Goal: Use automated script to migrate stations between APs and report results.

Requires LANforge 5.2.11 or later. Configure Stations to use FT-EAP (802.11r) and associate them with an 802.11r AP network. Use the 'WiFi Mobility' LANforge-GUI Plugin to automate roaming the stations between the APs. The plugin will create graphs and other reports that can be saved to HTML. This example uses a LANforge CT523 system but the procedure should work on all CT520, CT523 and similar systems.

The two APs under test are on the same channel, so a single radio/NIC on LANforge can roam virtual stations between the APs. But, if the APs were on different channels, only a single station per radio would be supported. Multiple CT523 or other high-density systems can be used to migrate stations between APs on different channels.

1. Configure stations to connect to APs configured for 802.11r. This requires special AP software support and usually an AP Controller (APC).
 A. Go to the Port Manager tab, select wiphy0 on proper resource, click Create, fill out appropriate information and create desired number of Station interfaces.
The new stations should appear in the Port-Mgr table. Double-click to modify one of them. Configure IP Address information, SSID and select WPA2:

Port Status Information
- Current: LINK-UP
- Driver Info: Port Type: WIFI-STA
- Parent: wiphy0

Port Configurables

<table>
<thead>
<tr>
<th>Enable</th>
<th>Standard Configuration</th>
<th>Advanced Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DHCP-IPv6</td>
<td>DHCP Release</td>
</tr>
<tr>
<td></td>
<td>DHCP-IPv4</td>
<td>Secondary-IPv6</td>
</tr>
<tr>
<td></td>
<td>DNS Servers: 192.168.21</td>
<td>Peer IP: NA</td>
</tr>
<tr>
<td></td>
<td>IP Address: 0.0.0.0</td>
<td>Global IPv6:</td>
</tr>
<tr>
<td></td>
<td>IP Mask: 0.0.0.0</td>
<td>Link IPv6:</td>
</tr>
<tr>
<td></td>
<td>Gateway IP: 0.0.0.0</td>
<td>IPv6 GW:</td>
</tr>
<tr>
<td></td>
<td>Alias:</td>
<td>MTU: 1500</td>
</tr>
<tr>
<td></td>
<td>MAC Addr: 00:aa:aa:aa:01</td>
<td>TX Q Len: 1000</td>
</tr>
<tr>
<td></td>
<td>Rtx Timer: medium (8 s)</td>
<td>WiFi Bridge: NONE</td>
</tr>
</tbody>
</table>

WIFI Settings
- SSID: aireonet1-5
- Key/Phrase: lanforge
- Freq/Channel: 5180/36
- Rate: OS Default
- RTS: 1
- Tx-Power: 17 dBm
- AMPDU-Factor: OS Default
- AMPDU-Density: OS Default
- Max-AMSDU: OS Default
- Use WPA: On
- Use WPA2: Off
- Use WEP: Off
- Disable HT40: Off
- Disable SGI: Off
- Scan Hidden: Off
- Allow Migration: Off

Services
- HTTP
- FTP

Low Level
- PROMISC
- TSO Enabled
- UFO Enabled
- GSO Enabled
- LRO Enabled
- GRO Enabled
C. Select the **Advanced Configuration** tab in the Port-Modify window and configure the Key Management, Private Key and other values needed to connect to the APs. Be sure to un-select the **Restart DHCP on Connect** checkbox so that DHCP is not refreshed each time a station roams.

D. Once the single station is connecting properly, use Batch-Modify to configure the rest of the stations to match the first.

For more information see [LANforge User’s Guide: Ports (Interfaces)](http://www.lanforge.com), **WiFi Station Cookbook**

2. Create VOIP connections between the wired Ethernet eth1 interface and the stations. This will add realistic traffic load to the network under test and allow LANforge to report packet-loss statistics during roaming. The VOIP feature costs extra, so you may wish to use a normal Layer-3 UDP connection which should also provide good reports and a realistic traffic load. The steps below are for VOIP, but Layer-3 would be very similar.
A. Go to the VOIP/RTP tab, click Create, and configure a VOIP connection on eth1 and the first station:

B. Apply the configuration and make sure the call can complete. Then click Modify on the VOIP connection and use Batch-Create to create one connection for each of the WIFI stations.

C. Select the VOIP and/or Layer-3 connections and start traffic flow. For this example, the connections should remain running while the roaming takes place. It would also be valid to do roaming without any traffic if that is the desired test case.

3. Start the WIFI Migration script.

A. Go to the Port Manager tab, select the stations you wish to roam, right-click and choose the WIFI Mobility menu option.
Before roaming, you should first scan the proper frequencies. Otherwise, the supplicant process may do an internal scan which may significantly affect the connection time.

```
do_cli scan 1 Resource STA NA 'trigger freq F1 F2'
do_cli scan 1 1 sta1 NA 'trigger freq 5180 5300'
sleep 1
```

In the following sections:

- **Resource STA**: Station's resource ID number, often '1'
- **STA**: Name of the station to roam 'sta1'
- **BSSID**: The BSSID address of the AP: 00:01:02:03:04:05
- **F1**: First frequency to scan: 5180
- **F2**: Optional second frequency to scan: 5300

After issuing ROAM commands, a pause should be added to let the station adjust (if seconds, no duplicate allowed).

```
sleep 20
```

To issue a generic LANforge CLI command, begin command with

```
do_cli
```

Example:

```
do_cli scan 1 1 sta1 NA 'trigger freq 5180 5300'
sleep 1
```

B. The options at the top default to common values and may not need to be changed. The ports will be automatically configured based on the selection on the Port Manager tab, and can be adjusted before starting the script. The Ports in Use should normally include all stations used in the script. The configuration requiring the most work from the user is the roaming script itself. There is a help section on the left, and a script-entry field on the right. Once the script is written, it should be saved in a text file on the user's PC so that it can easily be pasted into future WiFi Mobility scripts. Some key points are that you must scan about 1 second before roaming or the roam logic in the supplicant process will either fail or do its own roaming. Either way, the results may be worse than if you do the roam properly in the script. It can take a bit of time for LANforge to get all of the data it needs to report on the roam attempt, so it is suggested that stations not roam more often than about once every 10-20 seconds. If reporting is less important, then the stations can roam more often.
C. Once the script is properly configured, click Start to start the roaming. A window will pop up that has live-updating graphs of various reports. A text log is at the bottom for more detailed analysis, and the whole thing can be saved as HTML. The graphs can be scaled and configured through right-click menus if desired. It will take 1-2 complete roam attempts before the graphs are able to show any useful information.

The migration is verified after the AutoVerify timer has expired. If the migration has not completed in that time, it will be counted as failed.
The migration is verified after the AutoVerify timer has expired. If the migration has not completed in that time, it will be counted as failed.
E. Packet Loss graphs.

Migration Script Contents:

```
dccli scan 1 1 sta1 "trigger freq 5280 5380"
sleep 1
run 1 sta1 dc:a5:4f:ff:4f:1e
run 1 sta2 dc:a5:4f:ff:4f:1a
run 1 sta3 dc:a5:4f:ff:4f:1e
run 1 sta4 dc:a5:4f:ff:4f:1a
run 1 sta5 dc:a5:4f:ff:4f:1e
run 1 sta6 dc:a5:4f:ff:4f:1a
run 1 sta7 dc:a5:4f:ff:4f:1e
run 1 sta8 dc:a5:4f:ff:4f:1a

sleep 20

dccli scan 1 1 sta1 "trigger freq 5280 5380"
sleep 1
run 1 sta7 dc:a5:4f:ff:4f:1e
run 1 sta8 dc:a5:4f:ff:4f:1a
run 1 sta9 dc:a5:4f:ff:4f:1e
run 1 sta10 dc:a5:4f:ff:4f:1a
run 1 sta11 dc:a5:4f:ff:4f:1e
run 1 sta12 dc:a5:4f:ff:4f:1a
run 1 sta13 dc:a5:4f:ff:4f:1e
run 1 sta14 dc:a5:4f:ff:4f:1a

sleep 20
```