
sales@candelatech.com
support@candelatech.com

+1 (360) 380-1618 [PST, GMT -8]
Network Testing and Emulation Solutions

Querying the LANforge GUI for JSON Data
Goal: The LANforge GUI now has an embedded webserver and a headless mode of operation. Read on for
how to configure and query the client for JSON formatted data.

Updated 2019-11-21:New features in 5.4.1.
Some of the CLI API parameter names have changed. Notably:
nc_show_ports flags changed to probe_flags . Be aware that older scripts
might break on upgrade.

Updated 2018-07-24:New features in 5.3.8.

The LANforge GUI (as of release 5.3.6) can be configured to start an embedded web
server that can provide data about ports and layer-3 connections. This service can
be queried with with any browser or AJAX connection. We're going to increasingly
refer to it as the LANforge client. This feature provides these benefits:

More rapid polling: using CLI scripts to poll ports on the LANforge manager
can add stress and contention to the LANforge manager; polling the GUI
will not tax your test scenario.
Expanded array of data: the views found in the GUI, like Port Mgr and Layer-
3 tabs, contain synthesized data columns not available through the CLI
scripting API. Most of these columns can be returned in JSON format.
Reduced effort when integrating with third party test libraries: many other
testing libraries expect JSON formatted input.
Web socket delivery of event data allows real-time reporting of interface
changes and station scan results. This is also a channel for querying
additional diagnostic data.
There is a /help web page that allows you to build POST commands.
A headless -daemon mode that will run the client without any GUI windows.
This requires much less memory and has been queried for weeks at a time
without crashing or memory leaks.

Present and potential drawbacks of the JSON feature:
Actively being developed: the JSON views/schema of the objects is at a
demonstation state. URLs and JSON structures have changed in 5.3.8.
Now no longer possible to create Groovy plugins to add JSON features if
you want to use the headless mode. JSON Features are compiled into the
LANforge GUI from Java sources.
In 5.3.8 we have limited the view of ports, have added URLs to post direct
CLI commands, and have applied HTML application/x-www-form-
urlencoded form posting submissions in name/value pairs. There is no
multipart/form-data JSON submission at this time.

Client Settings

The LANforge GUI is started using a script (lfclient.bash or lfclient.bat). From a terminal, we call that script
with the -httpd switch. By default the GUI will listen on port 8080:

$ cd /home/lanforge
$./lfclient.bash -httpd

You can specify the port to listen on:

$./lfclient.bash -httpd 3210

http://www.candelatech.com/
mailto:sales@candelatech.com
mailto:support@candelatech.com
tel:+13603801618
http://www.candelatech.com/cookbook/cli/mismatched_columns

You can run the client headless with the -daemon switch as well:

$./lfclient.bash -httpd -daemon

There is a setting in the 5.3.8 Control→Preferences menu for setting a minimized mode and the HTTP port number
as well.

Making Queries

From the terminal we can query the port to find a basic message from the GUI:

$ curl -sq http://localhost:8080/

This first page (/) will give you a JSON list of the resource URLs available. Most URLs will provide JSON as their
default content type. Notably, /help defaults to HTML.

By default, most URLs will treat a default Accept: */* header as text/html . Compare the two techniques
below:

JSON Output

$ curl -sqv -H 'Accept: application/json' http://localhost:8080/resource/1/1
{"handler":"candela.lanforge.HttpResource$JsonResponse","uri":"resource","candela.lanforge.HttpResource":{"duration":"27"},"resources":[{"1.1":{"_links":"/resource/1/1","entity id":"NA","hostname":"idtest.candelatech.com"}},{"1.2":{"_links":"/resource/1/2","entity id":"NA","hostname":"hedtest"}},{"1.3":{"_links":"/resource/1/3","entity id":"NA","hostname":"ct524-debbie"}},{"1.4":{"_links":"/resource/1/4","entity id":"NA","hostname":"jed-apu2-a"}},{"1.5":{"_links":"/resource/1/5","entity id":"NA","hostname":"jed-apu2-b"}},{"1.6":{"_links":"/resource/1/6","entity id":"NA","hostname":"ct524-emily"}},{"1.7":{"_links":"/resource/1/7","entity id":"NA","hostname":"ct524-freya"}},{"1.8":{"_links":"/resource/1/8","entity id":"NA","hostname":"ct524-genia"}}]}

Clearly, the JSON output is difficult to read. We cover formatting output below.

HTML Output

Most of the queries to the client will return JSON by default. The notable exception is the /help URL. To get HTML
output in the terminal, you have to specify Accept: text/html to curl:

$ curl -sqv -H 'Accept: text/html' http://localhost:8080/port/1/1/1
<!DOCTYPE html>
<html>
<head><title>/port</title>
</head>
<body>
<table border='1'><thead><tr><th>EID</th><th>AP</th><th>Activity</th><th>Channel</th><th>Device</th><th>Down</th><th>IP</th><th>Parent Dev</th><th>Phantom</th><th>Port</th><th>SSID</th></tr></thead>
<tbody>
<tr><td>1.1.1</td><td></td><td>0.0</td><td></td><td>eth1</td><td>false</td><td>0.0.0.0</td><td></td><td>false</td><td>1.1.01</td><td></td></tr>
</table><hr />
</body>
</html>

Formatting Results

JSON formatted text is pretty difficult to read, there are a few different utilities that can help you look at it: jq,
json_pp, json_reformat, tidy, xmllint, yajl and jsonlint.

Example of installing formatters

On Fedora, install:

$ sudo dnf install -y jq perl-JSON-PP tidy libxml2 yajl

On Ubuntu, install:

$ sudo apt install -y jq libjson-pp-perl perltidy xmllint libxml2-utils yajl-tools

Now we can perform a query:

$ curl -sq /port/1/1/1
{
 "candela.lanforge.HttpPort" : {
 "duration" : "1"
 },
 "handler" : "candela.lanforge.HttpPort$JsonResponse",
 "interface" : {
 "stuff":...
 },
 "uri" : "port/:shelf_id/:resource_id/:port_id"
}

Notice that the URI object list paths with colon-tagged positions in them, e.g.: /cli-form/:cmd . These are
interpreted as URL parameters and not query string parameters, they cannot be moved into the query string.

Making your shell friendly

To save you typing, you might want to add this function to your .bash_aliases file:

function Json() {
 curl -sqv -H 'Accept: application/json' "http://localhost:8080${@}" \
 | json_reformat | less
}

Then you can make your calls this way:

$ Json /port/1/1/1

Browsing results in table format

We can view a URL in a browser as well:

Viewing Alerts and Events

You can both view and stream event data. Querying events and alerts are both quite similar:

$ Json /events
{
"handler" : "candela.lanforge.HttpEvents$FixedJsonResponder",
"events" : [
 {
 "2249259" : {
 "event" : "Connect",
 "_links" : "/events/2249259",
 "entity id" : "NA"
 }
 },

A busy LANforge system will generate hundreds of thousands of events. Only the last few thousand can be
recalled.

You can inspect a singular event:

$ Json /events/2249259
{
 "handler": "candela.lanforge.HttpEvents$FixedJsonResponder",
 "uri": "events/:event_id",
 "candela.lanforge.HttpEvents": {
 "duration": "0"
 },
 "event": {
 "eid": "1.3.21",
 "entity id": "NA",
 "event": "Connect",
 "event description": "sta3106 (phy #1): connected to 00:0e:8e:d5:fa:e6",
 "id": "2249259",
 "name": "sta3106",
 "priority": " Info",
 "time-stamp": "2018-07-24 14:39:33.776",
 "type": "Port"
 }
}

We can view /alerts similarly.

$ Json /alerts/92
{
 "handler" : "candela.lanforge.HttpEvents$FixedJsonResponder",
 "uri" : "alerts/:event_id",
 "alert" : {
 "name" : "wlan0",
 "time-stamp" : "2018-07-02 16:23:30.880",
 "entity id" : "NA",
 "id" : "92",
 "eid" : "1.1.5",
 "event description" : "Port wlan0 has no WiFi SSID Configured.",
 "event" : "WiFi-Config",
 "priority" : " Warning",
 "type" : "Port"
 },
 "candela.lanforge.HttpEvents" : {
 "duration" : "1"
 }
}

Streaming Events

Continually polling the /events URL is not as effective as streaming a websocket providing the same data. We
need a web socket client. Websockets are built into modern browsers and there are python and perl utilities for
the job as well. An easy to use python client is wsdump .

Installing wsdump

There is a useful python utility called wsdump (or wsdump.py). Try to install the python-websocket package to get
it. There are many similar matches, but there is not one dedicated package that provides it. On Fedora:

root@fedora$ dnf whatprovides `which wsdump`
root@fedora$ dnf install -y python3-websocket-client

root@ubuntu$ ls -l /usr/bin/wsdump
 /usr/bin/wsdump → /etc/alternatives/wsdump
root@ubuntu$ ls -l /etc/alternatives/wsdump
 /etc/alternatives/wsdump → /usr/bin/python2-wsdump
root@ubuntu$ dpkg-query -S /usr/bin/python2-wsdump
python-websocket: /usr/bin/python2-wsdump

root@ubuntu$ sudo apt install python-websocket

You might need to install pip, and that might be in the python3-pip package. Then you can install via:

$ sudo apt install python-pip # or sudo dnf install python-pip
$ sudo pip install --upgrade pip
$ pip search websocket
$ sudo pip install websocket-client

Streaming Using wsdump

Here's an example of wsdump below. Don't forget you are now using h the ws:// schema and not the http://
schema!

$ /usr/bin/wsdump ws://localhost:8081/

It might take a few second to start showing results if your system is not very active. You should be able to prompt
output by executing this message in the Messages tab: gossip hi ben!

Streaming Using javascript

You can also use a web page to follow events because websockets are built into modern browsers. This is a
screenshot of the

Data Views
URLs

/shelf

The /shelf/1/ URL provides a list of resources in your realm:

$ Json /shelf/1
{
 "handler": "candela.lanforge.HttpResource$JsonResponse",
 "uri": "shelf/:shelf_id",
 "candela.lanforge.HttpResource": {
 "duration": "0"
 },
 "resources": [
 {
 "1.1": {
 "_links": "/resource/1/1",
 "hostname": "idtest.candelatech.com"
 }
 },
 {
 "1.2": {
 "_links": "/resource/1/2",
 "hostname": "hedtest"
 }
 }
]
}

/resource

The /resource URL provides a digest of ports available at the requested resource.

$ Json /resource/1/1
{
 "handler" : "candela.lanforge.HttpResource$JsonResponse",
 "resource" : {
 "free swap" : 526332,
 "free mem" : 4634228,
 "load" : 0.4,
 "bps-rx-3s" : 7850,
 "sw version" : " 5.3.8 64bit",
 "entity id" : "NA",
 "tx bytes" : 40533976395,
 "phantom" : false,
 "eid" : "1.1",
 "hostname" : "idtest.candelatech.com",
 "hw version" : "Linux/x86-64",
 "mem" : 8057280,
 "cpu" : "Intel(R) Core(TM) i7-3555LE CPU (2137Mhz)(x4)",
 "max staged" : 50,
 "ctrl-ip" : "192.168.100.41",
 "ports" : "0 1 2 3 4 5 6 7 8 9 10 11 12 ",
 "gps" : "0.0N 0.0E 0m",
 "max if-up" : 15,
 "bps-tx-3s" : 1753832,
 "cli-port" : "4003",
 "sta up" : 12,
 "shelf" : "1",
 "rx bytes" : 606510139,
 "ctrl-port" : "4004",
 "swap" : 526332
 },
 "uri" : "resource/:shelf_id/:resource_id",
 "candela.lanforge.HttpResource" : {
 "duration" : "1"
 }
}/port

The /port URL provides a digest of ports and their state. You can request multiple ports by ID on this
resource by appending the port IDs with commas. You can list ports on a resource:

$ Json /port/1/5/list
{
 "handler" : "candela.lanforge.HttpPort$JsonResponse",
 "uri" : "port/:shelf_id/:resource_id/:port_id",
 "interfaces" : [
 {
 "1.5.b5000" : {
 "entity id" : "NA",
 "_links" : "/port/1/5/7",
 "alias" : "b5000"
 }
 },
 {
 "1.5.eth0" : {
 "alias" : "eth0",
 "_links" : "/port/1/5/0",
 "entity id" : "NA"
 }
 },
...
],
 "candela.lanforge.HttpPort" : {
 "duration" : "2"
 }
}

We can query multiple ports at a time by their number or their name by placing a comma between the
specifiers. Additionally, we can query for just the fields we desire. All field names are lower-case: ?
fields=tx+crr,rx+fifo.

$ Json '/port/1/5/wiphy0,wiphy1?fields=device,phantom,tx+bytes,mode'
{
 "interfaces" : [
 {
 "1.5.wiphy0" : {
 "tx bytes" : 401236186,
 "mode" : "802.11abgn",
 "device" : "wiphy0",
 "phantom" : false
 }
 },
 {
 "1.5.wiphy1" : {
 "phantom" : false,
 "device" : "wiphy1",
 "mode" : "802.11abgn",
 "tx bytes" : 403975812
 }
 }
],
 "candela.lanforge.HttpPort" : {
 "duration" : "1"
 },
 "uri" : "port/:shelf_id/:resource_id/:port_id",
 "handler" : "candela.lanforge.HttpPort$JsonResponse"
}

/cx

The /cx URL allows us to query Layer-3 connection information.

$ Json /cx
{
 "uri" : "cx",
 "handler" : "candela.lanforge.GenericJsonResponder",
 "connections" : [
 "41.1" : {
 "entity id" : "NA",
 "name" : "udp:r3r2:3000",
 "_links" : "/cx/41"
 },
 "50.1" : {
 "name" : "udp:r3r2:3009",
 "entity id" : "NA",
 "_links" : "/cx/50"
 }
]
}

And individual connections:

$ Json /cx/udp:r3r2:3000$ Json 'cx/udp:r3r2:3000'
{
 "uri" : "cx/:cx_id",
 "41.1" : {
 "drop pkts b" : 0,
 "type" : "LF/UDP",
 "rx drop % a" : 0,
 "rpt timer" : "1000",
 "pkt rx a" : 0,
 "avg rtt" : 0,
 "rx drop % b" : 0,
 "name" : "udp:r3r2:3000",
 "endpoints (a ↔ b)" : "udp:r3r2:3000-A <=> udp:r3r2:3000-B",
 "drop pkts a" : 0,
 "entity id" : "NA",
 "bps rx a" : 0,
 "eid" : "1.41",
 "state" : "Stopped",
 "pkt rx b" : 0,
 "bps rx b" : 0
 },
 "handler" : "candela.lanforge.GenericJsonResponder"
}

i Technically, colons in URLs need to be encoded as %3A , so the above URL
should be /cx/udp%3Ar3r2%3A3000 , but curl is pretty darned forgiving.

/endp

Endpoints may be listed and inspected:

$ Json /endp/
 {
 "uri" : "endp",
 "handler" : "candela.lanforge.HttpEndp$JsonResponse",
 "candela.lanforge.HttpEndp" : {
 "duration" : "4"
 },
 "endpoint" : [
 {
 "1.2.8.55.2" : {
 "_links" : "/endp/55",
 "entity id" : "NA",
 "name" : "sta3000-ep-B"
 }
 },
 {
 "1.2.8.57.1" : {
 "_links" : "/endp/57",
 "name" : "udp:r3r2:3000-B",
 "entity id" : "NA"
 }
 },
...
]
}

$ Json /endp/sta3000-ep-B
 {
 "candela.lanforge.HttpEndp" : {
 "duration" : "1"
 },
 "uri" : "endp/:endp_id",
 "endpoint" : {
 "rx rate ll" : 0,
 "pdu/s tx" : 0,
 "bursty" : false,
 "rx rate" : 0,
 "tx pkts ll" : 0,
 "rx bytes" : 0,
 "run" : false,
 "tcp rtx" : 0,
 "min pdu" : 1460,
 "pps rx ll" : 0,
 "ooo pkts" : 0,
 "cx to" : 0,
 "tx rate ll" : 0,
 "source addr" : "10.41.0.2 0",
 "name" : "sta3000-ep-B",
 "rx ber" : 0,
 "min rate" : 56000,
 "rx dup %" : 0,
 "max rate" : 56000,
 "tx rate (1 min)" : 0,
 "a/b" : "B",
 "destination addr" : "0.0.0.0 0",

Creating Ports

It is possible to create ports and connections by using the CLI commands. Your LANforge test scenarios (located
in the /home/lanforge/DB/ directory) contain all the CLI commands that create your ports and connections.
You can submit those commands over HTTP in two ways:

/cli-json/$command An example of using the gossip command:

curl -X POST -H 'Content-type: application/json' \
 -d '{"message":"hello world"}' http://localhost:8080/cli-json/gossip

http://www.candelatech.com/cookbook/cli/lfcli_ug.php
http://www.candelatech.com/cookbook/cli/lfcli_ug.php

Then check your LANforge GUI messages.

/cli-form/$command An example of using the gossip command:

curl -X POST -d 'message=hello+world' http://localhost:8080/cli/gossip

Then check your LANforge GUI messages.

/cli/: use this method to submit a raw URL-encoded command. This might be useful if you are
copying commands directly out of a database:

curl -X POST -d 'cmd=gossip hello' http://localhost:8080/cli/

Except for /cli-json , these methods accept application/x-www-form-urlencoded content type submissions.
This is default for the NanoHttp library and default for curl .

These CLI commands do not return data, only a result code. All data that the Perl scripts would collect from
command line queries is sent directly to the GUI. Some CLI commands send data over the websocket, like the
diag command.

Command help

Commands are often complex and include a number of bitwise flags to set the state and features of ports.
There is presently no tag-substitution for port flags, but there is a help utility that can help you compute them.

http://localhost:8080/help/

Select a command to see the field helper screen:

http://localhost:8080/help/set_port

Type values into the field inputs and the CLI command will be refreshed:

Click the Parse Command button and the values in the command box will be displayed in the curl command
and the field inputs. (Notice this form is doing a GET request.)

You may find a list of flag fields that are organized by field names. The text area below the selection list is the sum
of the selected fields. Copy the flag values into the input field above to incorporate it into your command.

Creating a WiFi Station

Please refer to the scripts lf_associate_ap.pl and lf_vue_mod.sh for examples of how to produce lists of CLI
commands involved in creating stations. Please refer to:

1. Learn CLI Commands used to operate WiFi stations

2. and Changing Station WiFi SSID with the CLI API

These will provide ways of collecting the CLI commands in log files for you to place into the command /help/
page.

Use ssh to log into your LANforge manager. Use the lf_vue_mod.sh script to create a station:

$ cd scripts
$./lf_vue_mod.sh --mgr localhost --resource 3 --create_sta --name sta3101 \
 --radio wiphy1 --ssid idtest-1000-open --passphrase '[BLANK]' \
 --log_cli /tmp/clilog.txt

$ cat /tmp/clilog.txt
set_wifi_radio 1 3 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA
add_sta 1 3 wiphy1 sta3101 1024 idtest-1000-open NA [BLANK] AUTO NA 00:0e:8e:c1:df:45 8 NA NA NA NA NA 1024
set_port 1 3 sta3101 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:c1:df:45 NA NA NA 8405038 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

1. Enter each command into the your browser toolbar by altering the command into a url:

1. http://localhost:8080/help/set_wifi_radio?cli=1 3 wiphy1 NA -1 NA NA NA NA NA NA NA NA 0x1 NA

Produces:

$ echo 'shelf=1&resource=3&radio=wiphy1&channel=-1&flags=0x1' > /tmp/curl_data
$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
 http://localhost:8080/cli-form/set_wifi_radio

http://www.candelatech.com/cookbook.php?vol=cli&book=Station+CLI+Operations
http://www.candelatech.com/cookbook.php?vol=cli&book=Changing+Station+WiFi+SSID+with+the+CLI+API

alias enter udp1000-A

shelf 1

resource 2

port b2000

type select type.lf_udp

min_rate 1000000 (1 Mbps)

max_rate SAME

payload_pattern select payload_pattern.increasing

2. http://localhost:8080/help/add_sta?cli=1 3 wiphy1 sta3101 1024 idtest-1000-open NA [BLANK] AUTO NA 00:0e:8e:c1:df:45 8 NA NA NA NA NA 1024

Produces:

$ echo 'shelf=1&resource=3&radio=wiphy1&sta_name=sta3101&flags=1024&ssid=idtest-1000-open&key=[BLANK]&ap=AUTO&mac=00:0e:8e:c1:df:45&mode=8&flags_mask=1024
$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
 http://localhost:8080/cli-form/add_sta

3. http://localhost:8080/help/set_port?cli=1 3 sta3101 0.0.0.0 255.255.0.0 0.0.0.0 NA 2147483648 00:0e:8e:c1:df:45 NA NA NA 8405038 1000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NONE

Produces:

$ echo 'shelf=1&resource=3&port=sta3101&ip_addr=0.0.0.0&netmask=255.255.0.0&gateway=0.0.0.0¤t_flags=2147483648&mac=00:0e:8e:c1:df:45&interest=8405038&report_timer=1000¤t_flags_msk=NONE
$ curl -sqv -H 'Accept: application/json' -X POST -d '@/tmp/curl_data' \
 http://localhost:8080/cli-form/set_port

2. Verify with the LANforge GUI the changes you wish to make.

Creating Connections

Using the /cli-json/add_endp and /cli-json/add_cx URLs, it is possible to create Layer-3 connections. Create
the Layer-3 endpoints first, of course.

Create L3 Endpoints

Construct your command using the /help/add_endp page. For an example, use these parameters:

Click Parse Command and copy the resulting curl command into a text editor:

alias enter udp1000-B

shelf 1

resource 7

port sta7000

type select type.lf_udp

min_rate 54000 (54 Kbps)

max_rate SAME

payload_pattern select payload_pattern.increasing

And for the B endpoint, choose a station:

Click Parse Command and copy the resulting curl command into a text editor:

We'll save this file as a shell script: ~/create-endp.sh We can then run it from our terminal like so: bash -x
create-endp.sh

We should see the endpoints we've created in the LANforge GUI Endps tab:

Create L3 Connection

With the creation of two endpoints, we can proceed with creating a Layer 3 cross-connect. This is much simpler,
it really only takes the names of the two endpoints we created above. We'll choose default_tm for the test
manager.

alias udp1000

test_mgr default_tm

tx_endp udp1000-A

rx_endp udp1000-B

test_mgr default_tm

cx_name udp1000

cx_state RUNNING

Click the Parse Command button and copy the resulting curl command into your editor with the shell script.
Run the script again. It doesn't hurt to re-create the endpoints.

Toggling the Connection

Cross connects have three good state: STOPPED, RUNNING, and QUIESCE. The command to change them is
set_cx_state. You will have no trouble creating the command:

Click Parse Command and then you can paste the resulting command into your editor.

Advanced Techniques

You can make JSON submissions and you can also submit Base64 encoded values in both form an and JSON
submission URLs.

Submitting Base64

Field names that end in -64 are interpreted as base64 encoded values. From a linux terminal, you can convert
text to base64 encoded value using the base64 command:

$ echo "RUNNING" | base 64
UlVOTklORwo=

Below is a CLI command example. You typically would not care to spend the effort doing this unless the data you
need to express is difficult to URL encode.

$ echo 'test_mgr-64=YW55Cg==&cx_name-64=dWRwMTAwMAo=&cx_state-64=UlVOTklORwo=' > /tmp/curl_data
$ curl -A 'Accept: application/json' -X POST -d @/tmp/curl_data http://host/cli-form?set_cx_state

Submitting JSON

Instead of posting to /cli-form , you can post to /cli-json and your submission will be parsed as a json object.
The parameter names stay the same. The base64 name extensions are also available! You need to specify that
your Content-type in the POST is application/json .

$ echo '{"test_mgr":"default_tm","cx_name":"udp1000","cx_state":"RUNNING"}' > /tmp/curl_data
$ curl -sq -H 'Content-type: application-json' -H 'Accept: application/json' \
 -X POST -d@/tmp/curl_data http://localhost:8080/cli-json/set_cx_state

Handling Mismatched Column Errors

(This should be fixed as of 2018/08/14) When the LANforge cliet is in GUI mode, the columns of data that are
returned match the GUI table columns displayed. You can use the Right-click→Add/Remove Table Columns
menu item to change this. We do not recommend doing this for querying JSON data though, because the table
columns definitions will not match up to the data the webserver expects to return.

$ curl -sq http://localhost:8080/port | json_pp
{
 "error_list" : [
 "names_to_col_ids map is not going to work:\n[tx abort][25 > 4]\n[cx time (us)][48 > 4]\n[bytes rx ll][33 > 4]\n[bps tx][14 > 4]\n[channel][39 > 4]\n[no cx (us)][47 > 4]\n[rx frame][22 > 4]\n[login-fail][58 > 4]\n[tx hb][28 > 4]\n[mode][40 > 4]\n[anqp time (us)][49 > 4]\n[rx pkts][8 > 4]\n[bytes tx ll][31 > 4]\n[key/phrase][56 > 4]\n[signal][42 > 4]\n[connections][44 > 4]\n[ipv6 gateway][68 > 4]\n[time-stamp][69 > 4]\n[entity id][70 > 4]\n[bps rx ll][32 > 4]\n[rx errors][16 > 4]\n[tx errors][17 > 4]\n[pps tx][13 > 4]\n[rx over][20 > 4]\n[ap][38 > 4]\n[mtu][63 > 4]\n[qlen][62 > 4]\n[beacon][54 > 4]\n[rx drop][18 > 4]\n[tx wind][29 > 4]\n[reset][34 > 4]\n[device][61 > 4]\n[status][37 > 4]\n[activity][41 > 4]\n[cx ago][46 > 4]\n[crypt][51 > 4]\n[rx crc][21 > 4]\n[ipv6 address][67 > 4]\n[logout-ok][59 > 4]\n[parent dev][6 > 4]\n[ssid][55 > 4]\n[tx-rate][35 > 4]\n[mac][66 > 4]\n[login-ok][57 > 4]\n[4way time (us)][50 > 4]\n[logout-fail][60 > 4]\n[rx miss][24 > 4]\n[rx fifo][23 > 4]\n[noise][43 > 4]\n[alias][5 > 4]\n[tx pkts][12 > 4]\n[tx crr][26 > 4]\n[rx length][19 > 4]\n[dhcp (ms)][45 > 4]\n[retry][52 > 4]\n[misc][53 > 4]\n[mask][64 > 4]\n[tx bytes][11 > 4]\n[tx fifo][27 > 4]\n[collisions][15 > 4]\n[pps rx][9 > 4]\n[gateway ip][65 > 4]\n[bps tx ll][30 > 4]\n[rx bytes][7 > 4]\n[bps rx][10 > 4]\n[rx-rate][36 > 4]"
],
 "status" : "INTERNAL_ERROR"
}

The terminal you started the LANforge client on will also give a similar error:

1532480073953: names_to_col_ids size:71
java.lang.IllegalArgumentException: names_to_col_ids map is not going to work:
1532480073953: lfj_table columns:10

Reset the Table Layout
1. Right-clicking the Port Mgr and selecting Add/Remove Table Columns will allow you to change this.

2. Clicking the Select All/None button and then Apply will get all the columns displayed, and returned in
your queries.

3. Make sure to Right-Click → Save Table Layout so that your next session will show all the data.

4. Restart the LANforge client
Candela Technologies, Inc., 2417 Main Street, Suite 201, Ferndale, WA 98248, USA

www.candelatech.com | sales@candelatech.com | +1.360.380.1618

	Querying the LANforge GUI for JSON Data
	Goal: The LANforge GUI now has an embedded webserver and a headless mode of operation. Read on for how to configure and query the client for JSON formatted data.

	Client Settings
	Making Queries
	JSON Output
	HTML Output

	Formatting Results
	Example of installing formatters

	Making your shell friendly
	Browsing results in table format
	Viewing Alerts and Events
	Streaming Events
	Installing wsdump
	Streaming Using wsdump
	Streaming Using javascript

	Data Views
	URLs
	Creating Ports
	Command help
	Creating a WiFi Station

	Creating Connections
	Create L3 Endpoints
	Create L3 Connection
	Toggling the Connection

	Advanced Techniques
	Submitting Base64
	Submitting JSON

	Handling Mismatched Column Errors
	Reset the Table Layout

