
sales@candelatech.com
support@candelatech.com

+1 (360) 380-1618 [PST, GMT -8]
Network Testing and Emulation Solutions

Querying the LANforge JSON API using Python
Goal: Use Python scripts to query the LANforge Client JSON API. (See Querying the LANforge GUI for JSON
Data) The provided Python scripts allow you the same API scope as the Perl scripts.
LANforge now provides Python scripts that query the REST API that the LANforge Client now exposes by
default. This chapter steps through using each of the scripts. At the end we show an example of how to
write a Python script. Scripts encourage Python 3. Requires LANforge 5.4.1 or later.

Client Settings

On your LANforge Server, the scripts directory is located at /home/lanforge/scripts. Under that directory, the
py-json directory contains Python scripts.

Script Purpose

__init__.py Defines the py-json module

show_ports.py
Simplest example of querying all ports. This is typical of querying any of the APIs
you browse from / or /help

create_sta.py Script creates a virtual station

LANforge/__init__.py Defines the py-json/LANforge module

LANforge/LFRequest.py
Use the LFRequest module to help make GET and POST requests to the LANforge
Client

LANforge/LFUtils.py Use the LFUtils module to help process JSON results

Getting Started

First, start the LANforge Client (LANforge GUI) and connect it to your LANforge Server. If you want to start the
client in headless mode, open a terminal, and from the LANforgeGUI_5.4.1 directory, start the script with the -
daemon argument:

$./lfclient -daemon -s localhost

Querying Ports
Running the script

In the /home/lanforge/scripts/py-json directory:

 $ python3 ./show_ports.py
{ '1.1.eth0': { '_links': '/port/1/1/0',
 'alias': 'eth0',
 'phantom': False,
 'port': '1.1.00'}}
{ '1.1.eth1': { '_links': '/port/1/1/1',
 'alias': 'eth1',
 'phantom': False,
 'port': '1.1.01'}}
{ '1.1.sta00500': { '_links': '/port/1/1/9',
 'alias': 'sta00500',
 'phantom': False,
 'port': '1.1.09'}}
{ '1.1.sta00501': { '_links': '/port/1/1/10',
 'alias': 'sta00501',
 'phantom': False,
 'port': '1.1.10'}}
{ '1.1.sta00502': { '_links': '/port/1/1/11',
 'alias': 'sta00502',
 'phantom': False,
 'port': '1.1.11'}}

Looking inside the script

This script is a way of pretty-printing the results of GET http://localhost:8080/port/1/1/list

lf_r = LFRequest.LFRequest("http://localhost:8080/port/1/1/list")
json_response = lf_r.getAsJson()
j_printer = pprint.PrettyPrinter(indent=2)
for record in json_response['interfaces']:
 j_printer.pprint(record)

Other variations of this you can try are:

/port/list

http://www.candelatech.com/
mailto:sales@candelatech.com
mailto:support@candelatech.com
tel:+13603801618

This is an abbreviation

/port/1/2/list

If you have a second LANforge resource

/port/1/2/eth0

Show a specific port

Example of Creating a Station
Running the script

[lanforge@ct524-debbie py-json]$ python3 ./create_sta.py
Example 1: will create stations sta0200,sta0201,sta0202
Ex 1: Checking for station : http://localhost:8080/port/1/1/sta0200
...
Ex 1: Next we create stations...
Ex 1: Next we create station sta0200...
Ex 1: station up sta0200...

Example 2: using port list to find stations
Ex 2: checking for station : sta0220
Ex 2: create station sta0220
Ex 2: set port sta0220

Example 3: bring ports up and down
Ex 3: setting ports up...
Ex 3: setting ports down...
...ports are down
Example 4: Modify stations to mode /a
using add_sta to set sta0200 mode

Example 5: change station encryption from wpa2 to wpa3...
using add_sta to set sta0200 wpa3

Example 7: alter TX power on wiphy0...

Looking inside the script

Create a station

lf_r = LFRequest.LFRequest(base_url+"/cli-form/add_sta")

Flags are a decimal equivalent of a hexadecimal bitfield you can submit as either 0x(hex) or (dec) a helper
page is available at http://localhost:8080/help/add_sta

You can watch console output of the LANforge GUI client when you get errors to this command, and you can
also watch the websocket output for a response to this command at ws://localhost:8081. Use $ wsdump
ws://localhost:8081/ to follow those messages.

Modes are listed at http://localhost/LANforgeDocs-5.4.1/lfcli_ug.html or at
https://www.candelatech.com/lfcli_ug.html

The MAC address field is a pattern for creation: entirely random mac addresses do not take advantage of
address mask matchin in Ath10k hardware, so we developed this pattern to randomize a section of octets:

XX

keep parent

*

randomize

chars [0-9a-f]

use this digit

If you get errors like "X is invalid hex character", this indicates a previous rm_vlan call has not removed your
station yet: you cannot rewrite mac addresses with this call, just create new stations.

The staNewDownStaRequest() creates a station in the Admin-Down state. This is a good way to efficiently create
batches of stations because it defers all the PHY layer activity which takes significant time when you do it in a
loop.

lf_r.addPostData(LFUtils.staNewDownStaRequest(sta_name, resource_id=resource_id, radio=radio, ssid=ssid, passphrase=passphrase))
lf_r.formPost()
sleep(0.05)

Sleeping for 50ms is not sufficient to interact with the station, but is a functional minimum to allow the LANforge
to start processing the command; this is a good value to use in a loop that creates stations. Follow with:

LFUtils.waitUntilPortsAppear(resource_id, desired_stations)

Set station up

The LANforge API separates STA creation and Ethernet port settings. We need to revisit the stations we create
and amend flags to add things like DHCP or ip+gateway, admin-{up,down} for sta_name in desired_stations:

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_port")
data = LFUtils.portDhcpUpRequest(resource_id, sta_name)
lf_r.addPostData(data)
lf_r.jsonPost()

ws://localhost:8081
https://www.candelatech.com/lfcli_ug.html

sleep(0.05)

Set station down

for sta_name in desired_stations:
 lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_port")
 lf_r.addPostData(LFUtils.portDownRequest(resource_id, sta_name))
 lf_r.jsonPost()
LFUtils.waitUntilPortsAdminDown(resource_id, desired_stations)

Change station mode

There is not a set_sta command. Many LANforge CLI commands do a default modify if the entity already exists.
This is how we can modify attributes of existing stations. For the mode values, see
http://www.candelatech.com/lfcli_ug.php#add_sta

for sta_name in desired_stations:
 lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_sta")
 lf_r.addPostData({
 "shelf":1,
 "resource": resource_id,
 "radio": radio,
 "sta_name": sta_name,
 "mode": 1, # 802.11a
 })
 lf_r.jsonPost()
 sleep(0.5)

Change station protocol

Flags for add_sta and set_port are actually 64-bit values. When the values in the command below are read by
the /help/add_sta page, Javascript cannot deal with integers greater than 32-bits long.

lf_r = LFRequest.LFRequest(base_url+"/cli-json/add_sta")
lf_r.addPostData({
 "shelf":1,
 "resource": resource_id,
 "radio": radio,
 "sta_name": sta_name,
 "mode": 0, # mode AUTO

 # sets use-wpa3
 "flags": 1099511627776,

 # sets interest in use-wpa3, wpa2_enable (becomes zero)
 "flags_mask": 1099511628800
})
print("using add_sta to set %s wpa3"%sta_name)
lf_r.jsonPost()

Change radio power on radio wiphy0

Virtual stations do not have individual tx power states. You can set the radio transmit power. See
http://www.candelatech.com/lfcli_ug.php#set_wifi_radio. The txpower is set through iwconfig, so see man 8

iwconfig. Power is in dBm, auto or off.

Not all flags in a JSON request are actually LANforge CLI parameters. The suppress_preexec_method parameter
is a meta-flag tells the LANforge client to not check that the port exists before issuing the command. You would
use this to expedite a script, because a check-port command is synchronous, not intended to be used in a loop.

lf_r = LFRequest.LFRequest(base_url+"/cli-json/set_wifi_radio")
lf_r.addPostData({
 "shelf":1,
 "resource":resource_id,
 "radio":radio,
 "mode":NA,
 "txpower": "auto",
 "suppress_preexec_method": "true"
})
lf_r.jsonPost()

Seeing Errors
Monitoring for Connection Errors

Use the wsdump utility on the LANforge to see the output of system errors and WiFi Events:

$ wsdump ws://localhost:8081/

The output will be mostly similar to what you see in the WiFi-Messages tab in the GUI:

< {"wifi-event":"1.1: IFNAME=sta0200 <3>CTRL-EVENT-SCAN-STARTED","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: IFNAME=sta0200 <3>CTRL-EVENT-NETWORK-NOT-FOUND","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: sta0200 (phy #1): scan started","timestamp":"2019-11-21T16:00:50.095Z"}

http://www.candelatech.com/lfcli_ug.php#add_sta
http://www.candelatech.com/lfcli_ug.php#set_wifi_radio

< {"wifi-event":"1.1: sta0200 (phy #1): scan finished: 5745, \"\"","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: IFNAME=sta0220 <3>CTRL-EVENT-SCAN-STARTED","timestamp":"2019-11-21T16:00:50.095Z"}
< {"wifi-event":"1.1: IFNAME=sta0220 <3>CTRL-EVENT-NETWORK-NOT-FOUND","timestamp":"2019-11-21T16:00:50.095Z"}

The message CTRL-EVENT-NETWORK-NOT-FOUND indicates that the SSID we are attempting to connect to is
unavailable.

Interpreting Python HTTP Error Output

It won't be uncommon to find errors similar to this:

Url: http://localhost:8080/cli-form/set_port
Error: <class 'urllib.error.HTTPError'>
Request URL:
'http://localhost:8080/cli-form/set_port'
Request Content-type:
'application/x-www-form-urlencoded'
Request Accept:
'application/json'
Request Data:
(b'shelf=1&resource=1&port=sta0200¤t_flags=2147483649&interest=75513858&r'
 b'eport_timer=8000')

The HTTPError exception is just some kind of 500 error and is often timing related. Perl scripts are subject to similar
timing issues. When LANforge is busy creating and destroying stations, it is modifying the network stack during
each modification...and this takes time.

You can decode this set_port request data by pasting the individual values into the /help/set_port page
provided by your LANforge client: http://localhost:8080/help/set_port.

shelf 1

resource 1

port sta0200

current_flags 2147483649

interest 75513858

report_timer 8000

For numerical flag fields, you can use the ♻ button to try and decode the values of the flags.

Using the Scripts on Your Laptop

You can copy the py-json directory to your laptop or workstation. You may also use git and clone the
LANforge-scripts repository: https://github.com/greearb/lanforge-scripts/.

i If you make a script on a Windows laptop and copy it back to your LANforge,

http://localhost:8080/help/set_port
https://github.com/greearb/lanforge-scripts/

please run dos2unix on the script to change the line-ending characters: $
dos2unix myscript.py

Python Module Methods
LFRequest.py

Create a new LFRequest object to help create a request:

lf_r = LFRequest.LFRequest(base_url+"/port/1/1/wiphy0")
wiphy0_json = lf_r.getAsJson()

Your REST requests are discussed in the Querying LANforge GUI for JSON Data chapter.

formPost(show_error=true)

This method formats post data as application/x-www-form-urlencoded data. There should be no
significant differience between this and the jsonPost() method.

jsonPost(show_error=true)

This method formats post data as application/json data. There should be no significant differience
between this and the formPost() method.

get(show_error=true)

Use this method to do a GET request with 'Accept: application/json' headers. You get unformatted results.

getAsJson()

Formats the results of get() into Objects using json.loads()

LFUtils.py

def staNewDownStaRequest(sta_name, resource_id=1, radio="wiphy0", flags=ADD_STA_FLAGS_DOWN_WPA2, ssid="",
passphrase="", debug_on=False):

For use with add_sta. If you don't want to generate mac addresses via patterns (xx:xx:xx:xx:81:*) you can
generate octets using random_hex.pop(0)[2:] and gen_mac(parent_radio_mac, octet) See
http://localhost:8080/help/add_sta

def portSetDhcpDownRequest(resource_id, port_name, debug_on=False):

Sets port admin down. See http://localhost:8080/help/set_port

def portDhcpUpRequest(resource_id, port_name, debug_on=False):

Sets port up and to use DHCP. See http://localhost:8080/help/set_port

def portUpRequest(resource_id, port_name, debug_on=False):

Sets port up. See http://localhost:8080/help/set_port

def portDownRequest(resource_id, port_name, debug_on=False):

Sets port down. Does not change the use_dhcp flag See http://localhost:8080/help/set_port

def generateMac(parent_mac, random_octet):

Helps generate a random mac address.

def portNameSeries(prefix="sta", start_id=0, end_id=1, padding_number=10000):

This produces a named series similar to "sta000, sta001, sta002...sta0(end_id)" The padding_number is
added to the start and end numbers and the resulting sum has the first digit trimmed, so f(0, 1, 10000) =>
{0000, 0001}

def generateRandomHex():

Use in conjuction with generateMac()

def portAliasesInList(json_list):

Return reverse map of aliases to port records. Normally, you expect nested records, which is an artifact of
some ORM that other customers expect:

[
 {
 "1.1.eth0": {
 "alias":"eth0"
 }
 },
 { ... }
]

Naturally, this is more difficult to digest. This method returns a more intuitive structure:

{
 "eth0" : {
 "1.1.eth0": {
 "alias":"eth0"
 },
 },
 "eth1": {},
 ...
}

def findPortEids(resource_id=1, port_names=(), base_url="http://localhost:8080"):

http://www.candelatech.com/cookbook/cli/cookbook.php?vol=cli&book=Querying+the+LANforge+GUI+for+JSON+Data

returns PortEID objects matching requested port_names. Use after set_port

def waitUntilPortsAdminDown(resource_id=1, port_list=()):

Sleep and query until all ports report admin down. Use after set_port

def waitUntilPortsAdminUp(resource_id=1, port_list=()):

Sleep and query until all ports report admin up. Use after set_port

def waitUntilPortsDisappear(resource_id=1, port_list=()):

Sleep and query until requested ports have entirely gone away. Use after rm_vlan

def waitUntilPortsAppear(resource_id=1, port_list=()):

Sleep and query until requested ports have appeared. Use after add_sta

Candela Technologies, Inc., 2417 Main Street, Suite 201, Ferndale, WA 98248, USA
www.candelatech.com | sales@candelatech.com | +1.360.380.1618

	Querying the LANforge JSON API using Python
	Goal: Use Python scripts to query the LANforge Client JSON API. (See Querying the LANforge GUI for JSON Data) The provided Python scripts allow you the same API scope as the Perl scripts.

	Client Settings
	Getting Started
	Querying Ports
	Running the script
	Looking inside the script

	Example of Creating a Station
	Running the script
	Looking inside the script
	Create a station
	Set station up
	Set station down
	Change station mode
	Change station protocol
	Change radio power on radio wiphy0

	Seeing Errors
	Monitoring for Connection Errors
	Interpreting Python HTTP Error Output

	Using the Scripts on Your Laptop
	Python Module Methods
	LFRequest.py
	LFUtils.py

