
http://www.candelatech.com
sales@candelatech.com
+1	360	380	1618	[PST,	GMT	-8]

		

WiFi	Captive	Portal	Bot	(portal-bot)

Goal:	Execute	a	battery	of	of	captive	portal	logins	from	virtual	wifi	stations	using	the	newer	script.

Public	access	open	WiFi	service	is	often
gated	with	a	web	sign-on	form	(a	captive
portal).	LANforge	virtual	stations	can
emulate	sign-in	to	the	captive	portal	using
the	portal-bot.pl	script.	This	script	is	by
necessity	incomplete	because	many	captive
portals	have	different	behaviors	and	login
form	requirements.	With	this	script,	you
provide	a	bot	plugin	that	bridges	the	gap.
This	cookbook	will	coach	you	through	a
basic	portal-bot	integration	and	then	you
will	create	ten	stations	that	authenticate
through	a	captive	WiFi	portal.

In	this	example,	we	will	be	testing	agains	a
simple	LAMP	server	on	the	upstream	side	of
the	AP.	Do	no	use	your	LANforge	server	as
the	LAMP	server	because	the	routing	will	be
difficult.	In	this	chapter,	a	LAMP	server	is	at
10.26.1.254,	and	there	is	an	/etc/hosts
entry	for	basic-portal	to	that	address.

Basic	Interactions	of	a	Captive	Portal
The	basic	order	of	operations	of	a	captive	portal	are	summarized	in	these	steps:
1.	 A	WiFi	station	accesses	the	LAN	and	is	assigned	a	DHCP	address.

2.	 The	AP	redirects	any	DNS	and	HTTP(s)	request	from	the	station.	It	returns	either
a	login	page	directly

a	301-Redirect	to	the	login	page

3.	 The	station	user	submits	this	form.	This	form	knows	where	to	submit	itself	to,	but	it	is	possible	that	the
form	does	not	submit	to	the	same	address	or	service	that	it	came	from.

4.	 A	successful	authentication	provides	one	of	these	responses:
The	originally	requested	page,	either	as	a	301-Redirect	or	as	a	proxied	result.

A	portal-iframe	providing	a	logout	or	service	menu	and	the	original	content	inside.

A	redirect	page	that	uses	javascript	or	meta-refresh	mechanisms	to	tell	the	browser	to	reload
the	originally	requested	page.

Network	Testing	and	Emulation	Solutions

http://www.candelatech.com/
mailto:sales@candelatech.com
http://ctlocal/
https://en.wikipedia.org/wiki/LAMP_%28software_bundle%29

Configuring	a	Demo	Captive	Portal
Provide	Login/Logout	pages

If	you	wish	to	set	up	a	login	and	logout	page	on	an	Apache/PHP	server	to	test	with,	you	can	copy	the	below	files	to
the	/var/www/html	directory	on	the	LAMP	server.
login.php:
<!DOCTYPE	html	!>
<?php
$valid	=	true;
if	($_SERVER['REQUEST_METHOD']	==	'POST')	{
			/*	custom	error	reporting,	see	get_explanation	*/
			if	(!array_key_exists('username',	$_POST))	{
						header("HTTP/1.1	400	Bad	Request");
						header("X-err-no:	9400");
						header("X-err-msg:	missing	username");
						$valid	=	false;
			}
}
?>
<html>
<head>
			<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"	/>
<?php	if($valid)	{	?>
			<title>Login</title>
<?php	}	else	{	?>
			<title>Bad	Request</title>
<?php	}	?>
</head>
<body>
			<?php	if	($_SERVER['REQUEST_METHOD']	==	'POST')	{	?>
						<?php	if(!$valid)	{	?>
									<h1>Bad	Request</h1>
						<?php	return;	}	?>

						<?=	$_POST['username']	?>	access	granted.
			<?php	}	else	{	?>
						<form	method="post"	action="">
									Login:<input	type="text"	name="username"	value=""	/>

									<input	type="submit"	name="login"	value="Login"	/>
						</form>
			<?php	}	?>
</body>
</html>

Provide	a	Redirect	in	lieu	of	Portal	Capture

Getting	a	redirect	to	the	login	page	does	not	have	to	be	very	complex.	The	portal-bot	script	will	first	start	off
requesting	whatever	URL	you	wish,	so	request	http://basic-portal/start.	Here	is	an	Apache	configuration	line
to	redirect	that	URI	to	login.php:
httpd.conf

<Location	/start>

			Redirect	/start	/login.php
</Location>

After	adding	this	redirect,	restart	your	Apacher	service	using	this	command:

sudo	apachectl	configtest	&&	sudo	apachectl	restart

Testing	your	redirect

You	can	use	the	command	curl	-sqv	http://basic-portal/start	to	test	out	the	redirect	you	just	created.

Using	the	Portal	Bot	bash	script
Before	we	get	straight	to	working	with	portal-bot.pl,	let's	see	how	it	is	used.	Your	LANforge	installation	has	an
example	script	called	portal-bot.bash-example	for	you	to	copy	and	modify.	This	script	is	intended	for	you	to	login
and	logout	separately.	The	LANforge	manager	will	call	portal-bot.pl	differently	when	building	up	the	station	or
tearing	down	the	station,	these	actions	are	similar:

i ./portal-bot.bash 	will	log	your	station	in

i ./portal-bot.bash	--logout 	will	log	your	station	out

Inside	the	bash	script

The	portal-bot.bash	script	is	for	exercising	your	portal-bot.pl	script	options	from	the	command	line	while	you
develop	with	it.	This	is	very	close	to	the	values	you	will	place	in	the	Ports→Misc/Post	IF-UP	field.

Switches	you	won't	use	in	the	GUI

You	will	never	place	the	PBOT_NOFORK	option	in	the	Ports→Misc/Post	IF-UP	field	because	that	will	interrupt	the
processing	of	the	LANforge	Manager	process.	You	will	also	never	place	$*	in	that	field,	either.	You	can	place	the	-
-verbose	and	--debug	flags	in	there,	but	it	can	fill	your	disk	with	log	output	more	quickly.

Below	is	an	example	portal-bot.bash	script	with	 \ 	line-continuation	characters	formatted	for	clarity:

PBOT_NOFORK=1	./portal-bot.pl	\
			--dev										sta100																							\
			--bot										bp.pm																								\
			--ip4										10.26.2.30																			\
			--dns										192.168.100.1																\
			--mgt										/dev/null																				\
			--delays							0,1,3																								\
			--user									"bob"																								\
			--pass									"secret"																					\
			--ap_url							"http://basic-portal/"							\
			--start_url				"http://basic-portal/start"		\
			--login_form			"login.php"																		\
			--login_action	"login.php"																		\
			--logout_url			"logout.php"																	\
			--verbose	--debug	$*
Below	is	the	same	script	using	short	switches:

PBOT_NOFORK=1	./portal-bot.pl	\
			-i				sta100																							\
			-b				bp.pm																								\
			--ip4	10.26.2.30																			\
			--dns	192.168.100.1																\
			--mgt	/dev/null																				\
			--delays	0,1,3																					\
			-u				"bob"																								\
			-p				"secret"																					\
			-a				"http://basic-portal/"							\
			-s				"http://basic-portal/start"		\
			-n				"login.php"																		\
			-o				"login.php"																		\
			-t				"logout.php"																	\

			-v	-d	$*

Using	the	portal-bot.bash	command	on	the	command-line:

A	common	misconception	is	thinking	that	$*	is	a	command-line	argument.	It	is	only	used	in	bash	scripts.	Do	not
put	$*	on	the	command-line.

PBOT_NOFORK=1	./portal-bot.pl	-i	sta100		-b	bp.pm	--ip4	10.26.2.30	\
								--dns	192.168.100.1	--mgt	/dev/null	-u	"bob"	-p	"secret"	\
								-a	"http://basic-portal/"		-s	"http://basic-portal/start"
								-n	"login.php"	-o	"login.php"	-t	"logout.php"	-v	-d

Using	the	portal-bot.pl	perl	script
Tips:

First	thing	to	do:	edit	a	copy	of	that	script	and	adjust	it	for	your	station	device	and	it's	IP	address.

Add	-d	to	add	more	debugging	messages.	That	makes	dbg()	statements	print.
Add	--print	after	you	get	the	script	to	work.	This	will	print	out	the	format	of	the	arguments	useful	for
putting	the	statements	into	the	GUI	Ports→Misc/Post	IF-UP	field.

The	first	six	arguments	are	provided	by	LANforge	when	you	use	portal-bot.pl	with	a	station.	You	want	to
populate	these	in	your	bash	script,	but	not	in	the	Post	IF_UP	field.

PBOT_NOFORK
This	environment	variable	tells	the	portal-bot.pl	script	to	not	fork.	Use	it	only	when	developing.
Omitting	this	is	normal	and	allows	for	multi-processing	of	web	requests	from	LANforge.

-i
station	name

--bot
The	bot	plugin	you	provide

--ip4
The	IP	of	the	station.	This	script	is	useless	if	there	has	been	no	DHCP	lease.

--ip6
Use	''	for	no	IPv6	address.

--dns
The	DNS	addresses	provided	from	the	DHCP	lease

--mgt
The	FIFO	that	signals	the	LANforge	server.	You	don't	use	it	when	testing.

The	second	set	of	arguments	describe	your	own	AP	environment:

--user	|	-u
portal	user	name

--pass	|	-p
portal	user	password

--ap_url	|	-a
A	string	to	prepend	to	URLs	when	talking	to	the	AP.	Not	necessary,	but	if	you	don't	use	it,	you	have	to
provide	fully	qualified	URLs	to	--login_form,	--login_action,	and	--logout_form.

--start_url	|	-s
The	first	URL	requested	from	the	AP,	this	should	provide	either	a	login	page	or	a	redirect	to	a	login	page.	If
you	get	your	destination	page	(like,	if	you	request	baidu.com	and	actually	get	it),	your	station	has	probably
not	been	logged	out	from	the	captive	portal.

--login_form	|	-n
This	is	what	you	request	to	get	a	login	form.	Often	it	is	returned	in	the	redirect,	but	sometimes	you	cannot
get	a	cookie	assignment	if	you	do	not	request	it	specifically.

--login_action	|	-o
Submit	your	login	credentials	to	this	URL.

--delays

Comma	separated	list	of	seconds	to	delay	at	certain	points:
1.	 $::delays[0]	Used	to	delay	the	very	first	'start_url'	GET	request
2.	 $::delays[1]	Used	to	delay	the	first	POST	request	in	'submit_login'
3.	 $::delays[2]	Used	to	delay	the	'submit_logout'	request.
4.	 $::delays[3+]	Your	bot	can	utilize	further	delays	if	you	specify

You	may	specify	skips	by	adding	a	zero:	--delays	1,0,2

You	may	specify	a	random	time	by	using	'random':	--delays	1,random,2

You	may	specify	just	one	time	for	all	delays:	--delays	2

You	may	specify	a	random	range:	--delays	3-20,4-25

--logout_form	|	-t
Submit	to	this	URL	to	log	out	of	the	captive	portal

-v	-d
Verbose	and	debug	output,	respectively.

--print
Skips	process	and	prints	out	formatted	arguments.

$*
Expands	to	all	remaining	shell	arguments

We	will	connect	to	our	LANforge	system*.	You	want	to	copy	this	file	to	your	own	./portal-bot.bash	file,	edit	it	and
then	make	it	executable.

i *	You	can	connect	via	VNC,	PuTTY	or	other	SSH	client.

i Use	chmod	+x	portal-bot.bash 	to	make	your	script	executable.

Now	let's	see	how	to	use	this	script	with	station	sta100.	Run	the	commands:

	$	cd	/home/lanforge
	$	chmod	+x	portal-bot.bash
	$./portal-bot.bash

You	will	see	a	lot	of	output,	it	will	show	the	contents	of	the	web	pages	it	finds.

Watching	the	Logs

Typically	you	won't	need	to	look	at	this	output	in	the	terminal,	and	you	will	not	add	-d	-v	flags	to	your	LANforge
stations.	You	very	likely	will	need	to	check	the	log	output	from	these	scripts	in	case	you	need	to	diagnose
connection	problems	during	your	test.	Each	virtual	station	leaves	a	log	in	the	/home/lanforge/wifi	directory,	like
wifi/portal-bot.sta100.log

i Watch	logs	using	tail:	tail	-F	wifi/portal-bot.sta100.log

Executing	the	LANforge	curl	commands	yourself

To	find	the	actual	curl	commands	being	executed,	you	want	to	grep	the	logs.	Below	is	an	example	of	grepping	the
logs	and	running	the	curl	command.

	$	cd	/home/lanforge/wifi
	$	grep	Submitting	portal-bot-sta100.log
Submitting:	/home/lanforge/local/bin/curl	-sLki	-c	/tmp/sta100_cookie.txt	-b	/tmp/sta100_cookie.txt	-4	--interface	sta100	--localaddr	10.44.4.222		--dns-servers	192.168.100.1		--dns-interface	sta100		--dns-ipv4-addr	10.44.4.222		-X	GET		'http://basic-portal/start'
Submitting:	/home/lanforge/local/bin/curl	-sLki	-c	/tmp/sta100_cookie.txt	-b	/tmp/sta100_cookie.txt	-4	--interface	sta100	--localaddr	10.44.4.222		--dns-servers	192.168.100.1		--dns-interface	sta100		--dns-ipv4-addr	10.44.4.222		-X	POST	-d	'username=bob'	'http://basic-portal/login.php'

You	might	noticed	that	some	of	the	commands	in	the	log	might	appear	repeated,	there	are	areas	of	redundant
logging.	There	is	a	case	where	you	can	legitimately	see	repeated	commands:	when	you	have	an	Post	IF_UP	value
configured	for	the	port	you	are	testing	with.	(Remember	that	the	Post	IF_UP	field	should	be	blank	when
developing	the	script.)

Remember,	this	curl	command	cannot	be	run	without	first	doing	a	source	/home/lanforge/lanforge.profile	in
your	shell	(our	curl	is	a	custom	build).	Here	is	an	example.	We	take	a	command	similar	to	the	one	above,	add	-qv
and	cancel	it	using	 Ctl-C :

	$	cd	/home/lanforge
		$	source	lanforge.profile
		#	add	a	-qv	to	see	header	details
		$	/home/lanforge/local/bin/curl	-qv	-sLki	-c	/tmp/sta100_cookie.txt	-b	/tmp/sta100_cookie.txt	-4	--interface	sta100	--localaddr	10.41.4.223		--dns-interface	sta100		--dns-ipv4-addr	10.41.4.223		http://basic-portal/start
*	STATE:	INIT	=>	CONNECT	handle	0xa80158;	line	1397	(connection	#-5000)
*	Added	connection	0.	The	cache	now	contains	1	members
*			Trying	10.51.0.254...
*	TCP_NODELAY	set
*	bind-local,	addr:	10.41.4.223		dev:	sta100
*	SO_BINDTODEVICE	sta100	failed	with	errno	1:	Operation	not	permitted;	will	do	regular	bind
*	Name	'sta100'	family	2	resolved	to	'10.41.4.223'	family	2
*	Local	port:	0
*	STATE:	CONNECT	=>	WAITCONNECT	handle	0xa80158;	line	1450	(connection	#0)
^C

Explaining	the	curlCommand

There	are	many	arguments	to	the	curl	command,	but	in	general,	you	should	be	able	to	copy	and	paste	the
command	into	a	terminal	and	it	should	work	(see	note	about	lanforge.profile	above).	Below	is	an	example	of	a
curl	command,	with	 \ 	characters	as	line-continuation	marks,	formatted	for	clarity.

	$	/home/lanforge/local/bin/curl	-qv	\
				-sLki																											\

				-c	/tmp/sta100_cookie.txt							\
				-b	/tmp/sta100_cookie.txt							\
				-4																														\
				--interface	sta100														\
				--localaddr	10.41.4.223									\
				--dns-interface	sta100										\
				--dns-ipv4-addr	10.41.4.223					\
				http://basic-portal/start

Switch Example	Value Purpose

-q Suppress	page	output

-v Verbose,	prints	diagnostic	steps

-s Suppresses	page	output

-L Follow	redirects

-k Suppress	certificate	validation	errors

-i Print	HTTP	headers

-c sta100_cookie.txt Send	cookies	from	file

-b sta100_cookie.txt Save	cookies	to	file

-4 Use	IPv4

--interface sta100 bind	to	this	interface

--localaddr 10.41.4.223 bind	to	this	address

--dns-interface sta100 send	DNS	queries	from	this	interface

--dns-ipv4-addr 10.41.4.223 bind	to	this	address	when	sending	DNS	queries

--dns-interface sta100 send	DNS	queries	from	this	interface

-X
GET Use	HTTP	GET	method

POST Use	HTTP	POST	method
-d 'username=bob' URL	encoded	form	parameters	used	during	POST	method

Your	portal-bot.bash	script	is	intended	to	be	a	way	of	focusing	on	the	development	of	your	bot	plugin	and	not
repetitively	typing	a	long	curl	command.

Writing	your	Bot	Plugin
Your	bot	plugin,	the	Perl	module	you	will	write	for	your	captive	portal,	is	central	to	the	operation	of	the	portal-
bot.pl	script.	It	is	also	important	that	you	do	not	alter	the	portal-bot.pl	script	unless	absolutely	necessary,
because	your	changes	could	be	overwritten	by	upgrades.	Any	alteration	to	the	time	at	which	the	fork()	call	is
made	in	this	script	can	make	the	LANforge	server	grind	to	a	halt.

i Only	edit	your	bot	perl	module,	please.

The	Bot	Subroutines

The	example	bot,	bp.pm,	provided	with	LANforge	defines	four	subroutines.	In	order:

find_redirect_url
This	subroutine	receives	the	response	of	the	HTTP(S)	GET	of	your	--start_url	parameter.	Look	through	this
to	see	if:

you	are	already	getting	destination	content--if	so,	you	were	not	logged	out,

you	get	a	login	form	directly	and	not	a	redirect,

or	you	get	a	redirect	to	a	login	page	(possibly	on	a	separate	port	like	:8080)

If	you	get	a	redirect	to	another	port,	compare	the	--login_url	value	to	this.	If	it	is	different,	consider	updating
your	login_url	parameter.

There	might	be	many	form	parameters,	like	ones	for	a	session	id,	a	PHP_SESSID,	a	cookie,	a	base64	encoded
string	indicating	your	originally	requested	url	(or	just	a	plain	URL-encoded	url),	and	any	possible	co-

branding	parameters	that	might	indicate	any	advertising	campaigns	associated	with	this	captive	portal.
Missing	some	of	these	might	make	submitting	the	form	give	you	an	error.	Store	these	values	as	necessary	in
your	bot::	namespace.	You	do	not	submit	your	login	page	in	this	method.

i Define	a	package	scope	variable	using	our	$thing; 	after	your	package	statement.

submit_login
Here	is	where	you	submit	your	login	page	forms.	The	botlib::request()	function	is	provided	to	make	GET
and	POST	requets	verbose	logging	and	debugging.	The	page	is	returned	as	lines	in	the	@response	array.

my	$post_data	=	"username=".uri_escape($user_name);
my	@response		=	();
request({'curl_args'=>	$::curl_args,
		'url'							=>	$post_url,
		'method'				=>	'POST',
		'delay'					=>	'0,3',						#	see	--delays	option
		'post_data'	=>	$post_data,
		'print'					=>	1},									#	turns	on	debugging
		\@response);

The	submit_login	function	uses	the	$::delay[1]	parameter	if	--delays	were	set.	See	paragraph	on
randomDelay.

interpret_login_response
Here	you	determine	if	you	are	getting	an	access	denied	error	or	are	being	forwarded	to	your	original
start_url	destination.	Set	your	$result	variable	to	OK	or	FAIL.	Use	the	logg()	method	to	add	information	for
the	wifi/portal-bot	log.

In	order	to	add	events,	such	as	page	load	time,	you	want	to	use	the	botlib::newEvent()	function:

my	$page_time	=	botlib::time_milli()	-	$::start_at;
newEvent("portal_login:	$result",	$page_time,	$::dev);

Your	event	log	will	gain	messages	like	these:

get_explanation
Some	web	applications	can	provide	customized	error	messages	in	their	response.	You	can	add	a
get_explanation()	function	to	your	bot	to	collect	this	information.	The	botlib::dbgdie()	method	will	take
advantage	of	this	method	if	available.	Below	is	an	excerpt	from	the	method	found	in	bp.pm:

sub	get_explanation	{
			for	$line	(@$ra_result)	{
						($err_code)	=	$line	=~	/^X-err-no:	(.*)$/
									if	($line	=~	/^X-err-no:	/);
						($err_msg)	=	$line	=~	/^X-err-msg:	(.*)$/

									if	($line	=~	/^X-err-msg:	/);
			}
			return	"$err_code,	$err_msg";
}

Notice	how	this	parses	out	the	HTTP	headers	found	if	the	parameter	username	were	missing	when	doing	a
POST	to	basic-portal/login.php:

header("X-err-no:	9400");
header("X-err-msg:	missing	username");

You	will	see	these	messages	show	up	in	the	LANforge	Events	log:

submit_logout
Many	captive	portals	do	not	publicise	their	logout	URLs,	so	it	might	be	available	only	on	an	admin	page	for
the	AP.	You	will	know	when	the	logout_url	parameter	works	if	you	can	do	a	logout	with	that	station,	and	then
successfully	log	back	in	using	the	same	station	and	seeing	the	captive	portal	sign-in	page	again.

randomDelay
The	delay	parameter	to	botlib::request()	has	many	overloads	to	the	call:

A	simple	number	is	a	simple	delay	in	seconds.	No	other	units	are	used.

If	you	specify	'random'	in	the	delay	parameter,	the	botlib::randomDelay()	is	called,	producing	a
range	between	[1	-	119]	seconds.

If	you	specify	'3-16',	randomDelay(3,	16)	is	called	to	produce	a	random	range	between	[3	-	16]
seconds.

If	you	specify	two	numbers	separated	by	a	comma,	it	looks	at	your	@::delays	list,	and	picks	the
second	argument	if	it	can,	the	last	item	of	@::delays	if	the	list	is	too	short,	or	the	first	argument	if
there	are	no	items	in	the	delay	list.

We	have	now	covered	all	of	the	scripting	development	areas	for	the	portal-bot.pl	plugin	you	will	write.

Configuring	your	Stations
A	Single	Station

We	assume	you	have	portal-bot.bash	working	at	this	point.	This	is	how	you	can	configure	a	single	station:
1.	 Use	the	portal-bot.pl	--print	command	to	print	out	the	arguments.
2.	 Copy	the	result	(starting	with	"portal-bot.pl")	into	the	Port->Misc	window.	Avoid	populating	this	field

while	you	are	developing	the	script!	If	you	place	a	value	into	that	field,	your	portal-bot	script	will	not
only	execute,	but	the	Manager	process	will	also	execute	the	script	specified	in	the	POST_IFUP	field.
This	can	be	really	confusing.

Multiple	Stations

To	get	multiple	virtual	stations	logging	in	an	out	using	the	GUI,	we	just	need	a	few	of	those	parameters	for	the
station	configuration.	We	will	use	the	Batch	Modify	feature	to	alter	a	series	of	stations.
1.	 In	the	Ports	tab,	create	a	series	of	stations.	In	this	example	we	will	create	them	with:

Port:	wiphy2

Select	DHCP-IPv4

Quantity:	10

STA	ID:	300

SSID:	jedtest

Passphrase:	jedtest1

Select	WPA2

Select	Down

2.	 Highlight	them	and	click	Batch	Modify.

3.	 Click	the	Down	button.

4.	 In	your	terminal,	invoke	the	portal-bot.bash	with	the	--print	argument:

./portal-bot.bash	--print
portal-bot.pl	--bot	bp.pm	--user	bob	--pass	bob1	--ap_url	http://basic-portal/
	--start_url		http://basic-portal/start	--login_form	login.php	--login_action	login.php
	--logout_form	logout.php

5.	 Use	the	[+]	button	to	expand	to	Box	2.	We	will	enter	the	following	version	of	our	command	into	the	Post
IF-UP	Script	area.	(The	picture	shows	the	short	switches.)

Click	OK

6.	 In	the	Ports	tab,	double	click	sta300	and	in	the	Misc	Configuration	tab,	you	will	see	the	Post	IF-UP
Script	values.

Testing	a	Station

Exercising	these	stations	starts	with	bringing	them	up	and	down	using	the	Batch	Modify	tool.
1.	 Highlight	one	station,	sta300,	and	click	Batch	Modify.
2.	 Click	the	Down	button	to	admin-down	the	station.

3.	 In	a	shell	on	the	LANforge,	got	to	/home/lanforge/wifi	and	tail	the	log	for	station	300:

tail	-f	portal-bot.sta300.log

4.	 Click	the	Up	button	to	admin-up	the	station.

5.	 Click	the	Portal	Login	button	force	the	station	to	login	if	you	do	not	see	any	messages	in	the	log	file
you	are	tailing.

Troubleshooting	Techniques

If	your	station	cannot	talk	to	the	captive	portal,	like	you	have	a	time-out,	these	steps	will	help	identify	where	there
is	a	misconfiguration:
1.	 Ping	the	portal	from	LANforge:ping	basic-portal

2.	 Ping	the	portal	from	sta300:ping	-I	10.27.0.16	basic-portal

3.	 Use	curl	to	download	the	portal	page	by	hand:	curl	-sqv	http://basic-portal/login.php

4.	 Check	the	route	on	the	portal	side	if	you	are	routing.	Some	examples:

route	-n

route	add	-net	10.27.0.0/23	gw	10.26.1.1

5.	 Check	access	logs	for	the	portal.	There	might	be	a	hostname	issue.

Using	the	Port	Bringup	Plugin
Using	the	Port	Bringup	Plugin	is	a	much	more	fun	way	to	get	data	than	looking	at	log	files.
1.	 In	the	Plugins	menu,	select	Port	Bringup	Test.

2.	 Highlight	a	series	of	stations	and	click	Add	Port:

3.	 Click	Start

4.	 You	will	see	the	reporting	window.	It	often	takes	many	seconds	or	a	few	minutes	for	stations	to	aquire
DHCP	addresses	and	start	reporting	information	into	the	plugin.

Candela	Technologies,	Inc.,	2417	Main	Street,	Suite	201,	Ferndale,	WA	98248,	USA
www.candelatech.com	|	sales@candelatech.com	|	+1.360.380.1618

