 1). Notation for resource 4 would be '1.4'. Profile (required) is the name of
the profile wanted for an object. Profiles can be created and found in the profiles tab in the GUI.
The profile used in the example is 'STA-AX'(with the station profile type), for the station profile.
'Amount' (required) is the amount of objects to be created in chamber view. For stations, the
amount can be multiple, for ethernet object creations it will most likely be 1.'Uses-1' (required) is the
object this new created object will use or reside on. For an upstream object, eth1 through eth3
might be the 'Uses-1'. For station objects, this is the radio that the station will use. 'Uses-2' is optional
and an alternative to 'Uses-1'.'Traffic' (optional) is background traffic that object runs and can be
either voip, http and others found in the 'Traffic' dropdown of the Scenario Creation GUI.

C. 'DUT' and 'DUT_Radio' are not optional. In the station line, '$DUT' is taking in the DUT name variable
passed in at the top, but it can be any DUT name that is already created in the GUI. 'DUT_Radio
corresponds with the SSID number in the DUT object. 'Radio-1' is corresponding to 'SSID-1'. For the
upstream object, the 'Radio' is the 'LAN' port on the DUT. Finally, 'Freq' is the frequency the object's
radio should be on. This mainly is for stations and objects that use radios.'

4. Edit the arguments to run the dataplane test.

A. Similar to other python scripts run in this bash script, '--mgr', '--o' (port) and '--dut' are passed in
through the variables at the top. '--instance_name is the name of the new window that will hold the
dataplane test.--upstream_port is more than likely an ethernet port, one used earier when creating
the scenario. The example used below is eth3. This notation is the '[shelf].[resource].[name]' notation.
The shelf and the resource can be found in the 'Port Manager', under the 'Port' column. The shelf
and the resource are the first 2 numbers separated by the first dot. This same notation is used for the
'--station' flag too. The 'station' flag is the station used in the dataplane test.

B. Upload and download speed are in percentages or Kbps/Mbps/Gbps. It is the requested
connection traffic speed. If a percentage is entered, the rate will be calculated from the theoretical
throughput.

C. The '--raw_line' flags are similar to those used earlier in other python scripts. They are
permutations/combinations of the dataplane test, which will reflect in the window that pops up
within the GUI. They all need to have the same format used as in the example (same spacing, units if
need be).

5. Run the bash script!

Multiplexed REST Access via Nginx Proxy
Goal: Configure an NGINX proxy to allow REST traffic to a variety of isolated LANforge
machines

It is possible to configure a Nginx proxy in a manner to allow remote REST clients access to multiple isolated
LANforge systems. This leverages the proxy_pass feature in Nginx. There are multiple ways to configure proxy
access.

For the example below, we will assume these values:

public proxy hostname is bizproxy, 10.39.0.44

bizproxy is running Nginx

Isolated LAN with LF machines: 192.168.92.0/24

Example LANforge machines:

192.168.92.10 ct523-jedway1

192.168.92.11 ct522-jedway3

the LANforge machines need to have GUIs configured to start automatically

LANforge GUI HTTP Processing
The HTTP library that the LANforge GUI incorporates is very simple. It is not configured to parse Host: headers.
There is no need to rewrite the Host header when proxying to port 8080.

Proxying to Apache on LANforge (mgt_ip, port 80) is different. If you want to proxy requests to a LF Apache
instance on port 80, you should incorporate Host header rewriting. (No examples below, sorry.)

Proxy Request Rewriting
Three ways of making proxy requests include:

Port Rewriting. Works best with our python libraries.

Hostname Rewriting, more difficult, but still works with python libraries.

URL (path-name) Rewriting: this does NOT work well with our python libraries.

http://www.candelatech.com/cookbook.php?vol=misc&book=autostart

Port Rewriting
This manner of proxying just translates different server listening ports to the target machines. It is another easy
transformation, but it opens up quite a number of high-numbered ports on bizproxy.
Nginx config:

server {
 listen 1910;
 server_name _;
 root /usr/share/nginx/html;

 location / {
 rewrite /(.*) /$1 break;
 proxy_pass http://192.168.92.10:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-Ip $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 }
}
server {
 listen 1911;
 server_name _;
 root /usr/share/nginx/html;

 location / {
 rewrite /(.*) /$1 break;
 proxy_pass http://192.168.92.11:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-Ip $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 }
}

Use curl to test access:

curl -sqv -H 'Accept: application/html' http://bizproxy:1910/port/1/1/list

Example script usage:

./scenario.py --mgr bizproxy --mgr_port 1910 \
 --load BLANK --action overwrite

Hostname Rewriting
It is possible to rewrite hostnames and host headers to isolated LF systems. This is complicated rewrite
because the DNS names need to be present at the developer’s workstation. (It is unlikely that the the headers
in the HTTP request can be manipulated to add the Host header.) Ideally, the non-isolated LAN DNS can be
configured to return the return the IP of bizproxy.corp.me when hostnames like ct523-
jedway1.bizproxy.corp.me are requested.

On the developer workstation, this is possible with extra effort on the user side by manipulating the
/etc/hosts file on a workstation:

etc/hosts
10.39.0.44 ct523-jedway1.bizproxy.corp.me ct523-jedway1

Nginx config:

server {
 listen 80;
 server_name ct523-jedway1;
 root /usr/share/nginx/html;

 location / {
 rewrite /(.*) /$1 break;
 proxy_pass http://192.168.92.10:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-Ip $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 }
}

Check the URL access using curl:

check by IP:
$ curl -sqv \
 -H 'Host: ct523-jedway1' \
 -H 'Accept: application/json' \
 http://10.39.0.44/port/1/1/list

check by hostname
$ curl -sqv \
 -H 'Accept: application/json' \
 http://ct523-jedway1.bizproxy.corp.me/port/1/1/list

Example script usage:

./scenario.py --mgr ct523-jedway1 --mgr_port 80 \
 --load BLANK --action overwrite

Logging HTTP Access
The bizproxy logs should be located in /var/log/nginx . In LF 5.4.6, the GUI can send messages to syslog.

http://bizproxy.corp.me
http://ct523-jedway1.bizproxy.corp.me

Messages from the GUI would look like:

1685573102952: ip[192.168.92.1] sess[] GET url[/port/1/1/list]

Appendix
URL Rewriting is mentioned here so the reader can understand what not to configure.

URL Rewriting
Below is an example permitting REST access to LF hosts by way of a URL prefix. For example, the URL
http://bizproxy/92.11/port/1/1/list becomes the URL http://192.168.92.11:8080/port/1/1/list . This is not the best
kind of proxy rewriting, but it is the easiest. Using a URL prefix is less ideal because it inherently conflicts with
the LANforge python libraries provided.
Nginx config:

server {
 listen 80;
 server_name _;
 root /usr/share/nginx/html;

 # Load configuration files for the default server block.
 include /etc/nginx/default.d/*.conf;

 location /92.10 {
 rewrite /92.10/(.*) /$1 break;
 proxy_pass http://192.168.92.10:8080;
 proxy_redirect off;
 proxy_set_header Host biz_lflab5_9210;
 proxy_set_header X-Real-Ip $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 }
 location /92.11 {
 rewrite /92.11/(.*) /$1 break;
 proxy_pass http://192.168.92.11:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-Ip $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 }
}

Use curl to query the REST endpoint:

$ curl -sqv -H 'Accept: application/json' http://bizproxy/92.10/port/1/1/list

This is not compatible with the py-scripts library.

Candela Technologies, Inc., 2417 Main Street, Suite 201, Ferndale, WA 98248, USA
www.candelatech.com | sales@candelatech.com | +1.360.380.1618

http://bizproxy/92.11/port/1/1/list
http://192.168.92.11:8080/port/1/1/list

	LANforge Scripting Cookbook
	Places to Run CLI Commands
	Requirements for Scripts
	Before Starting LANforge-CLI Traffic Generation
	LANforge-CLI Detailed Cookbook Examples

	Introduction to CLI Scripts
	Goal: You will be able to execute LANforge testing scripts from the command line from Windows, Linux, remote desktop or ssh connection.
	Where Do I Find Scripts?
	On Windows
	On Linux

	How to Run Scripts

	Operate LANforge Scripts from Windows.
	Goal: Use an installation of LANforge and Perl on a Windows computer to operate tests and manage connections on remote LANforge computers.

	Inspecting Ports (Network Interfaces) using lf_portmod
	Goal: You will be able to report and reset ports on your LANforge server.

	Cross Connects and Endpoints Tutorial
	Goal: Gain a better understanding on how you will use Cross connects, Connections and Endpoints to use the LANforge CLI scripts knowlegably.
	Building Endpoints and Connections
	Endpoints and Connections Naming Convention
	Endpoints are Created First
	Starting and Stopping: Connections have State
	When there is just one Endpoint
	Multicast

	Creating Connections with the FIREmod Script
	Goal: Create, destroy, start and stop connections and endpoints without needing to use the LANforge GUI.
	Script Capabilities
	Script Actions, arguments to --action
	Creating Endoints: create_endp
	Example of creating a tcp connection endpoint with debugging:
	Creating a multicast udp connection:
	Create a connection with specific test-manager
	Show Endpoint Stats: show_endp
	Configure Endpoint: set_endp
	Show Port Stats: show_port
	List Ports, action: list_ports
	Direct LANforge Command: do_cmd
	Remove endpoint: delete_endp
	Create Cross-connect: create_cx
	Show Cross Connects: list_cx
	Show Cross Connect Stats: show_cx
	Remove Cross Connect: delete_cx

	Controlling Traffic
	You need to use do_cmd to control Unicast traffic.
	For Multicast traffic, use start_endp/stop_endp

	Multicast Endpoints
	Add secondary IPs to a Port
	Present Options

	Creating Endpoint Hunt Scripts with CLI API
	Goal: Use the the CLI to operate the Endpoint Scripting features of the Layer-3 Endpoints you create.
	The Forces at Play
	Let's Walk Thru Putting One Together
	At the CLI Command Level
	Review of the set_script CLI command
	Endpoint Scripting Uses Large Parameters

	Associating stations with the lf_associate_ap script.
	Goal: Create, destroy, start and stop virtual stations without needing to use the LANforge GUI.
	Script Capabilities
	Before you begin
	Creating a virtual station with traffic
	Using lf_associate_ap on Windows

	Using lf_associate_ap on Linux
	More Traffic Examples

	Using lf_associate_ap to stress test an AP
	Script Options

	Changing Station WiFi SSID with the CLI API
	Goal: Programmatically change a stations SSID

	Changing Station POST_IFUP field with the CLI API
	Goal: Programmatically change a station's POST_IFUP field.
	Important Notes

	Generating a series of attenuations using data in a CSV file.
	Goal: Using the attenuator_series.pl script and a specially formatted csv file, you will be able to re-play an arbitrary series of attenuations.
	Testing 1x1 with one attenuator
	Testing 2x2 with One Attenuator
	A 2x2 Example with Two Attenuators
	Connecting up Multiple Radios
	File Format
	Directives
	Attenuation Values

	Script Options
	Example CSV File
	Attenuators Tab
	Opening and Saving CSV

	LANforge Entity IDs
	Goal: Gain a better understanding of LANforge Entity IDs (EIDs)
	Ports, Endpoints and Connections are Entities
	Only Some LANforge Entities Generate Connection Data
	EIDs Express Hierarchy
	Do I use EIDs in Scripts?

	First-time User Introduction to LANforge: Scripting and GUI
	Goal: This outline is a rough and generic overview of our GUI. This outline, that references other Candela Technologies documentation on our website, briefly covers basic GUI tasks and traffic generation that may be shown to a new customer whom has never used the GUI before, without overloading them with great detail.

	Querying the LANforge GUI for JSON Data
	Goal: The LANforge GUI now has an embedded webserver and a headless mode of operation. Read on for how to configure and query the client for JSON formatted data.

	Client Settings
	Making Queries
	JSON Output
	HTML Output

	Formatting Results
	Example of installing formatters

	Making your shell friendly
	Browsing results in table format
	Viewing Alerts and Events
	Streaming Events
	Installing wsdump
	Streaming Using wsdump
	Streaming Using javascript

	Data Views
	URLs
	Creating Ports
	Command help
	Creating a WiFi Station

	Creating Connections
	Create L3 Endpoints
	Create L3 Connection
	Toggling the Connection

	Advanced Techniques
	Submitting Base64
	Submitting JSON

	Handling Mismatched Column Errors
	Reset the Table Layout

	Learn CLI commands used to operate WiFi stations.
	Goal: Compare and learn script and CLI commands used when creating and operating stations.

	Examples of CLI commands
	Setting for Examples
	Creating Stations
	Using Open Authentication
	Using WPA2 Authentication
	Static IP Addresses
	Station DHCP IP Address
	Creating a Station with a MAC Address Pattern
	Admin Down
	Admin Up
	Delete Station

	Creating Connections and Running Traffic
	Starting and Stopping Traffic
	Create a Layer 3 TCP Connection
	Create a Layer 3 UDP Connection
	Create a Layer 4-7 Web Connection

	Learn CLI commands used create Generic endpoints.
	Goal: Compare and learn script and CLI commands used when creating and operating Generic endpoints.

	Example Commands
	Setting for Examples
	Create Redirects

	Creating ping endpoints
	Creating curl endpoints
	Parameter expansion
	The curl wrapper script
	Uploading files with curl

	Automate WiFi Capacity and other GUI tests.
	Goal: Use a command-line script to have the LANforge-GUI run the WiFi Capacity test and generate a pdf automatically.

	Getting Started with Python scripting for LANforge
	Goal: After reading this, a user will know what python modules which are available to use LANforge.

	Querying the LANforge JSON API using Python
	Goal: Use Python scripts to query the LANforge Client JSON API. (See Querying the LANforge GUI for JSON Data) The provided Python scripts allow you the same API scope as the Perl scripts.

	Client Settings
	Getting Started
	Querying Ports
	Running the script
	Looking inside the script

	Example of Creating a Station
	Running the script
	Looking inside the script
	Create a station
	Set station up
	Set station down
	Change station mode
	Change station protocol
	Change radio power on radio wiphy0

	Seeing Errors
	Monitoring for Connection Errors
	Interpreting Python HTTP Error Output

	Using the Scripts on Your Laptop
	Python Module Methods
	LFRequest.py
	LFUtils.py

	Managing WAN Links Using LANforge JSON API
	Goal: Create and modify WAN Links Using LANforge JSON API. This cookbook provides examples in Python. (See Querying the LANforge GUI for JSON Data) The provided Python scripts allow you the same API scope as the Perl scripts.

	Creating a WAN Link
	The create_wanlink.py Script
	Script Sections Explained
	Listing Wanlinks
	JSON output

	Removing a WANlink
	Creating WANLink Endpoints
	Create the WANlink
	Start the WANLink
	Polling for the WANlink
	Change the WANLink State
	Polling the WANlink State

	Modifying the WANlink
	Stopping the WANlink
	Choose your Stop State
	Poll Untill Stopped
	JSON Output

	Listing WANlink Endpoint Stats
	JSON Output

	Control a Chamber with the lf_chamber.pl Script
	Goal: Monitor and manipulate a CT480a chamber
	Configuring the CT840a
	Configuring the Chamber in LANforge
	Scripting Chamber Operations
	Chamber Status
	Controlling the Platform
	Controlling the Fans
	Chamber Lights
	USB Camera

	Emulate video streaming traffic with the l3_video_em.pl Script
	Goal: Emulate video stream traffic patterns using Layer-3 connections.
	Begin with stations
	Create Connections Using l3_vid_group.pl
	Exploring l3_video_em.pl
	Running the command

	Starting and Stopping Connections
	Using the LANforge GUI
	Using the l3_vid_group.pl script

	Observing Performance

	Create Python Scripts Utilizing the Realm Library
	Goal: Create a python script to create stations and Layer-3 cross connects
	Starting the script
	Test Methods Available With Realm
	Building a Station
	Cross Connects
	Using TTLS
	Cleaning Up
	Debugging Stations

	Create Python Scripts To Test Layer 4 Traffic
	Goal: Create a script to test Layer 4 traffic using Realm
	Creating The Profile
	Starting Traffic
	Examining The Results

	Create Python Scripts To Test Generic Traffic
	Goal: Create a script to test Generic traffic using Realm
	Creating The Profile
	Starting Traffic
	Examining The Results

	Automate The Creation of VAPs With The Realm Python Library
	Goal: Create a python script to create VAPs
	Building a VAP
	Bringing VAPs Up/Down
	Using TTLS
	Cleaning Up

	Load Scenarios And Control Test Groups With Python
	Goal: Using a python script to load scenarios and start, stop, and quiesce test groups
	Running The Script
	Script Examples

	Record the results of a test as CSV from the REALM monitor script
	Goal: Record the results of a LANforge test as a CSV file.

	Record the results of a test as an Excel file from the REALM monitor script
	Goal: Record the results of a LANforge test as an Excel file.

	Define and Demonstrate Docstring Usage in Candelatech Python Scripts
	Goal: Use PEP 257 standards to properly document python scripts
	Implementing Docstring Conventions With Candelatech Script Template

	Automated scanning of SSID, BSSID, and Signal of available wireless APs
	Goal: Create a station and scan for SSID, BSSID, and Signal of available wireless APs
	Using the Script
	The /scanresults/ URI
	JSON Response from /scanresults/
	Accessing and Printing JSON Response with Python

	Automated Probing of Ports for information
	Goal: Probe a port for information on that port.
	Using the Script
	Probe Results From the GUI
	JSON Response from /probe/

	Basic CICD AP Testing with LANforge
	Goal: Set up Basic CICD a LANforge system, Regression Automation and Reporting with data from previous runs.

	Start Here: Introduction to Executing Python Script on LANforge
	Goal: Run First Python Script on LANforge

	Basic: Layer3 Traffic Generation: test_l3.py
	Goal: Use Python Script test_l3.py to Generate Layer3 Traffic

	Basic: Layer4 HTTP Traffic Generation: test_l4.py
	Goal: Use Python Script test_l4.py to Generate Layer4 HTTP Traffic

	Basic: Layer4 FTP Traffic Generation: test_l4.py
	Goal: Use Python Script test_l4.py to Generate Layer4 FTP Traffic

	Customize and Run the Python Dataplane Script
	Goal: Edit and run the bash script that runs both Python Dataplane and Create Chamberview scripts according to a customized LANforge Setup.
	Open the bash script and edit the variables at the top of the script. Also, understand a little bit about this bash script.
	Create the DUT: edit the arguments to pass into create_chamberview_dut.py
	Create the Chamber View scenario: edit the flags to pass into create_chamberview.py
	Edit the arguments to run the dataplane test.
	Run the bash script!

	Multiplexed REST Access via Nginx Proxy
	Goal: Configure an NGINX proxy to allow REST traffic to a variety of isolated LANforge machines
	LANforge GUI HTTP Processing
	Proxy Request Rewriting
	Port Rewriting
	Hostname Rewriting
	Logging HTTP Access

	Appendix
	URL Rewriting

